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QCD phase diagram

• QCD shows rich phenomena when internal/external 
parameters are changed  
T, μ, Nc, Nf, mu, ms,…

• External magnetic field is an important parameter.

Fukushima et al., 1005.4814 Bonati et al., 1201.2769       



Scale of magnetic field

• The earth  
10-9 [T] 
 
 

• Magnetars  
 1010 [T] ~ 10-4 mπ2  
 
 

• Non central heavy ion collision  
 1015 [T] ~ eB = 0.1 [GeV2] ~ 5 mπ2  
 ※Life time is very short (0.1fm ~ 10-24 s)

figure from wikipedia
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FIG. 1: (Color online) Schematic view of the charge separa-
tion along the system orbital momentum. The orientation of
the charge separation fluctuates in accord with the sign of the
topological charge. The direction of the orbital momentum L,
and that of the magnetic field B, is indicated by an arrow.

system orbital angular momentum, with negative par-
ticles flowing oppositely to the positive particles. The
magnetic field and the angular momentum are normal to
the plane containing the trajectories of the two collid-
ing ions. This plane, called the reaction plane, can be
found experimentally in each collision by observation of
the azimuthal distribution of produced particles in that
event.

FIG. 2: (Color online) Schematic view of the transverse plane
indicating the orientation of the reaction plane and particle
azimuths relative to that plane. The colliding nuclei are trav-
eling into and out of the figure.

When two heavy ions collide with a finite impact pa-
rameter, the probability for particles to be emitted in
a given azimuthal direction is often described with a
Fourier decomposition [17]:

dN

↵

d�

/ 1 + 2v1,↵ cos(��) + 2 v2,↵ cos(2��) + ... ,(1)

where �� = (�� 
RP

) is the particle azimuthal direction
relative to the reaction plane, as shown in Fig. 2. v1 and
v2 are coe�cients accounting for the so-called directed
and elliptic flow, respectively, and ↵ indicates the parti-
cle type. They depend on the impact parameter of the
colliding nuclei, the particle type (⇡, K, p, ...), transverse
momentum (p

t

), and pseudorapidity (⌘) of the produced
particles. For collisions of identical nuclei, symmetry re-
quires v1 to be an odd function of rapidity and v2 to be
an even function of rapidity. Measurements (for a re-
view and references, see [18]) have found that, at RHIC,
v1 is quite small at mid-rapidity; typically, |v1| < 0.005
for �1 < ⌘ < +1. In contrast, v2 is found to be siz-
able and positive. In Au+Au collisions at

p
s

NN

= 200
GeV, for unidentified charged hadrons, v2 reaches 0.25
for p

t

⇠ 3 GeV/c, and 0.06 when integrated over all p
t

.
Phenomenologically, the charge separation due to a do-

main with a given sign of the topological charge can be
described by adding P-odd sine terms to the Fourier de-
composition Eq. 1 [19]:

dN

↵

d�

/ 1 + 2v1,↵ cos(��) + 2 v2,↵ cos(2��) + ...

+ 2a1,↵ sin(��) + 2 a2,↵ sin(2��) + ... , (2)

where the a parameters describe the P-violating e↵ect.
Equation 2 describes the azimuthal distribution of par-
ticles of a given transverse momentum and rapidity and,
like the flow coe�cients, a coe�cients depend on trans-
verse momentum and rapidity of the particles. In addi-
tion, they depend also on the rapidity (position) of the
domain. One expects that only particles close in rapidity
to the domain position are a↵ected. According to the
theory, the signs of a coe�cients vary following the fluc-
tuations in the domain’s topological charge. If the par-
ticle distributions are averaged over many events, then
these coe�cients will vanish because the distributions
are averaged over several domains with di↵erent signs
of the topological charge. However, the e↵ect of these
domains on charged particle correlations will not van-
ish in this average, as discussed below. In this analysis
we consider only the first harmonic coe�cient a1, which
is expected to account for most of the e↵ect although
higher harmonics determine the exact shape of the dis-
tribution. For brevity we will omit the harmonic number,
and write a

↵

= a1,↵. The index ↵ takes only two values,
+ and �, for positively and negatively charged particles
respectively.
The e↵ects of local parity violation cannot be signifi-

cantly observed in a single event because of the statistical
fluctuations in the large number of particles, which are
not a↵ected by the P-violating fields. The average of a

↵

over many events, ha
↵

i, must be zero. The observation
of the e↵ect is possible only via correlations, e.g. mea-
suring ha

↵

a

�

i with the average taken over all events in
a given event sample. The correlator ha

↵

a

�

i is, however,
a P-even quantity, and an experimental measurement of
this quantity may contain contributions from e↵ects un-
related to parity violation. The correlator ha

↵

a

�

i can be
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Magnetisation

<http://www.city.nagoya.jp/> <http://mmlnp.exblog.jp/14144158>

Ferromagnetism (Iron) Diamagnetism (Graphite)

• Electron determines the magnetic properties of the 
materials.

• Quarks and Pion will determine the magnetic properties 
of the QCD matter.



Magnetism of metals

• Conduction electrons mainly contribute to the magnetisation.

• Free gas shows paramagnetism.

• Due to interactions, the effective mass m* differs from the 
bare mass and diamagnetism is achieved (e.g., Bi).

Landau diamagnetism (Orbit) 

Bext

Pauli paramagnetism (Spin)

Bext

~s
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Free energy and magnetic susceptibility (χ)

• Magnetic susceptibility is the second order coefficient of 
the free energy.

Bind = Bext +M = (1 + �)Bext

Magnetisation:

Free energy: ⌦ = �P

P ⇠ P0 +
�

2
(eB)2 +O(eB4)or



Subtraction of Vacuum contribution

• The B square term has a divergence (ε -> 0).

• χ must be renormalised by renormalisation of electric 
charge.

• The following renormalisation condition is usually imposed 
in non-perturbative methods.

Andersen and Khan (2011)

xf =
m

2
q

qfB

⇠ #
1

✏
(qfB)2 + regular terms

in powers of ϵ through order ϵ0, we obtain

∑

∫

P

log
[

P 2 +M2
]

= −
M4

32π2

(

Λ2

M2

)ϵ [
1

ϵ
+

3

2

]

+
T

π2

∫

dp p2 log
[

1− e−β
√

p2+M2
]

.(24)

We next consider the contribution to the effective po-
tential from the charged pions. Summing over the Mat-
subara frequencies in Eq. (18), we obtain

Vπ± =
|qB|
4π

∑

n

∫

pz

{

√

p2z +M2
B

+2T log
[

1− e−β
√

p2+M2
B

]}

. (25)

The first integral is ultraviolet divergent and we compute
in dimensional regularization with d = 1−2ϵ. This yields

∫

pz

√

p2z +M2
B = −

M2
B

4π

(

eγEΛ2

M2
B

)ϵ

Γ(−1 + ϵ) .(26)

Eq. (26) shows that the sum over Landau levels n in-
volves the term M2−2ϵ

B . This sum is divergent for ϵ = 0
and we regulate it using zeta-function regularization.
After scaling out a factor of (2|qB|)1−ϵ, this sum can
be written as

∑

n

M2−2ϵ
B = (2|qB|)1−ϵ

∑

n

[

n+ 1
2 +

m2
π

2|qB|

]1−ϵ

= (2|qB|)1−ϵζ(−1 + ϵ, 1
2 + x) , (27)

where x = m2
π

2|qB| and ζ(q, s) is the Hurwitz zeta function.
The vacuum contribution then reduces to

Vvac
π± = −

(qB)2

8π2

(

eγEΛ2

2|qB|

)ϵ

Γ(−1 + ϵ)ζ(−1 + ϵ, 1
2 + x) .

(28)

Expanding Eq. (28), we obtain

Vvac
π± =

1

64π2

(

Λ2

2|qB|

)ϵ [(
(qB)2

3
−m4

π

)(

1

ϵ
+ 1

)

+ 8(qB)2ζ(1,0)(−1, 12 + x) +O(ϵ)

]

, (29)

where ζ(1,0)(−1, 1
2 + x) is the derivative of the Hurwitz zeta function with respect to the first argument and where

we have used that ζ(−1, 1
2 + x) = 1

24 − 1
2x

2.
The vacuum contributions from the quarks can be calculated in the same manner, and one finds [46, 63, 64]

Vvac
q =

Nc

2π2

∑

f

(qfB)2
(

eγEΛ2

2|qfB|

)ϵ

Γ(−1 + ϵ)

[

ζ(−1 + ϵ, xf )−
1

2
x1−ϵ
f

]

=
Nc

16π2

∑

f

(

Λ2

2|qfB|

)ϵ [(
2(qfB)2

3
+m4

q

)(

1

ϵ
+ 1

)

− 8(qfB)2ζ(1,0)(−1, xf)− 2|qfB|m2
q log xf +O(ϵ)

]

,

(30)

where xf = m2
q/2|qfB|. The divergences of the effective

potential are given by Eqs. (24), (29), and (30). The
divergences that depend on the magnetic field are given
by

Vdiv
1 =

(qB)2

96π2ϵ
+Nc

∑

f

(qfB)2

24π2ϵ
. (31)

These divergences are removed by wavefunction renor-
malization of the (external) gauge field Aµ. This is done
by making the replacement in the tree-level Lagrangian

Eq. (9) [65]:

B2 → B2

[

1−
q2

48π2ϵ
−Nc

∑

f

q2f
12π2ϵ

]

. (32)

The remaining divergences in V1 are given by

Vdiv
1 = −

1

64π2ϵ

[

m4
σ + 3m4

π − 4NcNfm
4
q

]

.

These are the same divergences as one encounters in van-
ishing magnetic field and so the usual renormalization
procedure can be used to eliminate them. This is done

4

Normalised pressure

�P = (P (T,B)� P (T, 0))� (P (0, B)� P (0, 0))

⇠ �(T )

2
(eB)2

Bonati et.al 2013

Free quark with dimensional regularisation



Free quark

• Sum of the Landau level is needed.

• Lowest Landau approximation is inadequate (eB << mq).

• Quarks contribute to paramagnetism (χ > 0).

• Note: This is zero chemical potential case, different from 
electron gas.

Equation (4.4) can be derived as follows.

P
⇡

± �
Z 1

0

dx G
⇡

±(x)

= |eB|
1X

n=0

G
⇡

±

✓
|eB|(n+

1

2

)

◆
� |eB|

Z 1

0

dx G
⇡

±(|eB|x) (4.5)

= � |eB|
1X
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⇡
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)

◆�
(4.6)
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|eB|
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x� 1

2

◆
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⇡

±
(1)

✓
|eB|(n+

1

2

)

◆

+

1

2

|eB|2
✓
x� 1

2

◆
2

G
⇡

±
(2)

✓
|eB|(n+

1

2

)

◆
+ · · ·

)
(4.7)

Using
R
1

0

dx(x� 1/2)2 = 1/12 one obtains

= � |eB|2

24

· |eB|
1X

n=0

G
⇡

±
(2)

✓
|eB|(n+

1

2

)

◆
+O

�
|eB|4

�
(4.8)

= � |eB|2

24

✓Z 1

0

dx G
⇡

±
(2)

(x) +O
�
|eB|2

�◆
+O

�
|eB|4

�
(4.9)

= � |eB|2

24

⇣
G
⇡

±
(1)

(1)| {z }
=0

�G
⇡

±
(1)

(0)

⌘
+O

�
|eB|4

�
, (4.10)

hence (4.4) is proved.
The contribution to �̂ from free charged pions reads

�̂
��
⇡

± =

1

12

G
⇡

±
(1)

(0) (4.11)

= � 1

12⇡2

Z 1

0

dp
1p

p2 +m2

⇡

1

e

�

p
p

2
+m

2
⇡ � 1

< 0 . (4.12)

This implies that the charged pion gas is diamagnetic. It diverges to �1 as m
⇡

/T ! 0.

4.2 Free quarks

We omit the vacuum term and concentrate on the thermal integral for a free quark of charge
e
f

and color N
c

:

P f

q

= N
c

|e
f

B|T
⇡2

1X

n=0

↵
n

Z 1

0

dp log

⇣
1 + e

��

p
p

2
+m

2
q+2|efB|n

⌘
(4.13)

⌘ |e
f

B|
1X

n=0

↵
n

G
q

(|e
f

B|n) (4.14)

where ↵
n

= 2� �
n,0

and

G
q

(x) ⌘ N
c

T

⇡2

Z 1

0

dp log

⇣
1 + e

��

p
p

2
+m

2
q+2x

⌘
. (4.15)

– 5 –

Quark (s = 1/2)

�q(T ) =
Nc

3⇡2

⇣ef
e

⌘2
Z 1

0

1q
p2 +m2

q

1

e�
p

p2+m2
q + 1

> 0



Free charged pion

• Pions contribute to diamagnetism (χ < 0) while Quarks 
(s=1/2) shows paramagnetism.

• This may be understood as a competition of the orbital and 
spin magnetisation.

• See effects of interaction and phase transition.

6. Ref.[7]: With
p(T )

T 4

=

1X

n=0

C
n

(T )(|eB|/T 2

)

n they measure Cr

2

(T ) ⌘ C
2

(T )� C
2

(0)

on the lattice.

7. Ref.[4]: [This is the most important article for renormalization at

nonzero B.] Various thermodynamic observables are calculated in the Hadron
Resonance Gas model. The pressure is calculated with dimensional regulariza-
tion, from which the B = 0 pressure is subtracted. Remaining divergence is
removed via renormalization of the electric charge (q ! q

r

) and the pure mag-
netic energy (

1

2

B2 ! 1

2

B2

r

). As remarked at the end of Section 3.3 of [4], the
prescription in this paper is the only choice, for which the pure magnetic term
1

2

B2

r

is the only quadratic part of the vacuum pressure, and the free energy (and
magnetization) of particles vanish as their masses go to infinity.

8. Ref.[5, 8]: In [5] the magnetization, M , at T = 0 is measured, after a subtraction

of the divergent O(eB) term: M r · eB ⌘ M · eB � (eB)

2 · lim

eB!0

M · eB
(eB)

2

. Thus

M r / (eB)

3 for small fields at T = 0.
In [8] the magnetization at T > 0 is measured. They renormalize M by sub-
tracting the divergent O(eB) term at T = 0. At T > 0, a finite O(eB) term
shows up in M r and grows with T .

4 Magnetic susceptibility of free pions and quarks

4.1 Free pions

Since the vacuum part does not contribute to the magnetic susceptibility, we only take the
thermal pressure into account:
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It can be shown that
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Scalar meson (s = 0)

Analyses on the quark meson model

�⇡(T ) = � 1
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Z 1

0

1p
p2 +m2

⇡

1

e�
p

p2+m2
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3-flavour Quark meson model

• Σ is 3x3 complex matrix i.e., composed of 9 scalar and 9 
pseudo scalar mesons.

• ρ1 and ρ2 are invariants under the U(3) x U(3) flavour-chiral 
rotation.

• Ca term represents the effects of UA(1) anomaly.

• Inclusion of external magnetic field is achieve by 

2 Formulation

In order to evaluate the thermodynamic property of the strongly correlated matter, we anal-
yses the three-flavor quark meson (QM) model. Mesonic fluctuations which are neglected
in the mean field approximation are incorporated by solving the functional renormaliza-
tion group equation. In this section we introduce the three flavor QM model first. Next
we explain basics of the functional renormalization group method. We will introduce an
approximation which is appropriate for the investigation of thermodynamic property and
mass spectrum of the quark-meson model and derive a flow equation for effective potential.
Finally we explain how to compute observables from the effective potential of the model.

2.1 The Nf = 2 + 1 Quark-Meson model

The three-flavor QM model [58, 59] is the U(3) ⇥ U(3) linear �-model [60–64] coupled to
quarks:

L =  

"
/@ + g

8X

a=0

T
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 + tr[@

µ
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µ
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i
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� c
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⇠ = det⌃+ det⌃

† ,

(2.1)

where ⌃ is 3⇥ 3 complex matrix field and it is parametrised by the scalar (�
a

) and pseudo-
scalar (⇡

a

) meson multiplet,

⌃ =

8X

a=0

T
a

(�
a

+ i⇡
a

) , (2.2)

where T
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is generator of U(3) group normalized tr[T
a

, T
b

] =

1
2�ab. The term proportional to

c
a

is so called the Kobayashi-Maskawa-’t Hooft term which represents the effects of UA(1)

anomaly in the hadron sector. h
i

are the explicit symmetry breaking terms expressing the
effect of quark masses. Below we assume h3, h8 � 0 and h

i

= 0 otherwise, and c
a

> 0.
⇢1 and ⇢2 are invariants under U(3)⇥ U(3) rotations which is defined as
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] ,
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⇢1

i
.

(2.3)

Generally, we can compose N independent invariants for the U(N) ⇥ U(N) flavor-chiral
rotation. However, in this work, we include relevant invariants only and neglect higher
order invariants. The mesonic potential is a general function of the invariants up to 4th
order of fields,

U(⇢1, ⇢2) = a(1,0)⇢1 +
a(2,0)

2

⇢21 + a(0,1)⇢2 , (2.4)

where a(1,0), a(2,0) and a(0,1) are the free parameters of the model.
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anomaly in the hadron sector. h
i

are the explicit symmetry breaking terms expressing the
effect of quark masses. Below we assume h3, h8 � 0 and h

i

= 0 otherwise, and c
a

> 0.
⇢1 and ⇢2 are invariants under U(3)⇥ U(3) rotations which is defined as

⇢1 = tr[⌃⌃

†
] ,

⇢2 = tr

h
(⌃⌃

†
)

2 � 1

3

⇢1

i
.

(2.3)

Generally, we can compose N independent invariants for the U(N) ⇥ U(N) flavor-chiral
rotation. However, in this work, we include relevant invariants only and neglect higher
order invariants. The mesonic potential is a general function of the invariants up to 4th
order of fields,

U(⇢1, ⇢2) = a(1,0)⇢1 +
a(2,0)

2

⇢21 + a(0,1)⇢2 , (2.4)

where a(1,0), a(2,0) and a(0,1) are the free parameters of the model.
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Functional-RG

• Functional-RG equation  
 
 

• Γk: effective action with fluctuations whose momentum are from 
Λ to k. 
 
 
 
 

• Rk is a cutoff function, which prevents the propagation of mode 
whose momentum is smaller than “k”.

• FRG enable us to incorporate dynamical mesons.

UV: classical

IR: quantum�k=0[�] = �[�]

�k=⇤[�] = S[�]

k�k�k[�] =
1
2
Tr

�
k�kRkB

RkB + �(0,2)
k [�]

�
� Tr

�
k�kRkF

RkF + �(2,0)
k [�]

�

C. Wetterich (1993)

�(0,2)
k � �2�k

��i��j



Approximation

• Local potential approximation  
 
 
 
 

�k[ ,�,⇡] =
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0
dx4

Z
d

3
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2
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Skokov (2012)

E2
u,d = k2 +

g2

4

r
4⇢1 �

p
24⇢2

3
E2

k,⇡ = k2 + @⇢1Uk +
p

24⇢2@⇢2Uk � ca
2

r
4⇢1 + 2

p
24⇢2

3
, etc

Kinetic terms can have anisotropy: 
We neglect it here (eB << 1) 

Gusynin, Shovkovy and Miranski (1996)Z⇡,? < Z⇡,k



Observables

• Find Minimum of potential

• Particle masses 
 
 
 
 

• Pressure is

E2
u,d = k2 +

g2

4

r
4⇢1 �

p
24⇢2

3
E2

k,⇡ = k2 + @⇢1Uk +
p

24⇢2@⇢2Uk � ca
2

r
4⇢1 + 2

p
24⇢2

3
, etc

T. Herbst, et al. (2010)
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Parameter fixing

• Fixing model parameters at T = B = 0.

g a

(1,0)
⇤ /⇤

2
a

(2,0)
⇤ a

(0,1)
⇤ h

x

/⇤

3
h

y

/⇤

3
c

A

/⇤ f

⇡

f

K

FRG 6.5 0.56 20.0 10.0 1.76⇥ 10

�3
3.79⇥ 10

�2
4.8 91.8 112.3

MF 6.5 1.07 5.0 2.0 1.76⇥ 10

�3
3.79⇥ 10

�2
4.8 91.5 113.4

Table 1. Initial conditions at k = ⇤ and the resulting f⇡ and fK (in units of MeV) at eB = T = 0

for Nf = 3 FRG (first row) and the mean-field calculation (MF, second row). We used ⇤ = 1 GeV
in both calculations.

particle mass (MeV) |q|/e spin particle mass (MeV) |q|/e spin
u 298.1 2/3 1/2 s 430.8 1/3 1/2
d 298.1 1/3 1/2 — — — —
⇡

0 138.4 0 0 a

0
0 1028.9 0 0

⇡

± 138.4 1 0 a

±
0 1028.9 1 0

K

0,K0 496.7 0 0 

0, 0 1126.8 0 0
K

± 496.7 1 0 

± 1126.8 1 0
⌘ 539.2 0 0 � 533.7 0 0
⌘

0 959.8 0 0 f0 1237.8 0 0

Table 2. Table of quarks and mesons in the Nf = 3 QM model. Their masses are obtained from
FRG at eB = T = 0 with the parameter set in Table 1.

Besides the UV cutoff scale ⇤, the N

f

= 3 QM model still has seven free parameters:
g, a

(1,0)
⇤ , a

(2,0)
⇤ , a

(0,1)
⇤ , h

x

, h

y

and c

A

. We adjusted these parameters so as to reproduce the
pion and kaon decay constants, the light quark mass, and the pion/kaon/sigma/eta masses
at eB = T = 0. We summarize our parameter set in Table 1 and the resulting particle
masses in Table 2.

In order to evaluate the effect of mesonic fluctuations, we also performed calculations in
the mean-field approximation. This is simply done by neglecting the first term in (2.9) and
solving the resulting flow equation. However the initial conditions have to be readjusted to
realize the same physical observables at k = 0; see the second row in Table 1.

In addition, we also performed FRG for the two-flavor QM model for the purpose of
comparison with the three-flavor QM model. All details for the truncated effective action,
the flow equation and the initial conditions are summarized in appendix A. To solve the
flow equation, we again used the Taylor expansion method (see appendix C). The results
from the N

f

= 2 FRG, the N

f

= 3 FRG and the mean-field approximation (N
f

= 3) will
be juxtaposed in section 3.2.2.

We end this subsection with a cautionary remark. The Taylor method is ineffective
in the case of a first-order phase transition, because a smooth flow of the scale-dependent
minimum of the potential, on which the Taylor expansion is based, breaks down. In the
chiral limit, the phase transition in U(N)⇥U(N)-symmetric models is first order according
to the one-loop "-expansion [87], which has been confirmed by FRG with the Grid method
[88–91]. Then the applicability of the Taylor method is questionable. However, as shown in
[65], for physical values of the quark masses and anomaly strength, the three-flavor chiral
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However, the pressure contains a B-dependent divergence and incidentally �̃(T ) is also
divergent. This is related to the issue of electric charge renormalization in QED [45, 46, 48].
In this work, we renormalize �̃ by subtracting the divergent contribution at T = 0 as

�(T ) ⌘ �̃(T )� �̃(0) . (2.18)

Thus �(T = 0) vanishes by definition. This means that the matter contribution to the
pressure at T = 0 begins at O �

B

4
�
. An intriguing consequence of renormalization is that

the magnetic susceptibility obtained this way is intertwined with the nonperturbative IR
physics at T = 0 even at arbitrarily high temperatures; this phenomenon will be demon-
strated explicitly for a non-interacting gas with temperature-dependent masses in appendix
D. We remark that the renormalization prescription (2.18) agrees with those in recent lat-
tice simulations [21, 22, 24, 45, 46], hence allowing for a direct comparison between the
present model calculation and the lattice data.

In actual numerics we proceed by first evaluating the subtracted pressure [21, 24]

�P ⌘ (P (T,B)� P (T, 0))� (P (0, B)� P (0, 0)) , (2.19)

and then measuring the magnetic susceptibility �(T ) through a polynomial fitting to �P .
Another important quantity that characterizes magnetic properties of the system is the

magnetic permeability, µ, which is related to the magnetic susceptibility [46] as5

µ(T ) =

1

1� 4⇡↵em · �(T ) . (2.20)

Since it does not provide any new information compared to �(T ) itself, we will not show a
separate plot for µ(T ).

3 Numerical implementation

3.1 Setup

We solved the flow equation (2.9) with the two-dimensional Taylor method. Namely, we
expand the scale-dependent effective potential around its running minimum and then cast
(2.9) into a set of coupled flow equations for the coefficients of the expansion. All technical
details of the Taylor method in the QM model are given in appendix C.

The flow equations for Taylor coefficients are then solved by integration from k = ⇤

to k = 0 with the Euler method, keeping the step size of k smaller than 0.5 MeV. We
confirmed numerical stability of results by changing the step size.

For the initial condition of the flow, we used

U

k=⇤(⇢1, ⇢2) = a

(1,0)
⇤ ⇢1 +

a

(2,0)
⇤

2

⇢

2
1 + a

(0,1)
⇤ ⇢2 , (3.1)

where a

(1,0)
⇤ , a

(2,0)
⇤ and a

(0,1)
⇤ are free parameters of the model.

5In SI units, this corresponding to the ratio µ/µ0.
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pion and kaon decay constants, the light quark mass, and the pion/kaon/sigma/eta masses
at eB = T = 0. We summarize our parameter set in Table 1 and the resulting particle
masses in Table 2.

In order to evaluate the effect of mesonic fluctuations, we also performed calculations in
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solving the resulting flow equation. However the initial conditions have to be readjusted to
realize the same physical observables at k = 0; see the second row in Table 1.

In addition, we also performed FRG for the two-flavor QM model for the purpose of
comparison with the three-flavor QM model. All details for the truncated effective action,
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minimum of the potential, on which the Taylor expansion is based, breaks down. In the
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to the one-loop "-expansion [87], which has been confirmed by FRG with the Grid method
[88–91]. Then the applicability of the Taylor method is questionable. However, as shown in
[65], for physical values of the quark masses and anomaly strength, the three-flavor chiral

– 8 –



• Results



Particle masses

• Scalar and Pseud-scalar meson masses at eB = 0 and 
eB = 14mπ2.

Figure 2. Left: Pressure from the two- and three-flavor FRG at eB = 0. Red and blue vertical
bands indicate the pseudo-critical temperature in each theory. Right: The pion and kaon decay
constant at finite temperature. Solid and dashed lines correspond to eB = 0 and eB = 14m
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Figure 3. Masses of quarks (filled bullets), pseudo-scalar mesons (solid lines) and scalar mesons
(solid lines with ⇤) from the three-flavor FRG for eB = 0 (Left) and eB = 14m

2
⇡ (Right). Mk

denotes the  meson mass.

magnetic catalysis. We observe that f

K

decreases very slowly compared to f

⇡

, due to the
large constituent mass of strange quark.

Figure 3 shows the quark and meson masses obtained from the three-flavor FRG calcu-
lation. The result for eB = 0 (left panel) is consistent with the preceding work [65]. At low
temperatures, chiral symmetry is spontaneously broken and quarks acquire large dynamical
masses of order 300 ⇠ 400 MeV. At T & 180 MeV, the light quark condensates begin to
melt and sigma becomes degenerate with pions, signalling the restoration of SU(2)⇥SU(2)

chiral symmetry. On the other hand, other mesons gain masses of order 1 GeV at high
temperatures due to the large mass of strange quark. These gross features persist in the
presence of a magnetic field (right panel), though the chiral crossover is shifted to a higher
temperature (⇠ 220 MeV for eB = 14m

2
⇡

). Note that the anomaly strength is fixed in this
work: if we implement the effective restoration of UA(1) symmetry at high T , the meson
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Magnetic catalyses

• The chiral symmetry breaking is  
enhanced at any temperature.

• Tc also increases with magnetic field.
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Figure 1. Left: The sigma meson mass from the three-flavor FRG. Right: Chiral pseudo-critical
temperature, determined from the minimum of the sigma mass, from the two- and three-flavor FRG
with a varying external magnetic field.

transition becomes a crossover at least for B = 0. Assuming that this is the case also for
small nonzero magnetic fields, we can justify the usage of the Taylor method.

3.2 Results at nonzero magnetic field

3.2.1 Pressure, masses and decay constants

In this section we show numerical results for the particle masses, pressure, pion and kaon
decay constants and the chiral pseudo-critical temperature under an external magnetic field.

In the left panel of Figure 1, we show the sigma meson mass M

�

obtained from the
three-flavor FRG as a function of T across the chiral crossover. At low temperatures, M

�

increases rapidly with B. The temperature at which M

�

reaches the bottom increases from
around 180 MeV at B = 0 to higher values for stronger B. In the right panel of Figure 1, we
plot the chiral pseudo-critical temperature T

c

defined as the temperature at which M

�

hits
the bottom. It is found that T

c

increases with B in both the two- and three-flavor FRG.
Although this feature is commonly seen in almost all chiral effective models, it is at variance
with lattice calculations at the physical point [15] which reports a decrease of T

c

at least for
eB < 1 GeV2 . We conclude that the undesired behavior of the model cannot be cured by
inclusion of fluctuations of strange quark and SU(3) mesons. We believe that T

c

rising with
B is not an artifact of LPA, because the inclusion of the wave function renormalization for
mesons leads to an even steeper increase of T

c

in the one-flavor QM model [35].
In the left panel of Figure 2, we plot the normalized pressure P/T 4. For comparison, we

display results from both the two- and three-flavor FRG calculations. At high T , the pres-
sure slowly converges to the Stephan-Boltzmann limit of a free quark gas.6 At T . 70 MeV
the two curves agree precisely, as expected from the fact that pions dominate the pressure
at low temperatures. In the right panel of Figure 2, f

⇡

and f

K

are plotted for eB = 0

and eB = 14m

2
⇡

. They increase with B at all temperatures, exhibiting the phenomenon of

6This behavior is due to the introduction of the residual part of the pressure (P
r

) in (2.16). We found
that P

r

begins to matter at T & 200 MeV.
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Figure 9. The phase diagram of QCD in the B−T plane, determined from the renormalized chiral
condensate ūur+ d̄dr (upper left panel), the renormalized chiral susceptibility χr

u+χ
r
d (upper right)

and the strange quark number susceptibility cs2 (lower panel).

9 The phase diagram

Finally, using the fitted two-dimensional surfaces of section 6, we study the observables as

functions of the temperature, along the lines of constant magnetic field. In particular we

analyze the renormalized chiral susceptibility χr
u + χr

d, the renormalized chiral condensate

ūur + d̄dr and the strange quark number susceptibility cs2. For the latter two observables

we determine the pseudocritical temperature Tc(B) as the inflection points of the curves,

while for the former we calculate the position of the maximum value of the observable.

The results are shown in figure 9.

To carry out the continuum extrapolation, we fit the results for Tc(B) for all three

lattice spacings (Nt = 6, 8 and 10) together with an Nt-dependent polynomial function of

order four of the form Tc(B,Nt) =
∑4

i=0(ai + biN
−2
t )Bi. This ensures the scaling of the

final results with N−2
t ∼ a2. We obtain χ2/dof. ≈ 0.5 . . . 1.2 indicating good fit qualities.

In order not to make the plots overcrowded, we only show error bars for the continuum

curves. The error coming from the continuum extrapolation is estimated to be 2MeV and is

added to the statistical error in quadrature. The error in the lattice scale determination [54]

propagates in the Tc(B) function and amounts to an additional 2−3MeV systematic error,

– 15 –

Lattice result: G.S. Bali et al. (2012)



Pressures

• Pressures reach to SB limits for each flavour 
calculations.

• We evaluated P with varying eB and read the coefficient  
of (eB)2
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presence of a magnetic field (right panel), though the chiral crossover is shifted to a higher
temperature (⇠ 220 MeV for eB = 14m

2
⇡

). Note that the anomaly strength is fixed in this
work: if we implement the effective restoration of UA(1) symmetry at high T , the meson
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Magnetic susceptibility

• Our result agrees with the lattice results.

• The sign of magnetic susceptibility changes near Tc 
from negative to positive.
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Figure 4. Magnetic susceptibility �(T ) from the three-flavor FRG calculation (solid line), in
comparison with the results of lattice QCD simulations by three different groups [22, 24, 46].

spectrum would be changed qualitatively [87] but it is beyond the scope of this work.

3.2.2 Magnetic susceptibility

This section is the main part of this paper. We compare �(T ) obtained from FRG with the
lattice QCD data. Although a perfect agreement with lattice cannot be expected due to
the schematic nature of the QM model, we believe such a comparison could help us develop
an intuitive understanding for gross features of QCD in a magnetic field.

In Figure 4, �(T ) obtained with the N

f

= 3 FRG is plotted together with the data
from three independent lattice QCD simulations [22, 24, 46].7 The figure shows a reasonable
agreement between the FRG prediction and the lattice data over the entire temperature
range. In the high-T QGP phase, quarks give a dominant paramagnetic contribution to
�(T ), which is well captured by our FRG calculation. Although the shape of the curve
resembles the lattice data, FRG seems to underestimate �(T ) at T > T

c

by about 30%.
Around T

c

, FRG nicely agrees with the data from [22] but disagrees with those from [24, 46].
We do not understand the origin of these discrepancies yet. One possibility is that it is
somehow related to the inability of the QM model to reproduce inverse magnetic catalysis.
Another possibility is that the paramagnetic contribution of spinful hadrons (e.g., ⇢±) which
are completely ignored in the QM model has caused this discrepancy. Further investigation
of this issue is left for future work.

Turning now to the hadronic phase below T

c

, we observe that both FRG and the
lattice data from [46] yield negative values of �(T ), which are consistent with each other
within error bars. This tendency could be explained by diamagnetic contribution of light

7In Figure 4, the temperature is normalized by T
c

at eB = 0: we used T
c

= 181 MeV for the results
of FRG and T

c

= 154 MeV [92] for all the lattice data. This normalization makes a direct comparison of
different methods easier.
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Comparison with another methods

• At the QGP phase, almost all (except HRG) calculations 
show paramagnetism due to light quarks.
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Figure 5. Magnetic susceptibilities obtained with different methods. MF and HRG denote the
mean-field approximation and the Hadron Resonance Gas model, respectively. Colored bands in the
figure are the same as those in Figure 4 and represent the results of lattice simulations [22, 24, 46].

pions. Indeed, the region with �(T ) < 0 was not visible in the mean-field calculation of the
Polyakov linear sigma model [54] which ignored meson fluctuations.

Overall, at a qualitative level, our three-flavor FRG correctly describes the transition of
QCD between diamagnetism and paramagnetism in the chiral crossover. To the best of our
knowledge, this is the first time such a transition is demonstrated in a strongly interacting
QCD-like theory. In the future it will be important to consolidate the diamagnetic nature
of QCD at low temperature by increasing lattice data points with better statistics.

In Figure 5 we showcase a collection of results from various different methods. Note that
this time the horizontal axis is T (without devision by T

c

). Let us discuss characteristics of
each method one by one.

1. The magnetic susceptibility obtained from the Hadron Resonance Gas (HRG) model,
calculated with formulas in [46, Appendix B], is shown with a blue dashed line. It
agrees with the result of FRG at T . 70 MeV because in this region the pressure in
both calculations is dominated by light pions, which behave diamagnetically [24, 46,
48]. While �(T ) from the HRG model is monotonically decreasing for all T < T

c

,
�(T ) from FRG stops decreasing at T ⇠ 130 MeV: it is presumably because pions
and kaons get heavier whereas quarks become lighter, as a result of chiral restoration
in the QM model.

2. The results of two- and three-flavor FRG are shown in black and red solid lines. They
share the same features (� < 0 at low T and > 0 at high T ) and their difference is
small over the entire temperature range. We conclude that �(T ) is rather insensitive
to the inclusion of strange quark and SU(3) mesons for T . 300 MeV.

3. �(T ) from the mean-field approximation (MF) is plotted in a red dashed line. Not
surprisingly, it is positive for all T and fails to capture the diamagnetism predicted by
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Hadron phase

• At hadron phase, except MF calculation, all results 
show paramagnetism, due to light scalar meson (pion).
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Figure 5. Magnetic susceptibilities obtained with different methods. MF and HRG denote the
mean-field approximation and the Hadron Resonance Gas model, respectively. Colored bands in the
figure are the same as those in Figure 4 and represent the results of lattice simulations [22, 24, 46].
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Overall, at a qualitative level, our three-flavor FRG correctly describes the transition of
QCD between diamagnetism and paramagnetism in the chiral crossover. To the best of our
knowledge, this is the first time such a transition is demonstrated in a strongly interacting
QCD-like theory. In the future it will be important to consolidate the diamagnetic nature
of QCD at low temperature by increasing lattice data points with better statistics.
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each method one by one.

1. The magnetic susceptibility obtained from the Hadron Resonance Gas (HRG) model,
calculated with formulas in [46, Appendix B], is shown with a blue dashed line. It
agrees with the result of FRG at T . 70 MeV because in this region the pressure in
both calculations is dominated by light pions, which behave diamagnetically [24, 46,
48]. While �(T ) from the HRG model is monotonically decreasing for all T < T

c

,
�(T ) from FRG stops decreasing at T ⇠ 130 MeV: it is presumably because pions
and kaons get heavier whereas quarks become lighter, as a result of chiral restoration
in the QM model.

2. The results of two- and three-flavor FRG are shown in black and red solid lines. They
share the same features (� < 0 at low T and > 0 at high T ) and their difference is
small over the entire temperature range. We conclude that �(T ) is rather insensitive
to the inclusion of strange quark and SU(3) mesons for T . 300 MeV.

3. �(T ) from the mean-field approximation (MF) is plotted in a red dashed line. Not
surprisingly, it is positive for all T and fails to capture the diamagnetism predicted by
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pions. Indeed, the region with �(T ) < 0 was not visible in the mean-field calculation of the
Polyakov linear sigma model [54] which ignored meson fluctuations.

Overall, at a qualitative level, our three-flavor FRG correctly describes the transition of
QCD between diamagnetism and paramagnetism in the chiral crossover. To the best of our
knowledge, this is the first time such a transition is demonstrated in a strongly interacting
QCD-like theory. In the future it will be important to consolidate the diamagnetic nature
of QCD at low temperature by increasing lattice data points with better statistics.
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each method one by one.

1. The magnetic susceptibility obtained from the Hadron Resonance Gas (HRG) model,
calculated with formulas in [46, Appendix B], is shown with a blue dashed line. It
agrees with the result of FRG at T . 70 MeV because in this region the pressure in
both calculations is dominated by light pions, which behave diamagnetically [24, 46,
48]. While �(T ) from the HRG model is monotonically decreasing for all T < T
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,
�(T ) from FRG stops decreasing at T ⇠ 130 MeV: it is presumably because pions
and kaons get heavier whereas quarks become lighter, as a result of chiral restoration
in the QM model.

2. The results of two- and three-flavor FRG are shown in black and red solid lines. They
share the same features (� < 0 at low T and > 0 at high T ) and their difference is
small over the entire temperature range. We conclude that �(T ) is rather insensitive
to the inclusion of strange quark and SU(3) mesons for T . 300 MeV.

3. �(T ) from the mean-field approximation (MF) is plotted in a red dashed line. Not
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Finite chemical potential?

• Pauli paramagnetism of quarks will become a leading 
contribution to the magnetisation.

• Quark matter will show the paramagnetic behaviour.

Pauli paramagnetism (Spin)

Bext

~s �Pauli =
e2kf

4⇡2mc2



Summary

• We have discussed the magnetisation of the strongly 
interacting thermal medium.

• We have analysed 3-flavour QM model with Functional-
RG method.

• The thermal medium shows diamagnetism at the 
hadron phase due to light pions while it shows 
paramagnetism at the QGP phase.


