Gradient flow for chiral effective theories

work in progress with M. Savage

* A peculiar effective theory: chiral effective theory for nucleons & why

regularization is interesting
* Gradient flow as regulator
* Nucleons on the brane: regulating interactions in an extra dimension
* Renormalization I: eliminating cutoff dependence for NN scattering
* Chirally covariant gradient flow
* Renormalization ll: gradient flow in theories with power divergences

* Current status & future goals for this project
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A peculiar effective theory

* Nucleons are bound, so the interaction must be nonperturbative

* Nuclei can be described in terms of nucleons, so we know the
interaction is weak.

No contradiction: in nonrelativistic quantum mechanics, a weak potential
will support a bound state if the particle mass is sufficiently big.

Weinberg (carrying on where Yukawa left off):

* compute the nucleon potential in chiral perturbation theory

* Sum insertions of potential to all orders
loop gives factor of Mn
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nucleon potential scattering amplitude
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Weinberg’s expansion for NN scattering

Phys. Lett. B 251 (1990) 258; Nucl. Phys. B363 (1991) 3; Phys. Lett. B295 (1992) 114 .
loop gives factor of Mn
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nucleon potential V expanded to scattering amplitude as sum of ladders
a given order in XPT (= solving Schrodinger equation with
potential V)

Amplitude exhibits divergences requiring counterterms to all orders in chiral
expansion in order to be renormalized!

...so cutoff dependence cannot be removed

In principle, A-dependent corrections should be higher order in XPT for a
range of “reasonable” cutoff A.

Problems:
* \ - dependence can hide lack of convergence of XPT when doing numerical fits

and regularization scheme dependence on UV physics

* Special counterterms required with momentum cutoff to preserve symmetry
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KSW expansion for NN scattering

Phys. Lett. B424 (1998) 390; Nucl. Phys. B534 (1998) 329

Consider contact interaction for non-relativistic nucleons: Co ><

Renormalized by the linearly divergent diagram: >©<

Can compute the P function (PDS scheme): B(g)

g(M) = Mp Co()/4m, t=lnp &= g(l- g)

Two fixed points:
« =0 is the trivial fixed point corresponding to no interaction

« g=1 is the nontrivial fixed point corresponding to infinite scattering length (“unitary
fermions”)

KSWV program: perform a XPT expansion of the amplitude

about the nontrivial fixed pt.
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KSW expansion for nuclear effective theory:

LO amplitude :1: o, >< . ‘.
(unitary fermion scattering): A : : S

NLO amplitude

with one-pion exchange:

NNLO involves 2-pion exchange, etc.
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Advantages of KSW expansion about the unitary fermion limit:
* NN scattering lengths are huge! (eg in'So. a ~ 23 fm ~ 17/mq)

* Anomalous dimensions lead to a consistent power counting that is
nonperturbative in NN scattering at leading order.

* By expanding amplitude consistently order by order in XPT, all divergences

correspond to operators at the same order, and amplitude can be fully
renormalized

Problem:

 Expansion doesn’t converge in 3S| channel! (Fleming, Mehen, Stewart)
...and presumably in other channels with attractive tensor interaction)

Why might that be! What is special about the attractive tensor interaction!?
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Failure of perturbative expansion of attractive tensor force?

Attractive tensor interaction from |-pion exchange

Vr
i r
m7T
Potential as an unphysical attractive 1/r? behavior
at short distance
~-1/r3
Philosophy of EFT:
* Deform UV physics however one likes to make the calculation easy (eg, dim reg)
* Absorb dependence on unphysical UV in phenomenological coupling constants
The problem:

« (Fake) UV properties (-1/r3 behavior) make tensor interaction inherently
nonperturbative - no ground state

* KSW expansion tries to fix this with local counterterms (equivalent to adding 0-
functions and their derivatives to -1/r3)...hopeless!
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Can KSW expansion be resurrected with a better regularization scheme!?
Vr
regulated potential V1(A,r)

1

my

| -pion exchange tensor potential V1(r)

Requirements:
* “Extended” regulator, to cure -1/r?
* Renormalizable (no dependence on UV regulator)

* Preserves chiral symmetry!

e k—

g
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Gradient flow as regulator

Technique introduced by mathematicians for smoothing manifolds

Mapping governed by a differential equation similar to heat equation

map from minimization of “energy
functional”

J. Eells and J. H. Sampson, American Journal of Mathematics pp. 109-160 (1964). 4—4

R. S. Hamilton et al., Journal of Differential Geometry 17, 255 (1982).
G. Perelman, arXiv preprint math/0211159 (2002).
G. Perelman, arXiv preprint math/0303109 (2003).

: ! Introduced “Ricci flow”
G. Perelman, arXiv preprint math/0307245 (2003). H
Solved the Poincaré Conjecture

. * Behaves like heat equation for smooth manifolds
Ricci flow: gi; = —QRij * smooths out bumps
 diffeomorphism covariant
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Gradient flow applied to quantum field theories by Luscher

M. Luscher, JHEP 1008, 071 (2010), 1006.4518.
M. Luscher and P. Weisz, JHEP 1102, 051 (2011), 1101.0963.

Euclidian 4D QFT

o (p)

/ determined by
/\ classical differential eq.

flow “time™ t d (t, p)

e.g. scalar field:

b(t,x) = Od(t,x) | ®(t,p)=e " o(p)

i (x—y)*?

<I>(O,x) = g@(x) d(t, x) o</6 t o(y)

®(x,t) is just a Gaussian smearing of (O (x)
|/t has dimension mass? and serves as cutoff
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1 A
4d Lagrangian: L4 = 590(— +m?)p + 1904
sdflow: DD TERED L g ) — e
®(0,2) = p(x

5d 2-pt function:
(@(t,2)(t, y)) =
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Nucleons on a brane

This simple example suggests a way to regulate the nucleon-nucleon interaction:

one pion exchange potential:

R e
Vr

t=0 t=to _ regulated V1(to,r) .
o

Potential in the 3S| channel: ! =1 GeV

t

E

unregulated V(r)

D. B. KaPLaw ~ HHERCDR015 ~ 13/3/15

12



Making the substitution 7172 — T1 " T2 X e

*|s very simple! A gaussian cutoff! No need for gradient flow machinery?!

* Heat equation is too simple... we will see that it violates chiral symmetry "

 ...but that the gradient flow machinery can preserve chiral symmetry \

But first:
sketch how renormalization could eliminate dependence on
arbitrary choice of to
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Renormalization | How to eliminate the arbitrary to dependence
in NN scattering

Vr

1 GeV
2 GeV

H B B >1§|'_"

t=0 t=to

First: consider what happens to the scattering length for NN scattering with
this potential, as a function of to:

I
3 S, As the cutoff is removed, an
. 1 increasing number of bound states
scattering (GeV) .
ength  °[0\ Y NP A 2%0 /Rty are trapped (points where
| scattering length diverges)
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N
N
t=0 t=to
2-nucleon
potential =
+ | -pion exchange

+ contact

CO(tO) interaction

* Introducing a contact interaction (0-function potential) allows one to absorb
the scattering length dependence on to

* Co will exhibit limit cycle behavior as a function of the cutoff A=1/+/8to to
counteract the t0 dependence of the pion potential
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Chirally covariant gradient flow

The gaussian cut-off described violates chiral symmetry

SU(2) x SU(2) can be written in terms of the SU(2) unitary matrix field 2 which
transforms linearly under the chiral symmetry:

S(x) = LE(x)R, L e SUQ)L,Re SUQR)r

> can be written 1n terms of the pion field, which transform nonlinearly:

Y — i (2)oa/f f =93 MeV is the pion decay constant

The leading term 1n the chiral Lagrangian 1s

O-model metric
s 1 K mos

Lo = Z(?MZT(%Z = 5 a0, 0,
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_ 1

Lo = Zﬁuzfauz = 5 9apOpT” s

A natural candidate for a covariant flow equation in the chiral limit is

e f‘B.C.
—gabﬁigg = [lg® + Fgca,u¢b8u¢c 7 gba(O,x) — 71-a(x)

k nonlinear terms required by chiral
symmetry

b =

heat eq. term

Can compute the metric and Christoffel symbol:

—1 4+ 20?% + cos 26

| anb
Jab = Oab 204 ((9 0" — szab)
a 1 ax
be 59 [g:Bb,c =+ 9xe,b — gbc,:r;]
— ? § (5b05ad — (5a05bd + 5ab5cd)) 0% + 0(9 )
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Three technical remarks:

Easy to generalize flow equation to include explicit chiral symmetry breaking

Lo an £10,% = Bf* (MY + h.c.) = (%gab(gb)aﬂqba M¢”+mif2cos¢/f>

quark mass matrix

so a convenient gradient flow equation becomes:

(ﬁa = 9 T3 = ( - m72r) Q" + Fgcau¢bau¢c + m72r€ba (1 o QS/f)

o/ f

This form is convenient for reading off interactions, but not for seeing chiral

symmetry...
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A flow equation transforming linearly under SU(2) x SU(2)

éa _ ( _m72r) ¢a+rgcau¢bau¢c_l_m72r¢a (1 Sln¢/f>

o/ f
transforms as a covariant vector under diffeomorphisms
/
U/a _ Ub a¢ !
O

where @’(®) is the chirally transformed pion field. A nicer and

equivalent equation is

_ | _
19, % =09, (2'9,%) + B ( MTY, — §TrMTZ — h.c.>

which transforms linearly under SU(2) x SU(2) like a RH current:

J = R'JR
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A 5d formulation for the path integral
Following Luscher and Weisz: can formulate theory as a 5d path integral with a «

to ensure ® obeys the classical flow equation in the bulk (here:in chiral limit)

Chirally invariant measure: / Hi:l [dgba’]‘ |

Chirally invariant constraint:

0 -0, 2+ 9, (270,%)]

0, 0 [~6% + 06" + T4,0,00,6°

Together: / szl do] o [—qﬁa + Lo + Fgcﬁugbbﬁugbc}
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[ 14015 [~ + 06" + T5.0,6°0,0°

= [ ldglaue! st 08" 4150000,

* 5d action = Lagrange multiplier w times flow eq.

*No /g factor in measure
*®d obeys BC P(0,x) = 11(X)

In addition, have the 4d action:

4= / [dﬂ']\/ge_ fdx o / [d¢] [dw]ef dtdz iwa[_¢a+m¢a+rgc8u¢b8u¢c]

¢(0,z)=m(x)
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Feynman rules for flow diagrams

= (O0-

m2) ¢ + 0§.0,¢°0,¢° + m2¢° (1 Singb/f)

o/ f

perturbative solution in powers of |/f (usual chiral expansion)

o(t,p) ~ Ki(p)7(p) + 1 /0 at' K,y (p) / [T dai6(p — aor) [T Ko (ai)tan) + O

"V“'va a‘ t=0
, K (p) = et +m?)
t + J + . * t

t
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Quantum TT fields get contracted according to 4d chiral Lagrangian
Feynman rules

/@ K t1(p24+m?2) 1 —ta (P m?
= U
.'tz

Same propagator we saw from the simple heat equation
...but now there are also nontrivial loops
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Renormalization | Loops in flow diagrams

/ e
/ i / ddq 6—275 (g +m?2) _/ ddq 1 _e—zt(q2_|_mfr)
crmz ) ent\ 2y

flow loops are 2 powers more convergent than usual loops

QCD only has log divergences, so no new divergence from flow loops

XPT has power law divergences, so get new counterterms
proportional to O(t)

Counterterm to BC or counter term to the flow eq?
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Current status...

* Have defined a chirally covariant gradient flow with well-defined Feynman rules
* Divergence structure not fully understood yet
* Searching for a more tractable formulation

* Need to study higher order corrections to KSW expansion for NN amplitudes

...future goals

* Believe that this framework will help regulate singular tensor interaction
between nucleons

* This could revive KSWV expansion
* renormalizable

* analytic expansion, perturbative in pion exchange
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After 80 years in 4 dimensions the pion is getting restless
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