

Analyzing non-abelian gauge theory with auxiliary fields

Osaka U. Particle Theory Group Ryou Nagasawa

with Hidenori Fukaya

15/03/12

HHIQCD @YITP

From QCD to Hadrons

New approach to QCD

Reformulation of QCD Kaplan(2013)

Extended QCD (XQCD) = QCD + Auxiliary fields

XQCD is exactly equivalent to QCD

However,

XQCD contains low energy pictures more naturally !

(quark model, chiral perturbation, bag model...)

Our Work

Analyzing the low energy behavior of XQCD

⇒ Renormalization Group (RG) analysis of (X)QCD

We analyze 2-dimensional large Nc QCD (Solvable). ('t Hooft model)

Summary of results

The auxiliary field Φ acquires the kinetic term.

where
$$\Phi\sim \bar{\psi}P_-\psi$$

 $\Phi = \langle \Phi \rangle \, e^{\sigma + i\pi} \quad \langle \Phi \rangle : \text{chiral condensate} \\ \pi : \text{NG mode}$

 $\Rightarrow \pi$ is dominant in the low energy region !

 \uparrow We never can see this in the QCD flow.

Contents

- 1. Introduction
- 2. XQCD (Review)
- 3. RG analysis of (X)QCD
 - 3.1. 2d large Nc QCD
 - 3.2. Main results
- 4. Summary

Definition of XQCD

partition function:
$$Z_{\text{QCD}} = \int e^{-S_{\text{QCD}}}$$
 (4d Euclidean)
Multiply $1 = \int e^{-S_{\text{aux}}}$
 $Z_{\text{QCD}} = Z_{\text{XQCD}} = \int e^{-S_{\text{QCD}} - S_{\text{aux}}}$

$$S_{\rm XQCD} \equiv S_{\rm QCD} + S_{\rm aux}$$

Cancellation by Fierz identity

$$1 = \int e^{-S_{\text{aux}}} \quad \Leftarrow \quad S_{\text{aux}} \text{ is Gaussian.}$$

 $S_{\text{aux}} \propto (\Phi^{\dagger} + \bar{\psi}P_{+}\psi)(\Phi + \bar{\psi}P_{-}\psi) \text{ Non-renormalizable}$ $= \Phi^{\dagger}\Phi + \bar{\psi}(\Phi P_{+} + \Phi^{\dagger}P_{-})\psi + (\bar{\psi}P_{+}\psi)(\bar{\psi}P_{-}\psi)$

Fierz identity \Rightarrow Cancellation

 $(\bar{\psi}P_+\psi)(\bar{\psi}P_-\psi) + \frac{1}{2}(\bar{\psi}\gamma_\mu\psi)(\bar{\psi}\gamma_\mu\psi) - \frac{1}{2}(\bar{\psi}\gamma_\mu\gamma_5\psi)(\bar{\psi}\gamma_\mu\gamma_5\psi) = 0$

 $S_{\text{aux}} \propto (\Phi^{\dagger} + \bar{\psi}P_{+}\psi)(\Phi + \bar{\psi}P_{-}\psi)$ $+ \frac{1}{2}(\mathbf{v}_{\mu} + \bar{\psi}\gamma_{\mu}\psi)^{2} + \frac{1}{2}(\mathbf{a}_{\mu} + i\bar{\psi}\gamma_{\mu}\gamma_{5}\psi)^{2}$

Quark model picture in XQCD

$$\bar{\psi}\left(i\mathbf{A} + \Phi P_{+} + \Phi^{\dagger}P_{-} + \mathbf{v} + i\mathbf{a}\gamma_{5}\right)\psi$$

New interactions

(1) Repulsive interaction by \mathbf{v}_{μ} exchanges

⇒ weakening the attractive interaction

②Constituent quark mass by $\langle\Phi
angle$

$$(\Phi P_+ + \Phi^{\dagger} P_-)\bar{\psi}\psi \to \langle\Phi\rangle (P_+ + P_-)\bar{\psi}\psi = M\bar{\psi}\psi$$

①+② = weakly interacting and massive quarks Quark model picture !

Massless pion

Meson correlator : $\langle \varphi_{\Gamma}^{\dagger}(x)\varphi_{\Gamma}(y)\rangle \quad \varphi_{\Gamma}(x) = \bar{\psi}(x)\Gamma\psi(y)$

Next step of XQCD

XQCD = QCD + auxiliary fields

- Quark model picture
- Massless pion
 Massless pion
 In XQCD
 Iow energy picture of QCD

What is the role of the auxiliary fields in the low energy region ?

3. RG analysis of (X)QCD

RG analysis of 2d large Nc (X)QCD ('t Hooft model) 't Hooft (1974) Simple and Solvable

3.1. 2d large Nc QCD

3.2. Main results

't Hooft model is good model

't Hooft model = 2d QCD in the large Nc limit

No gluon self-interaction + planarity = solvable

ladder approximation is exact

constituent mass : $M(m_B, g_B) = m_B^2 - g_B^2/\pi$

Chiral symmetry breaking occurs in the large Nc limit

Set up

$$\int [d\phi_l] e^{iS_{\rm kin}[\phi_l]} \int [d\phi_h] e^{iS_{\rm kin}[\phi_h] + iS_{\rm int}[\phi_h + \phi_l]}$$

$$= \int [d\phi_l] e^{iS_{\rm kin}[\phi_l] + iS_{\rm int,\Lambda}[\phi_l]} \stackrel{\uparrow}{\longrightarrow} \underbrace{1_{\rm soft \, cut-off}}_{(\rm regularization)}$$

2 Counter terms (e.g. preserve the symmetry)

(1) regularization + (2) counter term = one scheme

③ Truncation

Neglect large Nc subleading and $O(\Lambda^{-4})$ terms.

RG flow of 2d large Nc QCD

$$\rightarrow \Sigma \rightarrow = \rightarrow \bigcirc \bigcirc \rightarrow$$

Self-consistent equation \Rightarrow Non-perturbative result

$$g_{R}(\Lambda) = \frac{g_{B}}{1 - \frac{g_{B}^{2}}{2\pi\Lambda^{2}}\log\left(\frac{\Lambda^{2}}{M^{2}}\right)}$$

$$m_{R}(\Lambda) = \frac{m_{B}}{1 - \frac{g_{B}^{2}}{2\pi\Lambda^{2}}\log\left(\frac{\Lambda^{2}}{M^{2}}\right)}$$

$$M(m_{B}, g_{B}) = m_{B}^{2} - g_{B}^{2}/\pi$$

$$At the scale \Lambda = M,$$

$$M(m_{R}, g_{R}) = M(m_{B}, g_{B})$$

$$\Rightarrow \text{Reasonable results !}$$

(preliminary results)

15/23

Set up in the RG study of XQCD

How does the flow change?

RG schemes

⇒ Same as the QCD flow

2 "Hadronize" Scheme

 $- \leftarrow (+ - \rightarrow + \rightarrow -) = \text{kinetic term}$

⇒ auxiliary field becomes dynamical

Φ becomes dynamical

Note : Φ acquires the kinetic term

 \mathbf{v}_{μ} remains to be an auxiliary field.

1-loop RG flow of XQCD

$$Z_{\Phi}(\Lambda) = \frac{y^2(\Lambda)}{2\pi} \left(\frac{1}{\Lambda^2} - \frac{1}{\Lambda_{\rm cut}^2}\right)^{\text{(preliminary results)}}$$
$$m_{\Phi}^2(\Lambda) = \lambda^2 - \frac{y^2(\Lambda)}{2\pi} \log\left(\frac{\Lambda_{\rm cut}^2}{\Lambda^2}\right)$$
$$y(\Lambda) = \frac{\alpha\lambda}{1 + \frac{\alpha_R^2(\Lambda)}{2\pi} \log\left(\frac{\Lambda_{\rm cut}^2}{\Lambda^2}\right)}$$
$$g_R(\Lambda) = \frac{g_B}{1 - \frac{g_B^2}{2\pi\Lambda^2} \log\left(\frac{\Lambda^2}{M^2}\right)}$$
Flows are not changed...
$$m_R(\Lambda) = \frac{m_B}{1 - \frac{g_B^2}{2\pi\Lambda^2} \log\left(\frac{\Lambda^2}{M^2}\right)}$$

What is interesting in XQCD ?

$$Z_{\Phi}(\Lambda)\partial_{\mu}\Phi^{\dagger}\partial^{\mu}\Phi + m_{\Phi}(\Lambda)\Phi^{\dagger}\Phi + y(\Lambda)\bar{\psi}\Phi P_{+}\psi + \text{h.c.}$$

When Normalizing $Z_{\Phi}(\Lambda)=1$,

$$\begin{split} y(\Lambda) &\sim \sqrt{2\pi}\Lambda \\ m_{\Phi}^2(\Lambda) &\sim \frac{2\pi\Lambda^2}{y^2(\Lambda)} \left[\lambda^2 - \frac{y^2(\Lambda)}{2\pi} \log\left(\frac{\Lambda_{\rm cut}^2}{\Lambda^2}\right) \right]_{(\Lambda^2 \ll \Lambda_{\rm cut}^2)} \\ & \text{Looks like quadratic divergence} \end{split}$$

20/23

⇒ Auxiliary fields decouple ? No effect on the low energy physics ?

π becomes dominant

$$\begin{split} m_{\Phi}^2 \Phi^{\dagger} \Phi, \ m(\Phi + \Phi^{\dagger}) &\longrightarrow m_{\pi}^2 = m \langle \bar{\psi} \psi \rangle + O(m) \\ \Phi &= \langle \Phi \rangle \, e^{\sigma + i\pi} \end{split}$$

When $m \to 0$, $m_{\pi} \to 0$. This fact always holds along the RG flow. ("." Chiral symmetry) π is dominant in the low energy region !

 \uparrow We never can see this in the QCD flow.

Extended RG scheme

XQCD flow is non-trivial !

1. 2d QCD flow is obtained non-perturbatively.

2. 2d XQCD flow at the 1-loop level is studied

The auxiliary field $\Phi~$ acquires the kinetic term.

 π becomes dominant in the low energy region !

 \uparrow We never can see this in the QCD flow.

