
D. B. Kaplan ~ HHIQCD2015 ~ 13/3/15

Gradient flow for chiral effective theories

work in progress with M. Savage

• A peculiar effective theory: chiral effective theory for nucleons & why 
regularization is interesting

• Gradient flow as regulator  

• Nucleons on the brane: regulating interactions in an extra dimension

• Renormalization I: eliminating cutoff dependence for NN scattering

• Chirally covariant gradient flow

• Renormalization II: gradient flow in theories with power divergences

• Current status & future goals for this project
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A peculiar effective theory

• Nucleons are bound, so the interaction must be nonperturbative

• Nuclei can be described in terms of nucleons, so we know the 
interaction is weak.

No contradiction: in nonrelativistic quantum mechanics, a weak potential 
will support a bound state if the particle mass is sufficiently big.

Weinberg (carrying on where Yukawa left off): 

• compute the nucleon potential in chiral perturbation theory

• Sum insertions of potential to all orders

+ + ...+=

the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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nucleon potential

+ + ...+iA =

loop gives factor of MN

scattering amplitude
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+ +… iA =

loop gives factor of MN

nucleon potential V expanded to
a given order in χPT 

scattering amplitude as sum of ladders 
(= solving Schrödinger equation with 
potential V)

Weinberg’s expansion for NN scattering

Amplitude exhibits divergences requiring counterterms to all orders in chiral 
expansion in order to be renormalized!

…so cutoff dependence cannot be removed 

In principle,  Λ-dependent corrections should be higher order in χPT for a 
range of “reasonable” cutoff Λ.

Phys. Lett. B 251 (1990) 258; Nucl. Phys. B363 (1991) 3; Phys. Lett. B295 (1992) 114

• Λ - dependence can hide lack of convergence of χPT when doing numerical fits 
and regularization scheme dependence on UV physics

• Special counterterms required with momentum cutoff to preserve symmetry

Problems:  
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KSW expansion for NN scattering
Phys. Lett. B424 (1998) 390; Nucl. Phys. B534 (1998) 329

Consider contact interaction for non-relativistic nucleons:

D.B. Kaplan et al./Nuclear Physics B 534 (1998) 329-355 337 

,A_I  : ~ + 

.,4 0 = ~ 

+ 
°,° 

~ii~:: = + + + 
~ ~ ~ ,,, 

Fig. 2. Leading and subleading contributions arising from local operators. 

from perturbative insertions of derivative interactions, dressed to all orders by Co. The 
first three terms in the expansion are 

-Co 
,.4-1= [1 + _q~(/.z+ ip) ] , 

- - C 2 p  2 
Ao= 

[1 + C°M (/x4~- -F ip)]2 ' 

( (CzP2)2M(tz + iP)/4¢r - C4p 4 ) 
" A I =  [1 + C--°--M-M (/x + iP)] 3 4 7 r  [1 + q~_ ~ + ip)] 2 C O M (  . ' (2.26) 

where the first two correspond to the Feynman diagrams in Fig. 2. 
Comparing 

the couplings 

C o ( ~ )  = 

c20z) = 

c40,) = 

with the expansion of the amplitude Eq. (2.18), these expreasions relate 
C2n to the low energy scattering data a, rn: 

4 ~ (  1 ) 
-~ -~-7- 1/a ' 
4~( 1 )~ro 
4~-( 1 )3[1 + lrl (-/z + A/a)] 
-ff - ~  ¥1/a r~ ~-Z (2.27) 

Note that assuming rn ~ 1/A, these expressions are consistent with the scaling law in 
Eq. (2.25). 

This power counting relies entirely on the behavior of C2n(tz) as a function o f / z  
given in Eq. (2.25). The dependence of C2n (/z) on/z is determined by the requirement 
that the amplitude be independent of the arbitrary parameter/z. The physical parameters 
a, r~ enter as boundary conditions on the RG equations. 

The beta function for each of the couplings C2n is defined by 

dC2n /32n = / z  , (2.28) d/z 

C0

Renormalized by the linearly divergent diagram: 
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where the first two correspond to the Feynman diagrams in Fig. 2. 
Comparing 

the couplings 

C o ( ~ )  = 

c20z) = 

c40,) = 

with the expansion of the amplitude Eq. (2.18), these expreasions relate 
C2n to the low energy scattering data a, rn: 

4 ~ (  1 ) 
-~ -~-7- 1/a ' 
4~( 1 )~ro 
4~-( 1 )3[1 + lrl (-/z + A/a)] 
-ff - ~  ¥1/a r~ ~-Z (2.27) 

Note that assuming rn ~ 1/A, these expressions are consistent with the scaling law in 
Eq. (2.25). 

This power counting relies entirely on the behavior of C2n(tz) as a function o f / z  
given in Eq. (2.25). The dependence of C2n (/z) on/z is determined by the requirement 
that the amplitude be independent of the arbitrary parameter/z. The physical parameters 
a, r~ enter as boundary conditions on the RG equations. 

The beta function for each of the couplings C2n is defined by 

dC2n /32n = / z  , (2.28) d/z 

Can compute the β function (PDS scheme):  

g(μ) ≡ Mμ C0(μ)/4π,   t≡lnμ g = g(1- g)·
β(g)

g*=0

g*=1

Two fixed points:  

• g*=0 is the trivial fixed point corresponding to no interaction

• g*=1 is the nontrivial fixed point corresponding to infinite scattering length (“unitary 
fermions”)

KSW program: perform a χPT expansion of the amplitude 

about the nontrivial fixed pt.
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p2
2+ +

mπ
2

+ +

=

+

p2

+ +
...

=

=

+ +
...

LO amplitude

(unitary fermion scattering):

NLO amplitude

with one-pion exchange:

NNLO involves 2-pion exchange, etc.

KSW expansion for nuclear effective theory:
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Advantages of KSW expansion about the unitary fermion limit:

• NN scattering lengths are huge! (eg in1S0:  a ~ 23 fm ~ 17/mπ)

• Anomalous dimensions lead to a consistent power counting that is 
nonperturbative in NN scattering at leading order. 

• By expanding amplitude consistently order by order in χPT, all divergences 
correspond to operators at the same order, and amplitude can be fully 
renormalized

• Expansion doesn’t converge in 3S1 channel! (Fleming, Mehen, Stewart) 
…and presumably in other channels with attractive tensor interaction)

Problem:  

Why might that be?  What is special about the attractive tensor interaction?  

6
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Attractive tensor interaction from 1-pion exchange

~ -1/r3

Potential as an unphysical attractive 1/r3 behavior

at short distance

Philosophy of EFT: 

• Deform UV physics however one likes to make the calculation easy (eg, dim reg)

• Absorb dependence on unphysical UV in phenomenological coupling constants

The problem: 

• (Fake) UV properties (-1/r3 behavior) make tensor interaction inherently 
nonperturbative  - no ground state

• KSW expansion tries to fix this with local counterterms (equivalent to adding δ-
functions and their derivatives to -1/r3)…hopeless!

1
mp

r

VT

Failure of perturbative expansion of attractive tensor force?

7
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Can KSW expansion be resurrected with a better regularization scheme?

1
mp

r

VT

1-pion exchange tensor potential VT(r)

regulated potential VT(Λ,r)

Requirements:

• “Extended” regulator, to cure -1/r3 

• Renormalizable (no dependence on UV regulator)

• Preserves chiral symmetry!

8
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Gradient flow as regulator
Technique introduced by mathematicians for smoothing manifolds 

➟
t

Mapping governed by a differential equation similar to heat equation

Ricci flow: ġij = �2Rij
• Behaves like heat equation for smooth manifolds
• smooths out bumps
• diffeomorphism covariant

J. Eells and J. H. Sampson, American Journal of Mathematics pp. 109–160 (1964). 
R. S. Hamilton et al., Journal of Differential Geometry 17, 255 (1982).  
G. Perelman, arXiv preprint math/0211159 (2002).  
G. Perelman, arXiv preprint math/0303109 (2003). 
G. Perelman, arXiv preprint math/0307245 (2003).

map from minimization of “energy 
functional”

Introduced “Ricci flow”

Solved the Poincaré Conjecture
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Gradient flow applied to quantum field theories by Lüscher 
M. Luscher, JHEP 1008, 071 (2010), 1006.4518. 
M. Luscher and P. Weisz, JHEP 1102, 051 (2011), 1101.0963. 

Euclidian 4D QFT

flow “time” t'(p) �(t, p)

e.g. scalar field:

�̇(t, x) = ⇤�(t, x)

�̇(0, x) = '(x)

Φ(x,t) is just a Gaussian smearing of φ(x)
1/t has dimension mass2 and serves as cutoff

⎬
⎭

⎭
�(t, p) = e�tp2

'(p)

�(t, x) /
Z

y
e

(x�y)2

t

'(y)

determined by
classical differential eq.
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h�(t, p)�(t, q)i = e�t(p2+q2) h'(p)'(q)i

= + +… ≡ + +…
t t t t

t1

t2
=

e�(t1+t2)p
2

p2 +m2

p
=���(t)

L4 =
1

2
'(�⇤+m2)'+

�

4!
'44d Lagrangian:

⎬⎭

⎭
�(t, p) = e�tp2

'(p)
�̇(t, x) = ⇤�(t, x)

�̇(0, x) = '(x)
5d flow:

h�(t, x)�(t, y)i = 1

(16⇡2
t

2)2

Z

x

0
,y

0
e

�(x�x

0)2/4t
e

�(y�y

0)2/4t h'(x0)'(y0)i

5d 2-pt function:
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Nucleons on a brane

This simple example suggests a way to regulate the nucleon-nucleon interaction:

Potential in the 3S1 channel:

unregulated VT(r)

regulated VT(t0,r)
1
mp

r

VT

1p
8t0

= 1 GeV

t=0 t=t0

one pion exchange potential:

⌧1 · ⌧2
q · �1 q · �2

q2 +m2
⇡

=) ⌧1 · ⌧2
q · �1 q · �2

q2 +m2
⇡

⇥ e�2t0q
2

N
N

π
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⌧1 · ⌧2
q · �1 q · �2

q2 +m2
⇡

=) ⌧1 · ⌧2
q · �1 q · �2

q2 +m2
⇡

⇥ e�2t0q
2

Making the substitution 

• Is very simple!  A gaussian cutoff! No need for gradient flow machinery?!

• Heat equation is too simple… we will see that it violates chiral symmetry 👎

• …but that the gradient flow machinery can preserve chiral symmetry 👏

But first: 
sketch how renormalization could eliminate dependence on 
arbitrary choice of t0



D. B. Kaplan ~ HHIQCD2015 ~ 13/3/15 14

Renormalization I How to eliminate the arbitrary t0 dependence
in NN scattering 

t=0 t=t0

N
N

π 1p
8t0

=
1 GeV
2 GeV
∞

1
mp

r

VT

First: consider what happens to the scattering length for NN scattering with 
this potential, as a function of t0:

scattering 
length

3S1
1p
8t0

(GeV)

As the cutoff is removed, an 
increasing number of bound states 
are trapped (points where 
scattering length diverges)

0.0 0.5 1.0 1.5 2.0
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t=0 t=t0

N
N

π +

t=0 t=t0

N
N

+
C0(t0)

• Introducing a contact interaction (δ-function potential) allows one to absorb 
the scattering length dependence on t0

• C0 will exhibit limit cycle behavior as a function of the cutoff Λ=1/√8t0 to 
counteract the t0 dependence of the pion potential

2-nucleon 
potential =
1-pion exchange 
+ contact 
interaction
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Chirally covariant gradient flow

The gaussian cut-off described violates chiral symmetry

SU(2) x SU(2) can be written in terms of the SU(2) unitary matrix field Σ which 
transforms linearly under the chiral symmetry:    

Σ(x) ⇒ L Σ(x)R†,    L ∈ SU(2)L , R∈ SU(2)R

⌃ = ei⇡
a(x)�a/f

Σ can be written in terms of the pion field, which transform nonlinearly:

f = 93 MeV is the pion decay constant

The leading term in the chiral Lagrangian is

L0 =
f2

4
@µ⌃

†@µ⌃ ⌘ 1

2
gab@µ⇡

a@µ⇡
b

σ-model metric
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L0 =
f2

4
@µ⌃

†@µ⌃ ⌘ 1

2
gab@µ⇡

a@µ⇡
b

A natural candidate for a covariant flow equation in the chiral limit is

�̇

a = �g

ab @S0

@�

b
= ⇤�

a + �a
bc@µ�

b
@µ�

c
, �

a(0, x) = ⇡

a(x)

heat eq. term

nonlinear terms required by chiral 
symmetry

B.C.

Can compute the metric and Christoffel symbol:  

gab = �ab +
�1 + 2✓2 + cos 2✓

2✓4
�
✓a✓b � ✓2�ab

� ✓a =
�a

f

�a

bc

=
1

2
gax [g

xb,c

+ g
xc,b

� g
bc,x

]

=
1

f


2

3
(�

bc

�
ad

� (�
ac

�
bd

+ �
ab

�
cd

)) ✓d +O(✓3)

�

g
xb,c

=
@g

xb

@�c
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✯ Easy to generalize flow equation to include explicit chiral symmetry breaking

so a convenient gradient flow equation becomes:

�̇a = �gab
@S0

@�b
=

�
⇤�m2

⇡

�
�a + �a

bc@µ�
b@µ�

c +m2
⇡�

a

✓
1� sin�/f

�/f

◆

L0 =

f2

4

@µ⌃
†@µ⌃�Bf2

(M⌃+ h.c.) =

✓
1

2

gab(�)@µ�
a@µ�

b
+m2

⇡f
2
cos�/f

◆

quark mass matrix

This form is convenient for reading off interactions, but not for seeing chiral 

symmetry…

Three technical remarks:
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�̇a =
�
⇤�m2

⇡

�
�a + �a

bc@µ�
b@µ�

c +m2
⇡�

a

✓
1� sin�/f

�/f

◆

transforms as a covariant vector under diffeomorphisms 

✯ A flow equation transforming linearly under SU(2) x SU(2)

v0a = vb
@�0a

@�b

where Φ’(Φ) is the chirally transformed pion field.  A nicer and 

equivalent equation is

which transforms linearly under SU(2) x SU(2) like a RH current:

J 0 = R†JR

⌃†@t ⌃ = @µ
�
⌃†@µ⌃

�
+B

✓
M†⌃� 1

2
TrM†⌃

�
� h.c.

◆
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✯ A 5d formulation for the path integral

Following Lüscher and Weisz: can formulate theory as a 5d path integral with a constraint 

to ensure Φ obeys the classical flow equation in the bulk (here: in chiral limit)

Chirally invariant measure:  

Chirally invariant constraint:  

�
⇥
�⌃†@t ⌃+ @µ

�
⌃†@µ⌃

�⇤

1
p
g
⇧3

a=1 �
h
��̇a +⇤�a + �a

bc@µ�
b@µ�

c
i

Together: 

Z
⇧3

a=1 [d�
a] �

h
��̇a +⇤�a + �a

bc@µ�
b@µ�

c
i

Z
⇧3

a=1 [d�
a]
p
g
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=

Z
[d�][d!]e

R
dtdx i!a[��̇

a+⇤�

a+�a
bc@µ�

b
@µ�

c]

Z
[d�] �

h
��̇a +⇤�a + �a

bc@µ�
b@µ�

c
i

• 5d action = Lagrange multiplier ω times flow eq.
• No √g  factor in measure
•Φ obeys  BC  Φ(0,x) = π(x)

In addition, have the 4d action:

Z =

Z
[d⇡]

p
g e�

R
dxL�(⇡)

Z

�(0,x)=⇡(x)
[d�][d!]e

R
dtdx i!a[��̇

a+⇤�

a+�a
bc@µ�

b
@µ�

c]
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Feynman rules for flow diagrams

�̇a =
�
⇤�m2

⇡

�
�a + �a

bc@µ�
b@µ�

c +m2
⇡�

a

✓
1� sin�/f

�/f

◆

+ + + …

t=0

t’

t

quantum π fields

�(t, p) ⇠
Kt(p) = e�t(p2+m2

⇡)

Kt(p) = e�t(p2+m2
⇡)

�(t, p) ⇠ Kt(p)⇡(p) + ⌘

Z t

0

dt0 Kt�t0(p)

Z
3Y

i=1

dqi�(p� q
tot

)
3Y

i=1

Kt0(qi)⇡(qi) +O(⇡5)

perturbative solution in powers of 1/f (usual chiral expansion)
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Quantum π fields get contracted according to 4d chiral Lagrangian 
Feynman rules

Propagator:

t1 t2

= e�t1(p
2+m2

⇡)
1

p2 +m2
⇡

e�t2(p
2+m2

⇡)

Same propagator we saw from the simple heat equation
…but now there are also nontrivial loops

=

= t1

t2
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Renormalization II

=

Loops in flow diagrams

e.g:

Z t

0
dt0
Z

ddq

(2⇡)d
e�2t0(q2+m2

⇡)

q2 +m2
⇡

=

Z
ddq

(2⇡)d

 
1� e�2t(q2+m2

⇡)

2(q2 +m2
⇡)

2

!
finite

flow loops are 2 powers more convergent than usual loops

QCD only has log divergences, so no new divergence from flow loops

χPT has power law divergences, so get new counterterms 
proportional to δ(t)

Counterterm to BC or counter term to the flow eq?
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Current status…

• Have defined a chirally covariant gradient flow with well-defined Feynman rules

• Divergence structure not fully understood yet

• Searching for a more tractable formulation

• Need to study higher order corrections to KSW expansion for NN amplitudes

…future goals

• Believe that this framework will help regulate singular tensor interaction 
between nucleons

• This could revive KSW expansion

• renormalizable

• analytic expansion, perturbative in pion exchange
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After 80 years in 4 dimensions the pion is getting restless 


