
QCD vacuum in strong magnetic fields

Sho Ozaki (KEK)

In collaboration with

Takashi Arai (KEK)

Koichi Hattori (Riken/BNL)

Kazunori Itakura (KEK)

HHIQCD2015,  YITP,  March 11, 2015



Introduction

Recently, it has been recognized that very strong 
electromagnetic fields as well as chromo-electromagnetic fields	

are generated in relativistic heavy ion collisions.

The strengths of EM fields would reach or even exceed the QCD 
scale, ΛQCD. Such strong electromagnetic fields possibly affect	

QCD vacuum and hadron properties.

Lattice QCD can simulate strongly interacting quark and gluon 
system in the presence of the magnetic field w/o sign problem as 
appeared in finite density lattice QCD.

det( /D +mq) > 0

Dµ = �µ � igAa
µT

a � ieQaµ

where
em



qq condensate in strong magnetic fields from LQCD

is determined by varying the node positions. We find that
lattice discretization errors become large at high magnetic
fields due to saturation of the lattice magnetic flux [44],
therefore we only include points with Nb=N

2
s < 0:1. In

Fig. 1 we also show the continuum limit of the difference
!ð"u þ"dÞ=2.

Next, we address the condensate at nonzero temperature,
carrying out a similar continuum extrapolation for!" as at
T ¼ 0, using three lattice spacings with Nt ¼ 6, 8 and 10.
The increase of the difference !"ðBÞ is qualitatively simi-
lar for zero and nonzero temperatures in !PT and in the
PNJL model (see below). In QCD, however, the situation is
quite different: in Fig. 2 we plot the continuum extrapo-
lated lattice results for !ð"u þ"dÞ=2 as functions of B
for several temperatures, ranging from T ¼ 0 up to T ¼
176 MeV. Note that the transition temperature varies
from TcðeB ¼ 0Þ % 158 MeV down to Tcð0:9 GeV2Þ %
138 MeV [44]. The increasing behavior of !"ðBÞ at low
temperatures (T & 130 MeV) corresponding to magnetic

catalysis continuously transforms into a humplike structure
in the crossover region (T¼148MeV, 153MeV) and then on
to a monotonously decreasing dependence (T'163MeV).
We remark that—although in the high temperature limit
the condensate and its dependence on B are suppressed—at
T * 190 MeV!"ðBÞ again starts to increase. Furthermore,
we note that the strange condensate !"s [with a definition
similar to that in Eq. (4)] does not exhibit this complex
dependence on B and T but simply increases with growing
B for all temperatures. This shows that the partly decreasing
behavior near the crossover region only appears for quark
masses below a certain thresholdmthr, in between the physi-
cal light and strange quark masses, mud < mthr <ms.

IV. COMPARISON TO EFFECTIVE
THEORIES/MODELS

In Fig. 3 we compare our zero temperature QCD result
for!ð"u þ "dÞ=2 as a function of B to the !PT prediction
[13–15,54] and to that of the PNJL model [18,55], both at
physical pion mass. We see that the !PT prediction de-
scribes the lattice results well up to eB ¼ 0:1 GeV2, while
the PNJL model works quantitatively well up to eB ¼
0:3 GeV2. Note that, since the Polyakov loop at zero
temperature vanishes, in the limit T ! 0 the PNJL model
becomes indistinguishable from the NJL model with the
same couplings.
In Fig. 4, the condensate Eq. (4) as a function of T is

compared to !PT and to the PNJL model for different
magnetic fields. At B ¼ 0 we use the continuum extrapo-
lation for the condensate presented in Ref. [50] (where
lattices up to Nt ¼ 16 were employed), and complement
this with the differences!"ðBÞ shown in Fig. 2. In addition
to the continuum extrapolated lattice data we plot the !PT
curves for B ¼ 0 [35] and for B> 0 [14,15,54], together
with the PNJL model predictions [18,55]. The results
indicate that !PT is reliable for small temperatures and

FIG. 2 (color online). Continuum extrapolated lattice results
for the change of the condensate as a function of B, at six
different temperatures.

FIG. 1 (color online). The change of the renormalized con-
densate due to the magnetic field at T ¼ 0 as measured on five
lattice spacings and the continuum limit.

FIG. 3 (color online). Comparison of the continuum limit of
the change of the condensate to the !PT [13–15,54] and the (P)
NJL model [18,55] predictions.
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Figure 9. The phase diagram of QCD in the B−T plane, determined from the renormalized chiral
condensate ūur+ d̄dr (upper left panel), the renormalized chiral susceptibility χr

u+χr
d (upper right)

and the strange quark number susceptibility cs2 (lower panel).

9 The phase diagram

Finally, using the fitted two-dimensional surfaces of section 6, we study the observables as

functions of the temperature, along the lines of constant magnetic field. In particular we

analyze the renormalized chiral susceptibility χr
u + χr

d, the renormalized chiral condensate

ūur + d̄dr and the strange quark number susceptibility cs2. For the latter two observables

we determine the pseudocritical temperature Tc(B) as the inflection points of the curves,

while for the former we calculate the position of the maximum value of the observable.

The results are shown in figure 9.

To carry out the continuum extrapolation, we fit the results for Tc(B) for all three

lattice spacings (Nt = 6, 8 and 10) together with an Nt-dependent polynomial function of

order four of the form Tc(B,Nt) =
∑4

i=0(ai + biN
−2
t )Bi. This ensures the scaling of the

final results with N−2
t ∼ a2. We obtain χ2/dof. ≈ 0.5 . . . 1.2 indicating good fit qualities.

In order not to make the plots overcrowded, we only show error bars for the continuum

curves. The error coming from the continuum extrapolation is estimated to be 2MeV and is

added to the statistical error in quadrature. The error in the lattice scale determination [54]

propagates in the Tc(B) function and amounts to an additional 2−3MeV systematic error,
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Tc of the chiral phase transition decreases.

Recently, the inverse magnetic catalysis in B-field is reproduced from 
non-perturbative running coupling of four quark-interaction vertex.

Magnetic inhibition (Inverse magnetic catalysis	

	
 	
 	
 	
 	
     in B-field)

J. Braun et. al., arXiv:1412.6025, N. Mueller et. al, arXiv:1502.08011



The integral of the full correlator over r gives the topological susceptibility T/V · ⇧Q2⌃, and is thus
positive. At intermediate distances, however, the correlator becomes negative, with the position of the
zero proportional to the lattice spacing. This is clear from the continuum limit, in which the correlator
is negative for all distances apart from zero, where it contains a contact term [40]. The scaling of the
position of the zero has turned out to be very similar for many current fermion discretizations [34].
We will focus on intermediate distances r/a = 2 . . . 4. Note that, due to the restriction of r to
two-dimensional hyperplanes, less discrete distances are available for the perpendicular and parallel
correlators than for the full propagator, resulting in lower e⇡ective statistics.

Finally, we remark that the use of smearing and of the improved field strength definition may a⇡ect
the anisotropy of the correlator, as both techniques e⇡ectively amount to an averaging over space-time
regions in a spherically symmetric way. For the mild averaging that we employ, however, these regions
do not overlap strongly and, thus, the correlators defined above still contain the information about
anisotropies in the topological charge.

3 Results I: gluonic and fermionic observables

Our measurements have been performed on the same configurations as used in our previous studies
of magnetic fields in QCD. The configurations at zero and nonzero temperature have been generated
with the tree-level improved Symanzik gauge action and Nf = 1 + 1 + 1 stout smeared staggered
fermions, at physical quark masses, for details see [12, 13, 19]. The light quark masses are set equal,
mu = md ⇤ mud, whereas the strange quark mass is ms = 28.15 ·mud. The quark masses are tuned as
a function of � along the line of constant physics (LCP) [29], which ensures that for all lattice spacings,
the hadron masses are at their physical values. The quark charges are �qu/2 = qd = qs = �e/3.

3.1 Interaction measure

Figure 1. The change in the gluonic contribution to the interaction measure, eq. (2.5), at zero temperature
(left, including the continuum limit from four lattice spacings) and the corresponding light quark contribution
mud�⇥̄ud⇥ud (five lattice spacings and the continuum limit), in the same units.

We start the analysis by considering the change of the renormalized gluonic action, i.e., of the glu-
onic contribution to the interaction measure ��I imp

g of eq. (2.5) at zero temperature. We use four
di⇡erent lattice spacings with magnetic fields eB up to about 1 GeV2, and perform a combined spline
interpolation and continuum extrapolation to obtain the a ⌅ 0 limit. The results, together with the
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Figure 4. Anisotropies in the squared field strengths, eq. (2.10), (left panel) and in the fermionic action
eq. (2.12) (right panel) at zero temperature.

to-noise ratio becomes worse at high temperatures (which, in our fixed Nt approach, correspond to
finer lattices), again due to the cancellation of O(a�4) divergences in A(E) and A(B).

The fermionic anisotropies defined in eq. (2.12) also develop nonzero expectation values for B > 0,
see the right panel of fig. 4 for our zero temperature results for the up quark. We find the anisotropies
A(Cf ) to be negative for all three quark flavors. The anisotropy in physical units is by about a factor of
five larger than the anisotropies found in the gluonic sector. Similarly as for the gluonic anisotropies,
we find the magnitude of A(Cf ) to be roughly independent of the temperature. We stress again that
the anisotropies presented here are still subject to an additive renormalization, which we discuss in
sec. 4 below.

3.3 Topological charge

Figure 5. Left panel: correlator of the topological charge density, eq. (2.14), at eB = 1.1 GeV2 at vanishing
temperature on a 403 � 48 lattice of lattice spacing a = 0.1 fm. The perpendicular and parallel (green and
red points, respectively) correlators are compared to the total one (dashed line). Right panel: the di✏erence
between the total correlator at eB = 1.1 GeV2 and at eB = 0 (red triangles), and the anisotropy between the
parallel and perpendicular correlators at eB = 1.1 GeV2 (blue squares).
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Full order calculation with respect to the fields is needed!

where V4 = T/V again denotes the four-volume, q is the charge of the fermion (the electron), for a
review see [55]. This action is divergent for small s, i.e. in the UV, since coth(qBs/m2) = m2/qBs+

qBs/(3m2) � (qBs)3/(45m6). The leading singularity is independent of B, and is thus absent in the
di⇡erence Se�(B)�Se�(0). The singularity quadratic in B is taken care of by charge renormalization.
The first non-trivial order is quartic, where, in diagrammatic language, four external photon legs
interact via an electron loop (light-by-light scattering). The next order comes with an additional
factor of (qB)2/m4, and is thus negligible for weak fields.

The fourth order term for constant field strength Gµ⌅ in an arbitrary gauge group has been given
by Novikov et al. [64],

S(4)
e� (Gµ⌅) = � V4

576⇤2

⇥4

m4

⇤
(Gµ⌅Gµ⌅)

2 � 7

10
{Gµ�, G�⌅}2 �

29

70
[Gµ�, G�⌅ ]

2 +
8

35
[Gµ⌅ , G�⇥ ]

2

⌅
, (D.3)

where ⇥ is the coupling in the covariant derivative Dµ =  µ + i⇥AG
µ and {.., ..} and [.., ..] denote the

anti-commutator and the commutator, respectively. For pure QED, upon replacing ⇥Gµ⌅ ⇤ qFµ⌅ ,
this yields

S(4)
e� (E,B) = � V4

360⇤2

q4

m4

�
(E2 +B2)2 � 7(EB)2

⇥
, (D.4)

reproducing the result by Euler and Heisenberg, (�E2+B2)2+7(EB)2, if we change from Minkowski
to Euclidean space, by multiplying the electric field by an imaginary unit.

In the following, we again denote SU(3) fields by calligraphic letters and U(1) fields by straight
characters. For QCD in external magnetic fields, one has to replace ⇥Gµ⌅ ⇤ Fµ⌅+qB(�µ1�⌅2��⌅1�µ2)

and a careful evaluation of eq. (D.3) to bi-quadratic order5 yields

S(2,2)
e� (Fµ⌅ ;B) = � V4

180⇤2

(qB)2

m4

⇤
3 trB2

⇥ + trB2
� + tr E2

� � 5

2
tr E2

⇥

⌅
, (D.5)

in terms of the field strength components defined in sec. 2.2. No topological charge term EB appears,
as expected from CP arguments in a purely magnetic external field.

Thus, in perturbation theory for constant fields |qB|, |Fµ⌅ | ⇥ m2 the chromo-electric field parallel
to the external field has an increased action compared to the perpendicular fields, whereas the parallel
chromo-magnetic field reduces the action. This means that parallel E-fields are disfavored, while
parallel B-fields are favored. This is in qualitative agreement with our non-perturbative findings that
A(E) > 0 and A(B) < 0.

The remainder of this appendix is devoted to check the main formula eq. (D.5). First, let us
revisit the Abelian theory, by removing the traces and replacing calligraphic letters by q times straight
ones. This should be the fourth order result of Euler and Heisenberg, eq. (D.4), up to the fact that
here we have split the B-field in the z-direction artificially into B⇥ +B and computed only the terms
of O(B2). If we do the same in eq. (D.4), we obtain in this order

� V4

360⇤2

q4

m4

⇧
(E2

� + E2
⇥ +B2

� + [B⇥ +B]2)2 � 7(E�B� + E⇥[B⇥ +B])2
⌃

(D.6)

=� V4

180⇤2

q4

m4
B2

2E2
� + 2E2

⇥ + 2B2
� + 2B2

⇥ + 4B2
⇥ � 7E2

⇥
2

+ . . . (D.7)

which is what we get from eq. (D.5), too.
5We note that additional terms of the form qB tr(B�F2

µ⇥) and qB tr(E�Fµ⇥F̃µ⇥) also appear, and contribute to S(3,1)
e� .

For instance, eq. (D.8) below contains a term
P

a qB B3
a = qB trB3

�.
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This expression is basically an expansion of “fields/m^2”, 	

but in the current case this expansion obviously  breaks down.

Second order Euler-Heisenberg effective action

The first term on the right hand side of eq. (2.5) is the direct gluonic contribution, see, e.g., ref. [29].
Since the additive divergences are canceled in �sg (see the discussion in apps. A and B), this first
term already has a well-defined continuum limit (at B = 0, typically di⌫erences in the temperature
are utilized to achieve this). The leading lattice discretization error, however, is of O(1/ log a) and,
therefore, vanishes very slowly. The second, fermionic term in eq. (2.5) does not contribute to the
continuum limit, but it cancels the logarithmic discretization error, thereby improving the convergence
to O(a2), see app. B. The improvement is evident from our numerical data, see fig. 7. The procedure is
equivalent to multiplying the result by a finite renormalization constant 1+O(1/�) that we determine
non-perturbatively, using the line of constant physics (LCP) for the action that we employ [29]. To
our best knowledge, such an O(1/�)-improvement of a gluonic quantity by a fermionic quantity has
not been considered in the literature previously.

2.2 Anisotropies

The continuum counterpart of the gluonic action in Euclidean space is written as

�Sg ⇥ 1

2g2

�
d4x trF2

µ⇥(x) =
1

g2

�
d4x tr

�
E2(x) +B2(x)

⇥
. (2.6)

The field strength is defined in terms of the SU(3) gauge potential Aµ as Fµ⇥ = �µA⇥��⇥Aµ+i[Aµ,A⇥ ],
and consists of chromo-electric Ei = F4i and chromo-magnetic components Bi = ⇥ijkFjk/2. We use
calligraphic letters to denote the non-Abelian SU(3) fields, to distinguish these from the external
Abelian field1. The full covariant derivative reads Dµ,f = �µ+iAµ+iqfAµ. Without loss of generality,
we will take the external magnetic field B to point in the z-direction. The simplest gauge field to
realize this (in infinite volume) is Ay = Bx, Aµ = 0 (µ ⇤= y).

The translation of these quantities to the lattice discretization is straightforward. For the gauge
action we use the tree-level improved Symanzik action [30],

Sg = SSym
g =

⌥

µ<⇥

⌥

n

1

3
Re trPµ⇥(n), (2.7)

where Pµ⇥(n) denotes a sum of gluonic loops lying in the µ-⌅ plane, see eq. (C.4), and n runs over
lattice sites. Therefore, Sg is readily decomposed into planar components and, therefore, into squared
traces of the chromo-electric and chromo-magnetic field strengths, according to eq. (2.6),

tr E2
i (n) = 2Re trP4i(n), trB2

i (n) = 2
⌥

j<k

|⇥ijk|Re trPjk(n). (2.8)

In the following, the components in the direction of the external field B ⌦ z are denoted as parallel,
whereas the x and y components as perpendicular,

E2
⇥ = E2

z , B2
⇥ = B2

z , E2
� =

E2
x + E2

y

2
, B2

� =
B2
x + B2

y

2
. (2.9)

We define the anisotropies as the densities of the expectation values of di⌫erences between these
components,

A(E) = T

V

⇧
�

6

⌥

n

⇤
tr E2

�(n)� tr E2
⇥ (n)

⌅⌃
, A(B) = T

V

⇧
�

6

⌥

n

⇤
trB2

�(n)� trB2
⇥(n)

⌅⌃
,

(2.10)
1Note that the Euclidean E2 (E2) turns into �E2 (�E2) in Minkowski space-time, whereas the sign of the squared

magnetic fields remain the same.
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3.2 Anisotropies

Here, we study the individual components of the gauge action, as given by eq. (2.9). We remark that
for the anisotropies – unlike in sec. 3.1 above – we do not perform the continuum limit, but only show
the scaling tendency of the results with the lattice spacing. In order to carry out a proper continuum
extrapolation, one has to subtract terms ⇥ (eB)2 log a that arise from charge renormalization (see
app. A). We will revisit this issue in sec. 4.

Figure 3. The components T/V
�⇤

n trB2
i (n)

⇥
and T/V

�⇤
n tr E2

i (n)
⇥

in lattice units a�4, as measured on
a 243 � 6 lattice at a temperature T = 189 MeV. The anisotropies induced by the temperature and by the
magnetic field are indicated by the arrows.

First, we demonstrate the hierarchy of the gluonic components at T > Tc and B > 0, where e�ects
from both the temperature and the magnetic field are present. In fig. 3, we plot the expectation values
of the densities of the individual components eq. (2.9), as determined on our Nt = 6 lattices. In the
absence of the magnetic field, the anisotropy is induced solely by the temperature, separating the
chromo-magnetic and chromo-electric components. For B > 0, in addition the parallel and perpen-
dicular components split, due to the spatial anisotropy induced by the magnetic field2. The generated
hierarchy is

�
trB2

⇥
⇥
>

�
trB2

�
⇥
>

�
tr E2

�
⇥
>

�
tr E2

⇥
⇥
, similar to what was observed in the SU(2) theory

in ref. [14].
To determine the dependence of the anisotropies on the external magnetic field, in the left panel of

fig. 4, we plot A(E) and A(B) (see their definition in eq. (2.10)) as functions of eB at T = 0. The parallel
chromo-electric field is suppressed with respect to the perpendicular fields, resulting in a positive
A(E), whereas the chromo-magnetic sector shows the opposite e�ect, giving a negative A(B). This
non-perturbative finding is in-line with a perturbative treatment of the anisotropy, see the generalized
Euler-Heisenberg calculation in app. D, in particular eq. (D.5). According to this calculation, tr E2

⇥
increases the e�ective action (to bi-quadratic order in B and F), and is thus suppressed. In contrast,
trB2

⇥ reduces the action, and is favored. This implies A(E) > 0 and A(B) < 0, as we have found.
Furthermore, within the present statistical accuracy, the two anisotropies have the same magnitude.

The gluonic anisotropies do not show any significant finite volume e�ects, and we also find these
to be roughly independent of the temperature up to our largest T = 189 MeV. However, the signal-

2Note that the data in fig. 3 contains an additive divergence � a�4. The anisotropies induced by T and B (indicated
by the arrows in the figure) are, however, ultraviolet finite.
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increases with eB

Caution :

G. S. Bali et al, JHEP 1304(2013) 130Gluonic observables at zero temperature

hSgi = h1
4
F 2i

hS
g
i B

�
hS

g
i B

=
0



= + +

+ + + · · · · · ·

Quark propagator non-linearly interacting with photons and gluons 

Gluon couples to quark and gluon itself.

Magnetic field (photon) does not couple to gluon directly but 
interacts with quarks.

The effect of magnetic field must be reflected on QCD through the quark.



= +

· · ·

+ + +

+ + + · · ·

Using quark loop non-linearly interacting with gluon and photon, 	

one can calculate Euler-Heisenberg Lagrangian for QCD+QED.



QCD Lagrangian with electromagnetic fields

Q = diag(Qq1 , Qq2 , · · · , Qqf ) Mq = diag(mq1 ,mq2 , · · · ,mqf )

Covariant derivative

Field strengths

fµ� = �µa� � ��aµ

Charge and mass matrices

,

L = �1

4
F a
µ�F

aµ� � 1

4
fµ�f

µ� + q̄(i�µD
µ �Mq)q

Dµ = �µ � igAa
µT

a � ieQaµ

F a
µ� = �µA

a
� � ��A

a
µ + gfabcAb

µA
c
�

�f = 0 : constant fields



Background field method

: Slowly varying classical background field

: Quantum fluctuation

We apply the Covariantly-constant field as the background field.

D̂ab
⇥ F̂ b

µ� = 0 D̂ab
� = ⇥�ab + gfacbÂc

is varying very slowlyF̂ (�F̂ = 0)

F̂ a
µ� = Fµ� n̂

a
n̂2 = 1

Âa
µ = Aµn̂

a

Gauge fixing（background gauge）
D̂ab

µ Abµ = 0

Fµ� = �µA� � ��Aµ

Aa = Âa +Aa

Âa

Aa

I. Batalin et al, Sov. J. Nucl.Phys. 26 (1977)214

M. Gyulassy and A. Iwazaki, Phys. Lett. B 165(1985) 157

N. Tanji and K. Itakura, Phys. Lett. B 713(2012) 117



Functional integral for second order fluctuations with 

Z
DqDq̄ei

R
d4xq̄(i�µD̂

µ�Mq)q = det
h
i�µD̂

µ �Mq

i

The results are 	

well known.

This work

exp

h
iSeff (

ˆAµ)

i
=

Z
DAµDcDc̄DqDq̄ exp

⇢
i

Z
d4x


�1

4

⇣
ˆF a
µ� + (

ˆDab
µ Ab

� � ˆDab
� Ab

µ) + gfabcAb
µAc

�

⌘2

� 1

2⇥
(

ˆDab
µ Abµ

)

2 � c̄a( ˆDµD
µ
)

accc + q̄(i�µ ˆDµ �Mq)q + q̄(ig�µAaµ · T a
)q � 1

4

fµ�f
µ�

��

Z
DAei

R
d4x � 1

2A
aµ{�(D̂2)acgµ��2gfabcF̂ b

µ}Ac�

= det
h
�(D̂2)acgµ� � 2gfabcF̂ b

µ

i�1/2

Z
DcDc̄ei

R
d

4
x c̄[�(D̂2)ac]c = det

h
�(D̂2)ac

i+1

Effective action for Â

Gluon 

Ghost 

Quark

⇠ = 1



The quark contribution to the effective action 

i�Sq = log det[i�µD̂
µ �Mq]

D̂µ = �µ � igAµn̂aT a � ieQaµ

Un̂aT aU†
0

@
w1 0 0
0 w2 0
0 0 w3

1

A
SU(3)

NcX

a=1

w2
a =

1

2

NcX

a=1

wa = 0
,

· ·
·

Diagonalization in color space

Flavor space

Q = diag(Qq1 , Qq2 , · · · , Qqf )



The Euler-Heisenberg Lagrangian for QCD+QED

L1+1T
q =

i�

8�2

NcX

a=1

NfX

i=1

Z 1

0

ds

s3��
e�im2

qi
s
(aa,is)(ba,is)cot(aa,is)coth(ba,is)

a2a,i � b2a,i = [(gwa)
2( �H2

c � �E2
c ) + (eQqi)

2( �B2 � �E2) + 2gwaeQqi( �Hc · �B � �Ec · �E)]

aa,iba,i = �[(gwa)
2 �Ec · �Hc + (eQqi)

2 �E · �B + gwaeQqi( �Ec · �B + �E · �Hc)]

We see that the chromo-electromagnetic fields and U(1)em 
electromagnetic fields are coupled to each other through the quark loop.

where

L1
q



This enable us to perform the proper time integral and 
obtain the analytic expression of the effective Lagrangian 
(potential).

In this study, we focus on the chromo-magnetic field and 
consider only U(1)em magnetic field.



Effective potential for quark part

V fin
q =

NcX

a=1

NfX

i=1

(
�

a2a,i
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Gluon＋ghost part effective potential

Color charges in SU(3)

+

· ·
· · ·
·
G. K. Savvidy, Phys. Lett. B71(1977)
N. Nielsen and Olesen, Nucl. Phys. B144(1978)

In pure chromo-magnetic background
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In this study, we consider the color SU(3) case with the three 
flavor (u,d,s).

We use the following parameters

Qu = +
2

3
Qd = Qs = �1

3

mu = md = 5 MeV ms = 140 MeV

We investigate the magnetic field dependence of the QCD 
effective potential at zero temperature.

,

,

↵s = 1 ↵EM =
1

137
µ = 1 GeV, ,



Anisotropy of QCD vacuum 

Chromo-magnetic fields prefer to be parallel (or anti-paralell) to the external 
magnetic field, which is consistent with recent lattice results.

Hck > Hc?

gHc = 0.2 GeV2

0 0.2 0.4 0.6 0.8 1
θHcB

/π

0.00136

0.00138

0.0014

0.00142

0.00144

V
q [G

eV
4 ] 

eB = 0.1 GeV2

0 0.2 0.4 0.6 0.8 1
θHcB

/π

0.0037

0.0038

0.0039

V
q [G

eV
4 ]

eB = 0.3 GeV2

S. O, PRD89 (2014) 054022



Anisotropy of QCD vacuum 

Chromo-magnetic fields prefer to be parallel (or anti-paralell) to the external 
magnetic field, which is consistent with recent lattice results.

Hck > Hc?

gHc = 0.2 GeV2

0 0.2 0.4 0.6 0.8 1
θHcB

/π

0.00136

0.00138

0.0014

0.00142

0.00144

V
q [G

eV
4 ] 

eB = 0.1 GeV2

0 0.2 0.4 0.6 0.8 1
θHcB

/π

0.0037

0.0038

0.0039

V
q [G

eV
4 ]

eB = 0.3 GeV2

S. O, PRD89 (2014) 054022



0 0.5 1
gHc [GeV2]

0

0.01

0.02

V
ef

f [G
eV

4 ] Vq

total Veff

Hc
2/2+VYM

B = 0, Θ = 0

The one-loop YM effective potential                    has a minimum away from 
the origin, which corresponds to the dynamical generation of the chromo-
magnetic condensate.

Quark loop contributions attenuate the gluonic contributions.
How the condensate behaves in the presence of the magnetic field?

H2
c /2 + VYM

QCD effective potential at 

This result is qualitatively in agreement with LQCD and FRG analyses.

B = 0

J. Amebjorn, V. K. Mitrjushkin and A. M. Zadorozhnyi, PLB 245 (1990) 575

A. Eichhorn, H. Gies and J. M. Pawlowski, PRD83 (2011) 045014
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We defined the normalized potential:

As the magnetic field increases, the minimum shift to the right hand side.

The chromo-magnetic condensate increases with an increasing	

magnetic field. 
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QCD effective potential with finite magnetic fields 

0 0.5 1
eB [GeV2]

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(g
H

c) m
in

2  [G
eV

4 ]

V̄ (H,B) = V (H,B)� V (0, B)
�HcB = 0,

S. O, PRD89 (2014) 054022

eB

This behavior qualitatively agrees with the recent observed gluonic 
magnetic catalysis in lattice QCD at zero temperature.



In the mass less limit of the quark              , one can obtain the analytic 	

expression of               with              : 

mq ! 0
(gHc)

2
min eB = 0

(gHc)
2
min,0 = µ4

exp

⇢
� 8⇥

b0�s
� 1 +

2

b0

✓
11Nc

3

cg �
2Nf

3

cq

◆�
b0 =

11Nc

3
� 2Nf

3,
where cg cqand are some constants.

In the small eB region, (gHc)min,0 >> eB , we find

(gHc)
2
min = (gHc)

2
min,0 +

(4�)2

b0

Nc

12�2

0

@
NfX

i=1

Q2
qi

1

A (eB)2

Note that the coefficient of the second term is the ratio of 
the coefficients of          and         .�QCD �QED

In the large eB region,              still monotonically 
increases as the magnetic field increases.

eB > (gHc)min , (gHc)
2
min



At finite temperature



Gluonic observable at finite temperature

J
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Figure 6. Left panel: the temperature- and magnetic flux-dependence of the renormalized
Polyakov loop in the continuum limit. The solid lines represent curves of constant magnetic field
(eB ⇥ NbT 2 values as in the right panel). Right panel: the dependence of Pr on the tempera-
ture around the crossover region. The di�erent types of curves indicate lattice results obtained
with di�erent lattice spacings (di�erent temporal extents). The shaded areas show the continuum
extrapolations together with their uncertainty.

For the Polyakov loop calculation, we again employ the gauge configurations of ref. [20],

generated with physical quark masses at various values of the temperature and the magnetic

flux Nb ⇥ eB/T 2. In any finite volume, this flux is quantized [45]. In order to determine the

Polyakov loop as a function of T , along a line of constant eB, an interpolation between the

di�erent fluxes Nb is necessary. We carry out this interpolation in a systematic manner, by

fitting our data points for all temperatures, magnetic fluxes and lattice spacings altogether

by a lattice spacing-dependent, two-dimensional spline function. A similar spline fit is

described in ref. [46]. Due to the scaling properties of the action we use, the dependence

on the lattice spacing is expected to be quadratic. We incorporated this in the fit by

having two parameters on each node point as p1+ p2 · a2. Taking eB = const. slices of this

two-dimensional surface at a certain a gives the Polyakov loop for that particular lattice

spacing, while the a = 0 surface corresponds to the continuum limit.

In the left panel of figure 6, we plot the continuum extrapolated renormalized Polyakov

loop Pr as a function of the temperature and the magnetic flux. The solid lines upon the

surface correspond to eB = 0, eB = 0.45 GeV2 and eB = 0.75 GeV2 slices. In the right

panel of the figure, we show the temperature dependence of Pr for these magnetic fields on

the three lattice spacings, together with the continuum extrapolation. The shaded bands

represent here the uncertainty of the continuum extrapolated Pr. The results clearly show,

that the Polyakov loop increases sharply with the magnetic field around Tc, and that this

feature persists in the continuum limit as well. As an empirical finding from that figure, in-

flection points of these curves are not very precisely defined, but the transition temperature

from the renormalized Polyakov loops clearly decreases with the magnetic field.
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Tc of deconfinement phase transition decreases 	

(as well as chiral phase transition).

F. Bruckmann et. al., JHEP04(2013)112

Polyakov loop



The Euler-Heisenberg Lagrangian for QCD+QED 	

at finite temperature 

L1+1T
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Note that UV divergences appear only in vacuum part.



The Polyakov loop is defined as

P (⇥x) = �L(⇥x)⇥ = � 1
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: confining phase
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In the case of SU(2)

In the case of SU(3)
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Quark loop explicitly breaks the center symmetry.
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Center symmetry

One loop effective potential always shows the deconfining phase.
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The magnetic field enhances the explicit breaking of the center symmetry.
Therefore, the Polyakov loop will increase with an increasing B-field.

Incidentally, the electric field suppresses the explicit symmetry breaking.

Tc of deconfinement transition would decrease.

Explicit symmetry breaking in electromagnetic fields

B 6= 0 E 6= 0

x =
m

2
q

T

2

y =
e(E,B)

T 2

Tc of deconfinement transition would increase.



Vacuum decay (quark pair productions) in QCD and QED fields



Also, strong electric fields as well as magnetic fields are generated in 
HICs on event by event basis.
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FIG. 2: (Color online) The electromagnetic fields at t = 0 and r = 0 as functions of the impact parameter b.

|B
x

(0,0)| and |B
y

(0,0)| � |E
x

(0,0)| when v

z

is large [See Eqs. (3.2)-(3.3)]. These facts are reflected

in Fig. 2. Although the x-component of the magnetic field as well as the x- and y-components of the

electric field vanish after averaging over many events, their magnitudes in each event can be huge due to

the fluctuations of the proton positions in the nuclei. Thus, following Bzdak and Skokov [34], we plot

the averaged absolute values h|E
x,y

|i and h|B
x,y

|i at r = 0 and t = 0. Similar with the findings in

Ref. [34], we find that h|B
x

|i, h|E
x

|i, and h|E
y

|i are comparable to h|B
y

|i, and the following equalities

hold approximately, h|E
x

|i ⇡ h|E
y

|i ⇡ h|B
x

|i. But our results at RHIC energy are about three times

smaller than that obtained in Ref. [34]. We checked that this is because the thickness of the nuclei in our

calculation is finite while the authors of Ref. [34] assumed that the nuclei are infinitely thin. We can also

observe that, at small b region, contrary to hB
y

i which is proportional to b, the fields caused by fluctuation

are not sensitive to b.

B. Collision energy dependence

We see from Fig. 2 that the magnitudes of all the fields at LHC energy is around 14 times bigger than

that at RHIC energy. To study the collision energy dependence more carefully, we calculate the fields at

t = 0 and r = 0 for different
p
s. To high precision, the linear dependence of the fields on the collision

energy is obtained, as shown in Fig. 3. Thus, the following scaling law holds for event-by-event generated

electromagnetic fields as well as for event-averaged magnetic fields,

e · Field /
p
sf(b/R

A

), (3.1)

where R

A

is the radius of the nucleus and f(b/R

A

) is a universal function which has the shapes as shown

in Fig. 2 for h|B
x,y

|i, h|E
x,y

|i, and hB
y

i.

W. Deng and X. Huang, PRC85(2012) 044907

Strong chromo-electromagnetic fields (Glasma) are generated 	

relativistic heavy ion collisions (HICs).

~Hc
~Ec,

|g ~Ec|, |g ~Hc| ⇠ Qs

⇠ 1 GeV2



From the imaginary part of the effective Lagrangian, one can obtain 	

the production rate of quark-antiquark pair per unit of space-time volume.

ImLq =
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wqq̄ = 2ImLq

with

In the presence of electric or chromo-electric fields, quark pair productions 	

occur owing to the Schwinger’s mechanism.

By using this expression, we can investigate quark pair productions under 	

arbitrary configurations of QCD and QED fields.

q q
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,

with

2ImLq =
1

4⇡3

NcX

a=1

NfX

i=1

b2a,i

1X

n=1

1

n2
e
�

m2
qi

ba,i
n⇡

-0.5 0 0.5 1 1.5
eEcE

 // 

0

0.03

0.06

0.09

2I
m

 L
q [G

eV
4 ]

eE = 0.0 GeV2

eE = 0.3 GeV2

eE = 0.5 GeV2

eE = 0.8 GeV2

Light (up) quark production rate

-0.5 0 0.5 1 1.5
eEcE

 / /

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

2I
m

 L
c [G

eV
4 ]

eE = 0.0 GeV2

eE = 0.3 GeV2

eE = 0.5 GeV2

eE = 0.8 GeV2

Charm quark production rate
gEc = 1GeV2



~Ec k ~Hc

~Hc
~Ec,

~E, ~B

✓

Light quark pair productions in QCD + QED fields

|g ~Ec| = |g ~Hc| = 1 GeV2

-0.5 0 0.5 1 1.5
e / /

0.105

0.11

0.115

0.12

0.125

2 
Im

 L
q [G

eV
4 ]

eB = 0.0 GeV2

eB = 0.3 GeV2

eB = 0.5 GeV2

eB = 0.8 GeV2

B 6= 0, E = 0

-0.5 0 0.5 1 1.5
e / /

0.11

0.115

0.12

0.125

0.13

0.135

2 
Im

 L
q [G

eV
4 ]

eE = 0.0 GeV2

eE = 0.3 GeV2

eE = 0.5 GeV2

eE = 0.8 GeV2

E 6= 0, B = 0



Summary

We derive the Euler-Heisenberg action for QCD+QED. 	

Using the action, we investigate QCD vacuum in the magnetic fields.

Our results show that chromo-magnetic component of the QCD 
vacuum prefers to be parallel to external magnetic fields.	

Chromo-magnetic condensate monotonically increases with an 
increasing magnetic field.

These results are consistent with recent lattice QCD 	

observations at zero temperature.

As another application of our effective Lagrangian, we also 
investigate quark pair productions in QCD+QED fields.

At high temperatures, the magnetic field enhances the explicit 
breaking of the center symmetry, which would be one of importance 
sources reducing the critical temperature of the deconfinement phase 
transition.


