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In 2011 googling for complex Langevin and analytic continuation  
and I found these E. Witten’s papers:  

Analytic Continuation Of Chern-Simons Theory [arXiv:1001.2933], 
A New Look At the Path Integral Of Quantum Mechanics [arXiv:1009.6032].

Prologue

127 + 78 pages of “geometrical quantum stuff” … too much for me

Let me summarise what I have understood  
(mostly from Section 3.1 of the first paper: the Airy function)



Path integral and Morse theory

Start from an oscillating integral

Complexify the degrees of freedom

If Re[f(z)] is a Morse function 
(real-valued function whose critical point are not degenerate)

Deform appropriately the 
original integration path 
(Morse theory)

Z =

Z

Rn

dxn g(x)e f (x)

Z =

Z

C
dzn g(z)e f (z)

Z =

Z

C
dzn g(z)e f (z) =

X

�

n�

Z

L�

dzng(z)e f (z)

for each stationary point pσ  the Lσ (thimble) is the union of the 
paths of steepest descent that fall in  pσ at ∞

L�

C =
�

�

R�L�
the thimbles provide a basis of the relevant homology 
group, with integer coefficients

Lefschetz thimble: 
generalisation of the one 
dimensional steepest-
descent curve to n-dim 
problems

Try with the Airy function



The Airy function

sign problem integrating with Monte Carlo
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Witten was looking at analytic continuation in λ
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Saddle point integration
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The Airy function
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Complexify the variable t ! tR + itI = z

Consider the real part of the function in the exponent

R[I] = �t

2
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t

3
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Find the stationary points

We want a new non-oscillating integration path 
that fastest converges to the integral
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Integrate along steepest descents
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Saddle point integrationThe Airy function
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steepest descent

Find the stationary points
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Integrate along steepest descents

Main contribution to the integral  
from the region surrounding the critical points

no sign problem from there
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Along the steepest descent       is constantI[I]
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Saddle point integrationThe Airy function
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Find the stationary points
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Integrate along steepest descents

Morse theory
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# of intersections between steepest 
ascent and original integration domain
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steepest ascent
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The Airy function Saddle point integration



tR

tI

SR

Saddle point integration 

Works extremely well for low dimensional oscillating integrals. 

Usually combined with an asymptotic expansion around the stationary 
point (sort of perturbative expansion).  

The phase is stationary +  
important contributions localized =  

good for sign problem

What about a Monte Carlo integral  
along the curves of steepest descent



Can we use the thimble basis to compute 
the path integral for a QFT ?

Lot of things to discuss ...
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QFTs on Lefschetz thimble



QFTs on Lefschetz thimble
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Lot of things to discuss ...

Integrals are of the form 
Z

dx g(x)e�f (x)

what if g(x) is an extensive quantity (e.g. the fermionic determinant)?

On a Lefschetz thimble the imaginary part of the action is constant 
but the measure term does introduce a new residual phase, due to the 
curvature of the thimble

We should integrate on all the thimbles. Is it feasible? Can we consider just 
one or a class of thimbles instead?

These are open questions 
I do not have final solutions 

in particular for QCD



Integrals are of the form 
Z

dx g(x)e�f (x)

what if g(x) is an extensive quantity (e.g. the fermionic determinant)?

QFTs on Lefschetz thimble

T. Kanazawa and Y. Tanizaki. arXiv:1412.2802

If g(x) is holomorphic/meromorphic put log(g(x)) in the exponent 
you can still define the thimble and integrate on that

The only thing is that now the thimble can ends in a zero of the g(x) 
which is not at infinity of the variable domain. 
If this is the case it can be that the imaginary part of the action 
changes approaching that point from different directions

J (1)J (�1)

K(1)K(�1)

J (�i)

J (i)

K(i)

K(�i)

Figure 1. Lefschetz thimbles J (solid lines) and their duals K (dashed lines) for simple one-
dimensional integrals. Orange blobs are critical points of the action. Hatched areas are “good”
regions where the integrand tends to zero. In both panels, the origin is a singularity of the flow.

very large T in accordance with the general argument. By contrast, K(±1) run from one
“bad” region z ⇠ �i1 to another z ⇠ i1, thus providing a basis of H

1

(C,C�T

;Z) for very
large T . Since K(±1) intersect with the real axis, the integral receives contributions from
both J (1) and J (�1). This is also intuitively obvious, for the original contour R is a union
of J (1) and J (�1). As a whole, the general framework of Lefschetz-thimble approach does
not seem to be obstructed by the presence of zeros of the integrand.

There is one side remark here. We noted above that Im f is conserved along a flow.
While this is generally true, it does not imply that Im f is constant over an entire up-
ward/downward flow cycle. For illustration, let us note that K(�1) is comprised of two
distinct flow lines: one is stretching from �1 to +i1 and the other from �1 to �i1. It is
easily seen that Im f is �⇡ along the former and ⇡ along the latter, owing to the fact that
z = �1 sits right on the branch cut of logarithm. Thus we conclude that although Im f is
locally conserved along a flow, it can jump by a multiple of 2⇡ at a point where two flows
meet. (See also [14]).

Next, let us turn to the case when h(z) is a meromorphic function with poles. An
example of this is given by a bosonic functional determinant in QFTs. It is useful to once
again employ a simple example to illustrate the general applicability of Lefschetz thimbles.
Consider an integral

Z

R+i"

dz
1

z
e

�z

2
/2 where the contour is slightly uplifted from the real axis

to avoid the pole at z = 0. Now, writing this as
R

R+i"

dz e

�f(z) with f(z) = log z+z2/2, we
see that the critical points are located at z = ±i. The Lefschetz thimbles {J (i), J (�i)} and
the upward flow lines {K(i),K(�i)} can then be defined with respect to the flow equations
for f(z). They are shown in Figure 1 (right panel). Compared to the previous example,
the geometrical structure of J and K are exchanged. Interestingly, now, K(i) and K(�i)

end at the origin because the area around z = 0 was turned into a “bad” region by a
pole. One can easily confirm that J and K again constitute the bases of relative homology.
(Note that J (i) and J (�i) are independent cycles, for they cannot be continuously moved
to each other across the singularity at z = 0.) Since K(i) intersects with R + i" while
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dx x e�x

2/2

steepest ascent

thimbles

log(x)-x2/2 ➞ ∞

x



QFTs on Lefschetz thimble
On a Lefschetz thimble the imaginary part of the action is constant 
but the measure term does introduce a new residual phase, due to the 
curvature of the thimble

Additional phase coming from the Jacobian of 
the transformation between the canonical 
complex basis and the tangent space to the 
thimble
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  Does it lead to a sign problem? 
Must be checked case by case
It is encouraging that:

dΦ=1 at leading order and <dΦ> ≪1 are strongly 
suppressed  by e-S

there is strong correlation between phase and weight 
(precisely the lack of such correlation is the origin of the 
sign problem)

In fact this residual phase is completely neglected in the 
saddle point method



QFTs on Lefschetz thimble
On a Lefschetz thimble the imaginary part of the action is constant 
but the measure term does introduce a new residual phase, due to the 
curvature of the thimble

Additional phase coming from the Jacobian of 
the transformation between the canonical 
complex basis and the tangent space to the 
thimble
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  What to do with the residual phase

demanding in terms of computation power but affordable

HMC: H. Fujii et al JHEP 1310 (2013) 147

Stochastic estimators: M.C. et al. PRD 89,114505 (2014)
Based on Langevin algorithm to stay on the thimble 
scales as 
with: 
- n the number of lattice sites  
- Nτ steps along the gradient flow 
- NR number of stochastic sources

O(n ⇥ N⌧ ⇥ NR)



QFTs on Lefschetz thimble

We should integrate on all the thimbles. Is it feasible? Can we consider just 
one or a class of thimbles instead?
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It is really difficult to establish if we really need to sum all the contribution 
from the different thimbles

Looking at one dimensional problem often you need to sum all. 
But, for example, in a field theory as λΦ4 at finite μ, the correct solution was 
obtained with only one thimble, so maybe one or two are sufficient for QFTs on 
a lattice

Must be checked case by case



QFTs on Lefschetz thimble

We should integrate on all the thimbles. Is it feasible? Can we consider just 
one or a class of thimbles instead?
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Must be checked case by case

You are lucky if:

The system has a single global minimum

There are degenerate global minima, that 
are however connected by symmetries
There are degenerate global minima, with 
vanishing probability of tunnelling

You are not so lucky if:

There is a large number of stationary points 
that accumulate near the global minimum 
giving a finite contribution



QFTs on Lefschetz thimble

We should integrate on all the thimbles. Is it feasible? Can we consider just 
one or a class of thimbles instead?
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Must be checked case by case

It might also be that you are interested in the dynamics around one or a 
couple of known particular saddle points. In this case integrating on the 
thimble gives you alle the quantum correction to the classical dynamics 
associated with those critical points.

I’ll show you later 1 and 1/2 example



How to stay on the thimble
Langevin 
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HMC: H. Fujii et al JHEP 1310 (2013) 147

Other methods 

PRD Rapid 88, 051501 (2013)

PRD Rapid 88, 051502 (2013)

another one: F. Di Renzo and G. Eruzzi Lattice2014



Langevin 

We want to compute this:
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constant on J0

boundend from below on J0

PRD Rapid 88, 051501 (2013)
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We can use a Langevin 
algorithm but how can 
we stay on the thimble?

preserve J0 
by  

construction

Need to be 
projected on 
the tangent 
space to J0

How to stay on the thimble



Langevin 
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We can use a Langevin 
algorithm but how can 
we stay on the thimble?

preserve J0 
by  

construction

Need to be 
projected on 
the tangent 
space to J0

projection of the noise 
 on the tangent space

d⌘i(⌧)

d⌧
=

X

k

⌘(⌧)k@k@jSR

The tangent space  at the stationary point is easy to compute (given by the hessian) 

We can get tangent vectors at any point if we can transport the noise along the 
gradient flow so that it remains tangent to the thimble 

L@SR(⌘) = 0 [@SR, ⌘] = 0

PRD Rapid 88, 051501 (2013)

How to stay on the thimble



Langevin 
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Start from the global minimum of the 
real part of the action, generate a noise 
vector projected on the thimble and 
follow the steepest descent
Perform a Langevin step using the noise 
evolved along the steepest descent and 
compute the observables

Go back along the steepest ascent 
until you are in a region where  
quadratic approx. is valid and then 
project the configuration on the thimble

Generate a new noise and go 
back along the steepest descent
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PRD Rapid 88, 051501 (2013)

How to stay on the thimble



Langevin on the Lefschetz thimble  
vs Complex Langevin 

I think the relation between the two 
approaches has to be studied 
carefully. 
See for example 
G. Aarts et al. JHEP 1410 (2014) 159 
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How to stay on the thimble



Metropolis 

ηreal are the direction of steepest descent of SR and the equations of 
steepest descent of η for the Gaussian action can be explicitly solved in term 
of a new parameter r=e-τ

In the neighbourhood 
of a critical point

S[�] = S[�0] + SG[⌘] +O(|⌘|3)
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2
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G is the flat thimble 
associated to the gaussian 
action SG

The λ and w are 
solutions of Hwk = �kw̄k where H is the Hessian

d⌘k
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PRD Rapid 88, 051502 (2013)

How to stay on the thimble



Metropolis 

In the neighbourhood 
of a critical point
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G is the flat thimble 
associated to the gaussian 
action SG
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but for r=ε infinitesimal 
the Lefschetz and 
Gaussian thimbles coincide
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Start with a random real η 
vector, compute Φ(ε) and evolve 
using steepest descent

PRD Rapid 88, 051502 (2013)

How to stay on the thimble
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Metropolis 

In the neighbourhood 
of a critical point

S[�] = S[�0] + SG[⌘] +O(|⌘|3)
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G is the flat thimble 
associated to the gaussian 
action SG

PRD Rapid 88, 051502 (2013)

How to stay on the thimble
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The wki are components of the vectors wk. We call the flat
thimble associated with the Gaussian action SG the
Gaussian thimble G!.

The "k and wk can be found from the solutions of the
generalized eigenvalue equation,

Hwk ¼ "k !wk: (10)

The elements of the Hessian matrix H are given by

Hij ¼
@S

@#i@#j
: (11)

In practice, we find the "k and the wk from the positive
eigenvalues and the corresponding eigenvectors of the real
symmetric 2n" 2n matrix

~H ¼ HR HI

HI #HR

 !
(12)

where

HR
ij ¼

@<S

@<#i@<#j
(13)

HI
ij ¼ # @<S

@=#i@<#j
: (14)

The eigenvalues of ~H come in pairs f$"kg with k ¼
1; . . . n, and the "k being real and positive. Let uk and vk
be real normalized n-dimensional vectors such that
ðu⊺

k; v
⊺
kÞ⊺ is an eigenvector of ~H with a positive eigenvalue

"k. Then, the pair "k and wk ¼ 1ffiffi
2

p ðuk þ ivkÞ satisfies

Eq. (10).
With this parametrization, the directions of steepest

descent/ascent of <S (and constant =S) correspond to
directions where the $k are real. Consider the equations
of steepest descent of the variables $k (assumed real)
for the Gaussian action SG in terms of the new parameter
r ¼ e#%,

d$k

dr
¼ 1

r

@SG
@$k

¼ 1

r
"k$k (15)

which yields the solution,

$k / r"k : (16)

Now, we can define a mapping between the Gaussian
thimble, parametrized by the vectors !, and the Lefschetz
thimble, parametrized by the field ". First, we find the
corresponding configuration # at r ¼ &,

'k ¼ &"k$k: (17)

For a sufficiently small &, the Lefschetz thimble and the
Gaussian thimble will coincide at r ¼ &. Thus, the field
configuration on the Lefschetz thimble at r ¼ & is given by

#iðr ¼ &Þ ¼ #!
i þ

X

k

wki'k ¼ #!
i þ

X

k

&"kwki$k: (18)

Using this as the boundary condition, we can now integrate
the equation of steepest descent of the full action S for the
fields #iðrÞ,

d#i

dr
¼ 1

r

@S

@#i
(19)

from r ¼ & to 1. The field configuration at r ¼ 1 is the
one we seek. For brevity, we will simply denote it by ".
For a constant &, we have the following relation between

the measures of integration:

Z
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Z
Rn

det ½J"! )d! ¼
Z
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k
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#
det ½J"# )d!:

(20)

The matrix J#$ ðJ#' Þ is the Jacobian of the transformation

between the !ð#Þ and " fields.

In general, det ½J"! ) is not guaranteed to be positive
definite. However, as noted earlier, we expect the sign
problem due to this ‘‘residual phase’’ (if present at all) to
be milder than the sign problem in the original functional
integral in Eq. (1). In the next section we verify this
assertion for a simple model.

The matrix J#' can be calculated along the path of

steepest descent from the equation

d½J"# )ik
dr

¼ 1

r

@2S

@#i@#j
½J"# )jk (21)

along with the boundary condition,

½J"# )ikðr ¼ &Þ ¼ wki: (22)

In the limit & ! 0, the above procedure produces an
explicit mapping between the flat Gaussian thimble and the
Lefschetz thimble. In practice, it is necessary to perform
calculations at a few sufficiently small values of & in order
to perform the extrapolation to the limiting case. For later
reference, we note that setting & ¼ 1 corresponds to a
mapping from the Gaussian thimble to itself.
Note that Eq. (21) involves the evolution of an N " N

matrix whose determinant must also be computed. The
latter is expected to cost OðN3Þ. This may be still too
expensive for some models, but it is already a huge cost
reduction compared to the OðeNÞ scaling expected in gen-
eral and it should be sufficient to enable the Monte Carlo
simulation of some important models, which are currently
not feasible. Techniques of noise estimation of the trace
(see, e.g., [18,19]) may further reduce the cost of the
computation of the determinant, but we do not consider
them in this paper.
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latter is expected to cost OðN3Þ. This may be still too
expensive for some models, but it is already a huge cost
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eral and it should be sufficient to enable the Monte Carlo
simulation of some important models, which are currently
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residual phase 
along the steepest 
descent



Metropolis 

η n-dim random vector living on the 
manifold defined by the 
eigenvectors of the Hessian 
computed at the critical point with 
positive eigenvalues

|η| distance along the thimble
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�S

��i
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of a critical point
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G0 is the flat thimble 
associated to the gaussian 
action SG
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How to stay on the thimble
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How to stay on the thimble

η

p1

p2

Φ(p1)

Φ(p2)

np1e
�S[�p1 ]

np2e
�S[�p2 ]

select the thimble  
using these weights



Gaussian thimble 

Gaussian manifold: 
flat manifold defined by the directions of 
steepest descent at the critical point  

Lefschetz thimble

�r ! 0

Decreasing δr your manifold get closer and closer to the Lefschetz thimble 

|η|/δr = N number of steps along the steepest 
descent

If the action decreases fast away from the stationary point 
integrating on the Gaussian thimble can be sufficient

How to stay on the thimble



How to stay on the thimble

Gaussian thimble 
It works
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How to stay on the thimble

Gaussian thimble 
may not work

U(1) one plaquette model S = �i
�

2

�
U + U�

1

�
= �i� cos�

hei�i = i
J1(�)

J0(�)

There are parameter regions where 
integration on the Gaussian 
manifold is sufficiently accurate

PRD Rapid 88, 051502 (2013)



Chiral random matrix model on the thimble

Example of thimble calculation with 
a fermionic log[Det] in the action

II. CHIRAL RANDOM MATRIX THEORY

The chiral random matrix theory we will simulate with complex Langevin has the parti-

tion function [11, 26]

Z

Nf

N (m) =

Z
d�1d�2 det

Nf (Dµ +m) e�2NTr[�†
1�1+�†

2�2]
, (1)

where the random matrix analogue of the Dirac operator is

Dµ +m =

0

@ m e

µ�1 � e

�µ�†
2

�e

�µ�†
1 + e

µ�2 m

1

A
. (2)

The integration variables �1 and �†
2 are complex N ⇥ (N + ⌫) matrices, m and µ are the

quark mass and chemical potential parameters and Nf is the number of quark fields which

have been integrated out. The integer ⌫ is the topological index, i.e. the number of exact zero

eigenvalues of Dµ. In the microscopic limit where mN and µ

2
N are fixed as N ! 1 this

random matrix partition function is equivalent to that of chiral perturbation theory in the

✏-domain [11, 17, 18]. This limit also allow us to identify the relation between the random

matrix parameters N , m and µ and the physical four volume, quark mass and chemical

potential, [11, 27, 28]

2mN $ m⌃V and 2µ2
N $ µ

2
F

2
⇡V, (3)

where ⌃ is the chiral condensate and F⇡ is the pion decay constant. In the quenched and the

phase-quenched theories a phase transition takes place at µ = m⇡/2. Using the Gell-Mann -

Oakes - Renner relation we can rewrite this as µ2
F

2
⇡V = m⌃V/2, which in the chiral random

matrix variables translates to 2µ2 = m.

For the numerical test of complex Langevin below we will naturally work with finite

N . It is therefore of great practical value that the partition function (1) can be computed

analytically for all values of Nf and N [11, 26]

Z

Nf

N (m) =
1

(2m)1/2Nf (Nf�1)
det

✓
d

dm

◆a

L

(⌫)
N+b(�nm

2)

�

a=0,...,Nf�1; b=0,...,Nf�1

, (4)

where L(⌫)
k (x) is the generalized Laguerre polynomial. From this compact expression for the

partition function we obtain the mass dependent chiral condensate

⌃
Nf

N (m) =
1

Nf

1

N

1

Z

Nf

N (m)

d

dm

Z

Nf

N (m). (5)
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Obtained with a new algorithm 
to stay on the thimble
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G. Eruzzi and F. Di Renzo 
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Integration done on one thimble 
(the trivial stationary point)

N=1
N=2
N=3
N=4

F. Di Renzo Lattice2014



QFTs on selected Lefschetz thimbles

We should integrate on all the thimbles. Is it feasible? Can we consider just 
one or a class of thimbles instead?

hOi =
P

�

n
�

R
J�

Q
x

d�
x

e�S[�]O[�]
P

�

n
�

R
J�

Q
x

d�
x

e�S[�]

Must be checked case by case

It might also be that you are interested in the dynamics around one or a 
couple of known particular saddle points. In this case integrating on 
the thimble gives you alle the quantum correction to the classical 
dynamics associated with those critical points.

I’ll show you NOW 1 and 1/2 example



Hubbard model on the Lefschetz thimble

Two-dim Hubbard model, probably the most famous model in the 
condensed matter community. 
It has been hypothesised to contain the essential physics of high-
temperature superconductivity. 
Has sign problem

Hamiltonian

ABHISHEK MUKHERJEE AND MARCO CRISTOFORETTI PHYSICAL REVIEW B 90, 035134 (2014)

In asymptotic expansions of the thimble around the saddle
point ⟨eiImR⟩ = 1. The residual phase, ImR, can deviate
substantially from zero only for configurations far away from
the saddle point. Given the nature of the thimble, these
configurations are maximally suppressed.

The orientation of the thimble smoothly interpolates be-
tween the directions of steepest descent at the saddle point
(determined by the quadratic part of the action) and the
asymptotic directions of convergence; the residual phase can
never oscillate unpredictably, it can only change smoothly.
In short, the thimble achieves a tight correlation between the
weight and the phase, which is precisely what is missing from
the usual formulation leading to the sign problem.

Quantitative support for the above qualitative arguments
is provided by the explicit calculation of the residual phase
for a nontrivial model with a severe sign problem [17]. There
⟨eiImR⟩ was found to be systematically larger than 0.99 for all
parameter values studied.

In a phase with broken symmetry, it is sufficient to sample
field configurations on a single thimble. Configurations on
all other thimbles in the same phase can be generated by
applying the generator of the said symmetry. Putting together
the considerations above we are led to the following expression
for the ⟨X ⟩ in our formulation:

⟨X ⟩ =

∑′
p∈P Np

∫
J n

p
Dη eR[φ]⟨X [φ]⟩pe−ReS[φ]

∑′
p∈P Np

∫
J n

p
Dη eR[φ]e−ReS[φ]

, (17)

where J n
p is the thimble attached to one arbitrary saddle

point φ0
p in the phase p, Dη is the real measure on the

thimble, Np is the number of saddle points in the phase p,
and ⟨X [φ]⟩p is the average of the observable X [φ] over all the
field configurations that are connected to φ by the generator
of the discrete symmetry broken in phase p. The sum over p
now extends only over the small subset of expected dominant
thimbles.

IV. MONTE CARLO ALGORITHM

We propose the following Lefschetz thimble Monte Carlo
algorithm for many-body theories.

(1) Given a model for a many-body system defined by
a Hamiltonian as in Eq. (1), construct the corresponding
functional integral formulation with the help of a continuous
HST. There is considerable freedom in choosing the HST and
our method should be applicable to any of them. However,
it is reasonable to expect that the “best” HST is determined
by a compromise between calculational convenience and how
much of the symmetries of the original fermionic Hamiltonian
can be retained in the final action which defines the functional
integral.

(2) Identify the dominant phases, and the associated saddle
points for the given parameter regime. The dominant saddle
points need not lie in the original domain of integration. In the
case of degenerate saddle points due to a broken continuous
symmetry, lift the degeneracy with an explicit symmetry-
breaking term. In cases, where the dominant phase is well
known, our formulation can be used to obtain very precise
results by including all quantum corrections. In other cases,

this formulation provides a well-defined setup for studying
competing phases.

(3) At the saddle point(s) φ0
p, calculate the Hessian of

the action ∂2
φS[φ0

p] and determine the directions of steepest
descent from the generalized eigenvectors of the Hessian as
discussed in Ref. [3]. This step needs to be done only once at
the beginning of the simulation. The steepest descent directions
at the saddle points provide boundary conditions for Eq. (12).

(4) If a single phase is considered then it is sufficient to
generate configurations on a single thimble. To do this, any
of the algorithms described in Refs. [1,3] can be used. If
multiple phases are considered, then we need to incorporate a
mechanism to jump between thimbles belonging to different
phases. To do this, we will use a combination of Gibbs
sampling and the algorithm described in Ref. [3].

In this case, the variables η in the measure are the coordi-
nates on the “Gaussian” thimble corresponding to the quadratic
approximation of the action at the saddle point. Equivalently,
they denote a direction and a length for integrating the Eq. (12).
The phase and the fields are uniquely determined by the set
(p,η).

Start the sampling from any phase p. New configurations
can be sampled by repeating the following two steps: (i) Given
the phase p (which also fixes the thimble), sample φ from
e−S[φ] using the algorithm described in Ref. [3]. This fixes η.
Calculate the fields φp on all the thimbles given η. (ii) Given
φp, sample p from Npe−S[φp].

(5) For each decorrelated configuration calculate the
residual phase R and the observables ⟨X [φ]⟩p. In broken-
symmetry phases, the latter can be calculated by generating
configurations on all the thimbles belonging to the phase with
the help of the symmetry operation.

(6) Finally, calculate the expectation values of the observ-
ables by reweighting with eR.

V. RESULTS FOR THE HUBBARD MODEL AWAY FROM
HALF FILLING

In this section we will present our results for the Hubbard
model. The Hubbard Hamiltonian is

H = −t
∑

⟨ij⟩σ
(c†iσ cjσ + c

†
jσ ciσ ) −

∑

iσ

µσniσ

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
(18)

= K + V, (19)

where c
†
iσ (ciσ ) creates (destroys) a fermion of spin σ at the

lattice site i, niσ = c
†
iσ ciσ , and ⟨ij ⟩ denotes nearest-neighbor

sites. Also, t , U , and µσ are, respectively, the hopping
parameter, the on-site interaction strength, and the chemical
potential for the σ spins.

The interaction term can be written in the following manner:

ni↑ni↓ = 1
2ξi[(eiθi ni↑ + e−iθi ni↓)2 − (e2iθi ni↑ + e−2iθi ni↓)]

+ 1
2 (1 − ξi)(eiθ ′

i %
†
i + e−θ ′

i %i)2, (20)

where %i = ci↑ci↓. The interaction can now be decoupled by
introducing auxiliary fields via HSTs for each squared term

035134-4

t           hopping parameter 
U         on-site interaction strength 
μσ       chemical potential for spin σ

Interaction term
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symmetry phases, the latter can be calculated by generating
configurations on all the thimbles belonging to the phase with
the help of the symmetry operation.

(6) Finally, calculate the expectation values of the observ-
ables by reweighting with eR.

V. RESULTS FOR THE HUBBARD MODEL AWAY FROM
HALF FILLING

In this section we will present our results for the Hubbard
model. The Hubbard Hamiltonian is

H = −t
∑

⟨ij⟩σ
(c†iσ cjσ + c

†
jσ ciσ ) −

∑
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µσniσ

+U
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= K + V, (19)

where c
†
iσ (ciσ ) creates (destroys) a fermion of spin σ at the

lattice site i, niσ = c
†
iσ ciσ , and ⟨ij ⟩ denotes nearest-neighbor

sites. Also, t , U , and µσ are, respectively, the hopping
parameter, the on-site interaction strength, and the chemical
potential for the σ spins.

The interaction term can be written in the following manner:

ni↑ni↓ = 1
2ξi[(eiθi ni↑ + e−iθi ni↓)2 − (e2iθi ni↑ + e−2iθi ni↓)]

+ 1
2 (1 − ξi)(eiθ ′

i %
†
i + e−θ ′

i %i)2, (20)

where %i = ci↑ci↓. The interaction can now be decoupled by
introducing auxiliary fields via HSTs for each squared term
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In asymptotic expansions of the thimble around the saddle
point ⟨eiImR⟩ = 1. The residual phase, ImR, can deviate
substantially from zero only for configurations far away from
the saddle point. Given the nature of the thimble, these
configurations are maximally suppressed.

The orientation of the thimble smoothly interpolates be-
tween the directions of steepest descent at the saddle point
(determined by the quadratic part of the action) and the
asymptotic directions of convergence; the residual phase can
never oscillate unpredictably, it can only change smoothly.
In short, the thimble achieves a tight correlation between the
weight and the phase, which is precisely what is missing from
the usual formulation leading to the sign problem.

Quantitative support for the above qualitative arguments
is provided by the explicit calculation of the residual phase
for a nontrivial model with a severe sign problem [17]. There
⟨eiImR⟩ was found to be systematically larger than 0.99 for all
parameter values studied.

In a phase with broken symmetry, it is sufficient to sample
field configurations on a single thimble. Configurations on
all other thimbles in the same phase can be generated by
applying the generator of the said symmetry. Putting together
the considerations above we are led to the following expression
for the ⟨X ⟩ in our formulation:

⟨X ⟩ =

∑′
p∈P Np

∫
J n

p
Dη eR[φ]⟨X [φ]⟩pe−ReS[φ]

∑′
p∈P Np

∫
J n

p
Dη eR[φ]e−ReS[φ]

, (17)

where J n
p is the thimble attached to one arbitrary saddle

point φ0
p in the phase p, Dη is the real measure on the

thimble, Np is the number of saddle points in the phase p,
and ⟨X [φ]⟩p is the average of the observable X [φ] over all the
field configurations that are connected to φ by the generator
of the discrete symmetry broken in phase p. The sum over p
now extends only over the small subset of expected dominant
thimbles.

IV. MONTE CARLO ALGORITHM

We propose the following Lefschetz thimble Monte Carlo
algorithm for many-body theories.

(1) Given a model for a many-body system defined by
a Hamiltonian as in Eq. (1), construct the corresponding
functional integral formulation with the help of a continuous
HST. There is considerable freedom in choosing the HST and
our method should be applicable to any of them. However,
it is reasonable to expect that the “best” HST is determined
by a compromise between calculational convenience and how
much of the symmetries of the original fermionic Hamiltonian
can be retained in the final action which defines the functional
integral.

(2) Identify the dominant phases, and the associated saddle
points for the given parameter regime. The dominant saddle
points need not lie in the original domain of integration. In the
case of degenerate saddle points due to a broken continuous
symmetry, lift the degeneracy with an explicit symmetry-
breaking term. In cases, where the dominant phase is well
known, our formulation can be used to obtain very precise
results by including all quantum corrections. In other cases,

this formulation provides a well-defined setup for studying
competing phases.

(3) At the saddle point(s) φ0
p, calculate the Hessian of

the action ∂2
φS[φ0

p] and determine the directions of steepest
descent from the generalized eigenvectors of the Hessian as
discussed in Ref. [3]. This step needs to be done only once at
the beginning of the simulation. The steepest descent directions
at the saddle points provide boundary conditions for Eq. (12).

(4) If a single phase is considered then it is sufficient to
generate configurations on a single thimble. To do this, any
of the algorithms described in Refs. [1,3] can be used. If
multiple phases are considered, then we need to incorporate a
mechanism to jump between thimbles belonging to different
phases. To do this, we will use a combination of Gibbs
sampling and the algorithm described in Ref. [3].

In this case, the variables η in the measure are the coordi-
nates on the “Gaussian” thimble corresponding to the quadratic
approximation of the action at the saddle point. Equivalently,
they denote a direction and a length for integrating the Eq. (12).
The phase and the fields are uniquely determined by the set
(p,η).

Start the sampling from any phase p. New configurations
can be sampled by repeating the following two steps: (i) Given
the phase p (which also fixes the thimble), sample φ from
e−S[φ] using the algorithm described in Ref. [3]. This fixes η.
Calculate the fields φp on all the thimbles given η. (ii) Given
φp, sample p from Npe−S[φp].

(5) For each decorrelated configuration calculate the
residual phase R and the observables ⟨X [φ]⟩p. In broken-
symmetry phases, the latter can be calculated by generating
configurations on all the thimbles belonging to the phase with
the help of the symmetry operation.

(6) Finally, calculate the expectation values of the observ-
ables by reweighting with eR.

V. RESULTS FOR THE HUBBARD MODEL AWAY FROM
HALF FILLING

In this section we will present our results for the Hubbard
model. The Hubbard Hamiltonian is

H = −t
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(c†iσ cjσ + c
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∑

iσ

µσniσ

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
(18)

= K + V, (19)

where c
†
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lattice site i, niσ = c
†
iσ ciσ , and ⟨ij ⟩ denotes nearest-neighbor

sites. Also, t , U , and µσ are, respectively, the hopping
parameter, the on-site interaction strength, and the chemical
potential for the σ spins.

The interaction term can be written in the following manner:

ni↑ni↓ = 1
2ξi[(eiθi ni↑ + e−iθi ni↓)2 − (e2iθi ni↑ + e−2iθi ni↓)]

+ 1
2 (1 − ξi)(eiθ ′
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where %i = ci↑ci↓. The interaction can now be decoupled by
introducing auxiliary fields via HSTs for each squared term
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point ⟨eiImR⟩ = 1. The residual phase, ImR, can deviate
substantially from zero only for configurations far away from
the saddle point. Given the nature of the thimble, these
configurations are maximally suppressed.

The orientation of the thimble smoothly interpolates be-
tween the directions of steepest descent at the saddle point
(determined by the quadratic part of the action) and the
asymptotic directions of convergence; the residual phase can
never oscillate unpredictably, it can only change smoothly.
In short, the thimble achieves a tight correlation between the
weight and the phase, which is precisely what is missing from
the usual formulation leading to the sign problem.

Quantitative support for the above qualitative arguments
is provided by the explicit calculation of the residual phase
for a nontrivial model with a severe sign problem [17]. There
⟨eiImR⟩ was found to be systematically larger than 0.99 for all
parameter values studied.

In a phase with broken symmetry, it is sufficient to sample
field configurations on a single thimble. Configurations on
all other thimbles in the same phase can be generated by
applying the generator of the said symmetry. Putting together
the considerations above we are led to the following expression
for the ⟨X ⟩ in our formulation:

⟨X ⟩ =

∑′
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Dη eR[φ]⟨X [φ]⟩pe−ReS[φ]
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, (17)

where J n
p is the thimble attached to one arbitrary saddle

point φ0
p in the phase p, Dη is the real measure on the

thimble, Np is the number of saddle points in the phase p,
and ⟨X [φ]⟩p is the average of the observable X [φ] over all the
field configurations that are connected to φ by the generator
of the discrete symmetry broken in phase p. The sum over p
now extends only over the small subset of expected dominant
thimbles.

IV. MONTE CARLO ALGORITHM

We propose the following Lefschetz thimble Monte Carlo
algorithm for many-body theories.

(1) Given a model for a many-body system defined by
a Hamiltonian as in Eq. (1), construct the corresponding
functional integral formulation with the help of a continuous
HST. There is considerable freedom in choosing the HST and
our method should be applicable to any of them. However,
it is reasonable to expect that the “best” HST is determined
by a compromise between calculational convenience and how
much of the symmetries of the original fermionic Hamiltonian
can be retained in the final action which defines the functional
integral.

(2) Identify the dominant phases, and the associated saddle
points for the given parameter regime. The dominant saddle
points need not lie in the original domain of integration. In the
case of degenerate saddle points due to a broken continuous
symmetry, lift the degeneracy with an explicit symmetry-
breaking term. In cases, where the dominant phase is well
known, our formulation can be used to obtain very precise
results by including all quantum corrections. In other cases,

this formulation provides a well-defined setup for studying
competing phases.

(3) At the saddle point(s) φ0
p, calculate the Hessian of

the action ∂2
φS[φ0

p] and determine the directions of steepest
descent from the generalized eigenvectors of the Hessian as
discussed in Ref. [3]. This step needs to be done only once at
the beginning of the simulation. The steepest descent directions
at the saddle points provide boundary conditions for Eq. (12).

(4) If a single phase is considered then it is sufficient to
generate configurations on a single thimble. To do this, any
of the algorithms described in Refs. [1,3] can be used. If
multiple phases are considered, then we need to incorporate a
mechanism to jump between thimbles belonging to different
phases. To do this, we will use a combination of Gibbs
sampling and the algorithm described in Ref. [3].

In this case, the variables η in the measure are the coordi-
nates on the “Gaussian” thimble corresponding to the quadratic
approximation of the action at the saddle point. Equivalently,
they denote a direction and a length for integrating the Eq. (12).
The phase and the fields are uniquely determined by the set
(p,η).

Start the sampling from any phase p. New configurations
can be sampled by repeating the following two steps: (i) Given
the phase p (which also fixes the thimble), sample φ from
e−S[φ] using the algorithm described in Ref. [3]. This fixes η.
Calculate the fields φp on all the thimbles given η. (ii) Given
φp, sample p from Npe−S[φp].

(5) For each decorrelated configuration calculate the
residual phase R and the observables ⟨X [φ]⟩p. In broken-
symmetry phases, the latter can be calculated by generating
configurations on all the thimbles belonging to the phase with
the help of the symmetry operation.

(6) Finally, calculate the expectation values of the observ-
ables by reweighting with eR.

V. RESULTS FOR THE HUBBARD MODEL AWAY FROM
HALF FILLING

In this section we will present our results for the Hubbard
model. The Hubbard Hamiltonian is

H = −t
∑
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= K + V, (19)

where c
†
iσ (ciσ ) creates (destroys) a fermion of spin σ at the

lattice site i, niσ = c
†
iσ ciσ , and ⟨ij ⟩ denotes nearest-neighbor

sites. Also, t , U , and µσ are, respectively, the hopping
parameter, the on-site interaction strength, and the chemical
potential for the σ spins.

The interaction term can be written in the following manner:

ni↑ni↓ = 1
2ξi[(eiθi ni↑ + e−iθi ni↓)2 − (e2iθi ni↑ + e−2iθi ni↓)]

+ 1
2 (1 − ξi)(eiθ ′
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where %i = ci↑ci↓. The interaction can now be decoupled by
introducing auxiliary fields via HSTs for each squared term

035134-4

t           hopping parameter 
U         on-site interaction strength 
μσ       chemical potential for spin σ

Interaction term

ABHISHEK MUKHERJEE AND MARCO CRISTOFORETTI PHYSICAL REVIEW B 90, 035134 (2014)

In asymptotic expansions of the thimble around the saddle
point ⟨eiImR⟩ = 1. The residual phase, ImR, can deviate
substantially from zero only for configurations far away from
the saddle point. Given the nature of the thimble, these
configurations are maximally suppressed.

The orientation of the thimble smoothly interpolates be-
tween the directions of steepest descent at the saddle point
(determined by the quadratic part of the action) and the
asymptotic directions of convergence; the residual phase can
never oscillate unpredictably, it can only change smoothly.
In short, the thimble achieves a tight correlation between the
weight and the phase, which is precisely what is missing from
the usual formulation leading to the sign problem.

Quantitative support for the above qualitative arguments
is provided by the explicit calculation of the residual phase
for a nontrivial model with a severe sign problem [17]. There
⟨eiImR⟩ was found to be systematically larger than 0.99 for all
parameter values studied.

In a phase with broken symmetry, it is sufficient to sample
field configurations on a single thimble. Configurations on
all other thimbles in the same phase can be generated by
applying the generator of the said symmetry. Putting together
the considerations above we are led to the following expression
for the ⟨X ⟩ in our formulation:

⟨X ⟩ =
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p
Dη eR[φ]⟨X [φ]⟩pe−ReS[φ]

∑′
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∫
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, (17)

where J n
p is the thimble attached to one arbitrary saddle

point φ0
p in the phase p, Dη is the real measure on the

thimble, Np is the number of saddle points in the phase p,
and ⟨X [φ]⟩p is the average of the observable X [φ] over all the
field configurations that are connected to φ by the generator
of the discrete symmetry broken in phase p. The sum over p
now extends only over the small subset of expected dominant
thimbles.

IV. MONTE CARLO ALGORITHM

We propose the following Lefschetz thimble Monte Carlo
algorithm for many-body theories.

(1) Given a model for a many-body system defined by
a Hamiltonian as in Eq. (1), construct the corresponding
functional integral formulation with the help of a continuous
HST. There is considerable freedom in choosing the HST and
our method should be applicable to any of them. However,
it is reasonable to expect that the “best” HST is determined
by a compromise between calculational convenience and how
much of the symmetries of the original fermionic Hamiltonian
can be retained in the final action which defines the functional
integral.

(2) Identify the dominant phases, and the associated saddle
points for the given parameter regime. The dominant saddle
points need not lie in the original domain of integration. In the
case of degenerate saddle points due to a broken continuous
symmetry, lift the degeneracy with an explicit symmetry-
breaking term. In cases, where the dominant phase is well
known, our formulation can be used to obtain very precise
results by including all quantum corrections. In other cases,

this formulation provides a well-defined setup for studying
competing phases.

(3) At the saddle point(s) φ0
p, calculate the Hessian of

the action ∂2
φS[φ0

p] and determine the directions of steepest
descent from the generalized eigenvectors of the Hessian as
discussed in Ref. [3]. This step needs to be done only once at
the beginning of the simulation. The steepest descent directions
at the saddle points provide boundary conditions for Eq. (12).

(4) If a single phase is considered then it is sufficient to
generate configurations on a single thimble. To do this, any
of the algorithms described in Refs. [1,3] can be used. If
multiple phases are considered, then we need to incorporate a
mechanism to jump between thimbles belonging to different
phases. To do this, we will use a combination of Gibbs
sampling and the algorithm described in Ref. [3].

In this case, the variables η in the measure are the coordi-
nates on the “Gaussian” thimble corresponding to the quadratic
approximation of the action at the saddle point. Equivalently,
they denote a direction and a length for integrating the Eq. (12).
The phase and the fields are uniquely determined by the set
(p,η).

Start the sampling from any phase p. New configurations
can be sampled by repeating the following two steps: (i) Given
the phase p (which also fixes the thimble), sample φ from
e−S[φ] using the algorithm described in Ref. [3]. This fixes η.
Calculate the fields φp on all the thimbles given η. (ii) Given
φp, sample p from Npe−S[φp].

(5) For each decorrelated configuration calculate the
residual phase R and the observables ⟨X [φ]⟩p. In broken-
symmetry phases, the latter can be calculated by generating
configurations on all the thimbles belonging to the phase with
the help of the symmetry operation.

(6) Finally, calculate the expectation values of the observ-
ables by reweighting with eR.

V. RESULTS FOR THE HUBBARD MODEL AWAY FROM
HALF FILLING

In this section we will present our results for the Hubbard
model. The Hubbard Hamiltonian is

H = −t
∑
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where c
†
iσ (ciσ ) creates (destroys) a fermion of spin σ at the

lattice site i, niσ = c
†
iσ ciσ , and ⟨ij ⟩ denotes nearest-neighbor

sites. Also, t , U , and µσ are, respectively, the hopping
parameter, the on-site interaction strength, and the chemical
potential for the σ spins.

The interaction term can be written in the following manner:

ni↑ni↓ = 1
2ξi[(eiθi ni↑ + e−iθi ni↓)2 − (e2iθi ni↑ + e−2iθi ni↓)]

+ 1
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where %i = ci↑ci↓. The interaction can now be decoupled by
introducing auxiliary fields via HSTs for each squared term
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substantially from zero only for configurations far away from
the saddle point. Given the nature of the thimble, these
configurations are maximally suppressed.
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tween the directions of steepest descent at the saddle point
(determined by the quadratic part of the action) and the
asymptotic directions of convergence; the residual phase can
never oscillate unpredictably, it can only change smoothly.
In short, the thimble achieves a tight correlation between the
weight and the phase, which is precisely what is missing from
the usual formulation leading to the sign problem.

Quantitative support for the above qualitative arguments
is provided by the explicit calculation of the residual phase
for a nontrivial model with a severe sign problem [17]. There
⟨eiImR⟩ was found to be systematically larger than 0.99 for all
parameter values studied.

In a phase with broken symmetry, it is sufficient to sample
field configurations on a single thimble. Configurations on
all other thimbles in the same phase can be generated by
applying the generator of the said symmetry. Putting together
the considerations above we are led to the following expression
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p is the thimble attached to one arbitrary saddle

point φ0
p in the phase p, Dη is the real measure on the

thimble, Np is the number of saddle points in the phase p,
and ⟨X [φ]⟩p is the average of the observable X [φ] over all the
field configurations that are connected to φ by the generator
of the discrete symmetry broken in phase p. The sum over p
now extends only over the small subset of expected dominant
thimbles.
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functional integral formulation with the help of a continuous
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breaking term. In cases, where the dominant phase is well
known, our formulation can be used to obtain very precise
results by including all quantum corrections. In other cases,
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mechanism to jump between thimbles belonging to different
phases. To do this, we will use a combination of Gibbs
sampling and the algorithm described in Ref. [3].

In this case, the variables η in the measure are the coordi-
nates on the “Gaussian” thimble corresponding to the quadratic
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they denote a direction and a length for integrating the Eq. (12).
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φp, sample p from Npe−S[φp].

(5) For each decorrelated configuration calculate the
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symmetry phases, the latter can be calculated by generating
configurations on all the thimbles belonging to the phase with
the help of the symmetry operation.
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ables by reweighting with eR.
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substantially from zero only for configurations far away from
the saddle point. Given the nature of the thimble, these
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never oscillate unpredictably, it can only change smoothly.
In short, the thimble achieves a tight correlation between the
weight and the phase, which is precisely what is missing from
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Quantitative support for the above qualitative arguments
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for a nontrivial model with a severe sign problem [17]. There
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p is the thimble attached to one arbitrary saddle

point φ0
p in the phase p, Dη is the real measure on the

thimble, Np is the number of saddle points in the phase p,
and ⟨X [φ]⟩p is the average of the observable X [φ] over all the
field configurations that are connected to φ by the generator
of the discrete symmetry broken in phase p. The sum over p
now extends only over the small subset of expected dominant
thimbles.

IV. MONTE CARLO ALGORITHM

We propose the following Lefschetz thimble Monte Carlo
algorithm for many-body theories.

(1) Given a model for a many-body system defined by
a Hamiltonian as in Eq. (1), construct the corresponding
functional integral formulation with the help of a continuous
HST. There is considerable freedom in choosing the HST and
our method should be applicable to any of them. However,
it is reasonable to expect that the “best” HST is determined
by a compromise between calculational convenience and how
much of the symmetries of the original fermionic Hamiltonian
can be retained in the final action which defines the functional
integral.

(2) Identify the dominant phases, and the associated saddle
points for the given parameter regime. The dominant saddle
points need not lie in the original domain of integration. In the
case of degenerate saddle points due to a broken continuous
symmetry, lift the degeneracy with an explicit symmetry-
breaking term. In cases, where the dominant phase is well
known, our formulation can be used to obtain very precise
results by including all quantum corrections. In other cases,

this formulation provides a well-defined setup for studying
competing phases.

(3) At the saddle point(s) φ0
p, calculate the Hessian of

the action ∂2
φS[φ0

p] and determine the directions of steepest
descent from the generalized eigenvectors of the Hessian as
discussed in Ref. [3]. This step needs to be done only once at
the beginning of the simulation. The steepest descent directions
at the saddle points provide boundary conditions for Eq. (12).

(4) If a single phase is considered then it is sufficient to
generate configurations on a single thimble. To do this, any
of the algorithms described in Refs. [1,3] can be used. If
multiple phases are considered, then we need to incorporate a
mechanism to jump between thimbles belonging to different
phases. To do this, we will use a combination of Gibbs
sampling and the algorithm described in Ref. [3].

In this case, the variables η in the measure are the coordi-
nates on the “Gaussian” thimble corresponding to the quadratic
approximation of the action at the saddle point. Equivalently,
they denote a direction and a length for integrating the Eq. (12).
The phase and the fields are uniquely determined by the set
(p,η).

Start the sampling from any phase p. New configurations
can be sampled by repeating the following two steps: (i) Given
the phase p (which also fixes the thimble), sample φ from
e−S[φ] using the algorithm described in Ref. [3]. This fixes η.
Calculate the fields φp on all the thimbles given η. (ii) Given
φp, sample p from Npe−S[φp].

(5) For each decorrelated configuration calculate the
residual phase R and the observables ⟨X [φ]⟩p. In broken-
symmetry phases, the latter can be calculated by generating
configurations on all the thimbles belonging to the phase with
the help of the symmetry operation.

(6) Finally, calculate the expectation values of the observ-
ables by reweighting with eR.

V. RESULTS FOR THE HUBBARD MODEL AWAY FROM
HALF FILLING

In this section we will present our results for the Hubbard
model. The Hubbard Hamiltonian is

H = −t
∑

⟨ij⟩σ
(c†iσ cjσ + c

†
jσ ciσ ) −

∑
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µσniσ

+U
∑
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)(
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(18)

= K + V, (19)

where c
†
iσ (ciσ ) creates (destroys) a fermion of spin σ at the

lattice site i, niσ = c
†
iσ ciσ , and ⟨ij ⟩ denotes nearest-neighbor

sites. Also, t , U , and µσ are, respectively, the hopping
parameter, the on-site interaction strength, and the chemical
potential for the σ spins.

The interaction term can be written in the following manner:

ni↑ni↓ = 1
2ξi[(eiθi ni↑ + e−iθi ni↓)2 − (e2iθi ni↑ + e−2iθi ni↓)]

+ 1
2 (1 − ξi)(eiθ ′

i %
†
i + e−θ ′

i %i)2, (20)

where %i = ci↑ci↓. The interaction can now be decoupled by
introducing auxiliary fields via HSTs for each squared term

035134-4

t           hopping parameter 
U         on-site interaction strength 
μσ       chemical potential for spin σ

Interaction term

ABHISHEK MUKHERJEE AND MARCO CRISTOFORETTI PHYSICAL REVIEW B 90, 035134 (2014)

In asymptotic expansions of the thimble around the saddle
point ⟨eiImR⟩ = 1. The residual phase, ImR, can deviate
substantially from zero only for configurations far away from
the saddle point. Given the nature of the thimble, these
configurations are maximally suppressed.

The orientation of the thimble smoothly interpolates be-
tween the directions of steepest descent at the saddle point
(determined by the quadratic part of the action) and the
asymptotic directions of convergence; the residual phase can
never oscillate unpredictably, it can only change smoothly.
In short, the thimble achieves a tight correlation between the
weight and the phase, which is precisely what is missing from
the usual formulation leading to the sign problem.

Quantitative support for the above qualitative arguments
is provided by the explicit calculation of the residual phase
for a nontrivial model with a severe sign problem [17]. There
⟨eiImR⟩ was found to be systematically larger than 0.99 for all
parameter values studied.

In a phase with broken symmetry, it is sufficient to sample
field configurations on a single thimble. Configurations on
all other thimbles in the same phase can be generated by
applying the generator of the said symmetry. Putting together
the considerations above we are led to the following expression
for the ⟨X ⟩ in our formulation:
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p in the phase p, Dη is the real measure on the

thimble, Np is the number of saddle points in the phase p,
and ⟨X [φ]⟩p is the average of the observable X [φ] over all the
field configurations that are connected to φ by the generator
of the discrete symmetry broken in phase p. The sum over p
now extends only over the small subset of expected dominant
thimbles.
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We propose the following Lefschetz thimble Monte Carlo
algorithm for many-body theories.

(1) Given a model for a many-body system defined by
a Hamiltonian as in Eq. (1), construct the corresponding
functional integral formulation with the help of a continuous
HST. There is considerable freedom in choosing the HST and
our method should be applicable to any of them. However,
it is reasonable to expect that the “best” HST is determined
by a compromise between calculational convenience and how
much of the symmetries of the original fermionic Hamiltonian
can be retained in the final action which defines the functional
integral.

(2) Identify the dominant phases, and the associated saddle
points for the given parameter regime. The dominant saddle
points need not lie in the original domain of integration. In the
case of degenerate saddle points due to a broken continuous
symmetry, lift the degeneracy with an explicit symmetry-
breaking term. In cases, where the dominant phase is well
known, our formulation can be used to obtain very precise
results by including all quantum corrections. In other cases,

this formulation provides a well-defined setup for studying
competing phases.

(3) At the saddle point(s) φ0
p, calculate the Hessian of

the action ∂2
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p] and determine the directions of steepest
descent from the generalized eigenvectors of the Hessian as
discussed in Ref. [3]. This step needs to be done only once at
the beginning of the simulation. The steepest descent directions
at the saddle points provide boundary conditions for Eq. (12).

(4) If a single phase is considered then it is sufficient to
generate configurations on a single thimble. To do this, any
of the algorithms described in Refs. [1,3] can be used. If
multiple phases are considered, then we need to incorporate a
mechanism to jump between thimbles belonging to different
phases. To do this, we will use a combination of Gibbs
sampling and the algorithm described in Ref. [3].

In this case, the variables η in the measure are the coordi-
nates on the “Gaussian” thimble corresponding to the quadratic
approximation of the action at the saddle point. Equivalently,
they denote a direction and a length for integrating the Eq. (12).
The phase and the fields are uniquely determined by the set
(p,η).

Start the sampling from any phase p. New configurations
can be sampled by repeating the following two steps: (i) Given
the phase p (which also fixes the thimble), sample φ from
e−S[φ] using the algorithm described in Ref. [3]. This fixes η.
Calculate the fields φp on all the thimbles given η. (ii) Given
φp, sample p from Npe−S[φp].

(5) For each decorrelated configuration calculate the
residual phase R and the observables ⟨X [φ]⟩p. In broken-
symmetry phases, the latter can be calculated by generating
configurations on all the thimbles belonging to the phase with
the help of the symmetry operation.

(6) Finally, calculate the expectation values of the observ-
ables by reweighting with eR.

V. RESULTS FOR THE HUBBARD MODEL AWAY FROM
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In this section we will present our results for the Hubbard
model. The Hubbard Hamiltonian is
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sites. Also, t , U , and µσ are, respectively, the hopping
parameter, the on-site interaction strength, and the chemical
potential for the σ spins.

The interaction term can be written in the following manner:

ni↑ni↓ = 1
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introducing auxiliary fields via HSTs for each squared term
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In asymptotic expansions of the thimble around the saddle
point ⟨eiImR⟩ = 1. The residual phase, ImR, can deviate
substantially from zero only for configurations far away from
the saddle point. Given the nature of the thimble, these
configurations are maximally suppressed.

The orientation of the thimble smoothly interpolates be-
tween the directions of steepest descent at the saddle point
(determined by the quadratic part of the action) and the
asymptotic directions of convergence; the residual phase can
never oscillate unpredictably, it can only change smoothly.
In short, the thimble achieves a tight correlation between the
weight and the phase, which is precisely what is missing from
the usual formulation leading to the sign problem.

Quantitative support for the above qualitative arguments
is provided by the explicit calculation of the residual phase
for a nontrivial model with a severe sign problem [17]. There
⟨eiImR⟩ was found to be systematically larger than 0.99 for all
parameter values studied.

In a phase with broken symmetry, it is sufficient to sample
field configurations on a single thimble. Configurations on
all other thimbles in the same phase can be generated by
applying the generator of the said symmetry. Putting together
the considerations above we are led to the following expression
for the ⟨X ⟩ in our formulation:

⟨X ⟩ =

∑′
p∈P Np

∫
J n

p
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where J n
p is the thimble attached to one arbitrary saddle

point φ0
p in the phase p, Dη is the real measure on the

thimble, Np is the number of saddle points in the phase p,
and ⟨X [φ]⟩p is the average of the observable X [φ] over all the
field configurations that are connected to φ by the generator
of the discrete symmetry broken in phase p. The sum over p
now extends only over the small subset of expected dominant
thimbles.

IV. MONTE CARLO ALGORITHM

We propose the following Lefschetz thimble Monte Carlo
algorithm for many-body theories.

(1) Given a model for a many-body system defined by
a Hamiltonian as in Eq. (1), construct the corresponding
functional integral formulation with the help of a continuous
HST. There is considerable freedom in choosing the HST and
our method should be applicable to any of them. However,
it is reasonable to expect that the “best” HST is determined
by a compromise between calculational convenience and how
much of the symmetries of the original fermionic Hamiltonian
can be retained in the final action which defines the functional
integral.

(2) Identify the dominant phases, and the associated saddle
points for the given parameter regime. The dominant saddle
points need not lie in the original domain of integration. In the
case of degenerate saddle points due to a broken continuous
symmetry, lift the degeneracy with an explicit symmetry-
breaking term. In cases, where the dominant phase is well
known, our formulation can be used to obtain very precise
results by including all quantum corrections. In other cases,

this formulation provides a well-defined setup for studying
competing phases.

(3) At the saddle point(s) φ0
p, calculate the Hessian of

the action ∂2
φS[φ0

p] and determine the directions of steepest
descent from the generalized eigenvectors of the Hessian as
discussed in Ref. [3]. This step needs to be done only once at
the beginning of the simulation. The steepest descent directions
at the saddle points provide boundary conditions for Eq. (12).

(4) If a single phase is considered then it is sufficient to
generate configurations on a single thimble. To do this, any
of the algorithms described in Refs. [1,3] can be used. If
multiple phases are considered, then we need to incorporate a
mechanism to jump between thimbles belonging to different
phases. To do this, we will use a combination of Gibbs
sampling and the algorithm described in Ref. [3].

In this case, the variables η in the measure are the coordi-
nates on the “Gaussian” thimble corresponding to the quadratic
approximation of the action at the saddle point. Equivalently,
they denote a direction and a length for integrating the Eq. (12).
The phase and the fields are uniquely determined by the set
(p,η).

Start the sampling from any phase p. New configurations
can be sampled by repeating the following two steps: (i) Given
the phase p (which also fixes the thimble), sample φ from
e−S[φ] using the algorithm described in Ref. [3]. This fixes η.
Calculate the fields φp on all the thimbles given η. (ii) Given
φp, sample p from Npe−S[φp].

(5) For each decorrelated configuration calculate the
residual phase R and the observables ⟨X [φ]⟩p. In broken-
symmetry phases, the latter can be calculated by generating
configurations on all the thimbles belonging to the phase with
the help of the symmetry operation.

(6) Finally, calculate the expectation values of the observ-
ables by reweighting with eR.

V. RESULTS FOR THE HUBBARD MODEL AWAY FROM
HALF FILLING

In this section we will present our results for the Hubbard
model. The Hubbard Hamiltonian is

H = −t
∑

⟨ij⟩σ
(c†iσ cjσ + c
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where c
†
iσ (ciσ ) creates (destroys) a fermion of spin σ at the

lattice site i, niσ = c
†
iσ ciσ , and ⟨ij ⟩ denotes nearest-neighbor

sites. Also, t , U , and µσ are, respectively, the hopping
parameter, the on-site interaction strength, and the chemical
potential for the σ spins.

The interaction term can be written in the following manner:

ni↑ni↓ = 1
2ξi[(eiθi ni↑ + e−iθi ni↓)2 − (e2iθi ni↑ + e−2iθi ni↓)]

+ 1
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where %i = ci↑ci↓. The interaction can now be decoupled by
introducing auxiliary fields via HSTs for each squared term
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In asymptotic expansions of the thimble around the saddle
point ⟨eiImR⟩ = 1. The residual phase, ImR, can deviate
substantially from zero only for configurations far away from
the saddle point. Given the nature of the thimble, these
configurations are maximally suppressed.

The orientation of the thimble smoothly interpolates be-
tween the directions of steepest descent at the saddle point
(determined by the quadratic part of the action) and the
asymptotic directions of convergence; the residual phase can
never oscillate unpredictably, it can only change smoothly.
In short, the thimble achieves a tight correlation between the
weight and the phase, which is precisely what is missing from
the usual formulation leading to the sign problem.

Quantitative support for the above qualitative arguments
is provided by the explicit calculation of the residual phase
for a nontrivial model with a severe sign problem [17]. There
⟨eiImR⟩ was found to be systematically larger than 0.99 for all
parameter values studied.

In a phase with broken symmetry, it is sufficient to sample
field configurations on a single thimble. Configurations on
all other thimbles in the same phase can be generated by
applying the generator of the said symmetry. Putting together
the considerations above we are led to the following expression
for the ⟨X ⟩ in our formulation:

⟨X ⟩ =

∑′
p∈P Np

∫
J n

p
Dη eR[φ]⟨X [φ]⟩pe−ReS[φ]

∑′
p∈P Np

∫
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p
Dη eR[φ]e−ReS[φ]

, (17)

where J n
p is the thimble attached to one arbitrary saddle

point φ0
p in the phase p, Dη is the real measure on the

thimble, Np is the number of saddle points in the phase p,
and ⟨X [φ]⟩p is the average of the observable X [φ] over all the
field configurations that are connected to φ by the generator
of the discrete symmetry broken in phase p. The sum over p
now extends only over the small subset of expected dominant
thimbles.

IV. MONTE CARLO ALGORITHM

We propose the following Lefschetz thimble Monte Carlo
algorithm for many-body theories.

(1) Given a model for a many-body system defined by
a Hamiltonian as in Eq. (1), construct the corresponding
functional integral formulation with the help of a continuous
HST. There is considerable freedom in choosing the HST and
our method should be applicable to any of them. However,
it is reasonable to expect that the “best” HST is determined
by a compromise between calculational convenience and how
much of the symmetries of the original fermionic Hamiltonian
can be retained in the final action which defines the functional
integral.

(2) Identify the dominant phases, and the associated saddle
points for the given parameter regime. The dominant saddle
points need not lie in the original domain of integration. In the
case of degenerate saddle points due to a broken continuous
symmetry, lift the degeneracy with an explicit symmetry-
breaking term. In cases, where the dominant phase is well
known, our formulation can be used to obtain very precise
results by including all quantum corrections. In other cases,

this formulation provides a well-defined setup for studying
competing phases.

(3) At the saddle point(s) φ0
p, calculate the Hessian of

the action ∂2
φS[φ0

p] and determine the directions of steepest
descent from the generalized eigenvectors of the Hessian as
discussed in Ref. [3]. This step needs to be done only once at
the beginning of the simulation. The steepest descent directions
at the saddle points provide boundary conditions for Eq. (12).

(4) If a single phase is considered then it is sufficient to
generate configurations on a single thimble. To do this, any
of the algorithms described in Refs. [1,3] can be used. If
multiple phases are considered, then we need to incorporate a
mechanism to jump between thimbles belonging to different
phases. To do this, we will use a combination of Gibbs
sampling and the algorithm described in Ref. [3].

In this case, the variables η in the measure are the coordi-
nates on the “Gaussian” thimble corresponding to the quadratic
approximation of the action at the saddle point. Equivalently,
they denote a direction and a length for integrating the Eq. (12).
The phase and the fields are uniquely determined by the set
(p,η).

Start the sampling from any phase p. New configurations
can be sampled by repeating the following two steps: (i) Given
the phase p (which also fixes the thimble), sample φ from
e−S[φ] using the algorithm described in Ref. [3]. This fixes η.
Calculate the fields φp on all the thimbles given η. (ii) Given
φp, sample p from Npe−S[φp].

(5) For each decorrelated configuration calculate the
residual phase R and the observables ⟨X [φ]⟩p. In broken-
symmetry phases, the latter can be calculated by generating
configurations on all the thimbles belonging to the phase with
the help of the symmetry operation.

(6) Finally, calculate the expectation values of the observ-
ables by reweighting with eR.

V. RESULTS FOR THE HUBBARD MODEL AWAY FROM
HALF FILLING

In this section we will present our results for the Hubbard
model. The Hubbard Hamiltonian is

H = −t
∑
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where c
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lattice site i, niσ = c
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iσ ciσ , and ⟨ij ⟩ denotes nearest-neighbor

sites. Also, t , U , and µσ are, respectively, the hopping
parameter, the on-site interaction strength, and the chemical
potential for the σ spins.

The interaction term can be written in the following manner:

ni↑ni↓ = 1
2ξi[(eiθi ni↑ + e−iθi ni↓)2 − (e2iθi ni↑ + e−2iθi ni↓)]

+ 1
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where %i = ci↑ci↓. The interaction can now be decoupled by
introducing auxiliary fields via HSTs for each squared term
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point ⟨eiImR⟩ = 1. The residual phase, ImR, can deviate
substantially from zero only for configurations far away from
the saddle point. Given the nature of the thimble, these
configurations are maximally suppressed.

The orientation of the thimble smoothly interpolates be-
tween the directions of steepest descent at the saddle point
(determined by the quadratic part of the action) and the
asymptotic directions of convergence; the residual phase can
never oscillate unpredictably, it can only change smoothly.
In short, the thimble achieves a tight correlation between the
weight and the phase, which is precisely what is missing from
the usual formulation leading to the sign problem.

Quantitative support for the above qualitative arguments
is provided by the explicit calculation of the residual phase
for a nontrivial model with a severe sign problem [17]. There
⟨eiImR⟩ was found to be systematically larger than 0.99 for all
parameter values studied.

In a phase with broken symmetry, it is sufficient to sample
field configurations on a single thimble. Configurations on
all other thimbles in the same phase can be generated by
applying the generator of the said symmetry. Putting together
the considerations above we are led to the following expression
for the ⟨X ⟩ in our formulation:
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thimble, Np is the number of saddle points in the phase p,
and ⟨X [φ]⟩p is the average of the observable X [φ] over all the
field configurations that are connected to φ by the generator
of the discrete symmetry broken in phase p. The sum over p
now extends only over the small subset of expected dominant
thimbles.
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results by including all quantum corrections. In other cases,
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e−S[φ] using the algorithm described in Ref. [3]. This fixes η.
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symmetry phases, the latter can be calculated by generating
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the help of the symmetry operation.
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⟨ij⟩σ
(c†iσ cjσ + c

†
jσ ciσ ) −

∑

iσ

µσniσ

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
(18)

= K + V, (19)

where c
†
iσ (ciσ ) creates (destroys) a fermion of spin σ at the

lattice site i, niσ = c
†
iσ ciσ , and ⟨ij ⟩ denotes nearest-neighbor

sites. Also, t , U , and µσ are, respectively, the hopping
parameter, the on-site interaction strength, and the chemical
potential for the σ spins.

The interaction term can be written in the following manner:

ni↑ni↓ = 1
2ξi[(eiθi ni↑ + e−iθi ni↓)2 − (e2iθi ni↑ + e−2iθi ni↓)]

+ 1
2 (1 − ξi)(eiθ ′

i %
†
i + e−θ ′

i %i)2, (20)

where %i = ci↑ci↓. The interaction can now be decoupled by
introducing auxiliary fields via HSTs for each squared term
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and each imaginary time slice in Eq. (4) with the help of a
continuous Hubbard-Stratonovich transformation (HST)[14]

eO
2/2 ∝

∫
dφ e− φ2

2 +φO, (7)

where O is a generic operator. By doing so, the interacting
many-body problem is converted to a problem of noninteract-
ing fermions with background auxiliary fields. The price to be
paid is that one now needs to integrate over all allowed values
of the auxiliary fields φ.

The fermionic degrees of freedom can be integrated out
(traced over) exactly resulting in the following expression for
the expectation value of an observable:

⟨X ⟩ =
∫
Rn Dφ X [φ]e−S[φ]
∫
Rn Dφ e−S[φ]

, (8)

where the action S is

S[φ] =
∑

αν

φ2
αν

2
− log det M[φ], (9)

and ν is the time slice index. The determinant of the matrix
M is obtained after integrating out the fermionic degrees of
freedom.

The bilinear forms Oα are not unique; there is considerable
freedom in choosing them. However, barring some special
cases, an HST decoupling cannot be found such that S[φ] is
real, i.e., the weight e−S[φ] is positive semidefinite for all φ.
This is the source of the sign problem.

In the presence of the sign problem, e−S[φ] cannot be
treated as a probability density, and hence Monte Carlo
sampling cannot be used to evaluate the ratio of the integrals
in Eq. (8). In principle, it is possible to interpret e−ReS[φ] as the
probability density and include e−iImS[φ] into the calculation
of the observables. This reweighting method is sometimes
successful when the sign problem is not particularly severe
(high temperature, small systems). But with increasing system
size or decreasing temperature, the right-hand side in Eq. (8) is
reduced to a ratio of exponentially small quantities with large
variances, thus rendering these simulations unfeasible.

III. QUANTUM CORRECTIONS VIA INTEGRATION ON
THE PATHS OF STEEPEST DESCENT

The smallness of the average sign ⟨e−iImS⟩ is a result
of delicate cancellations between the contributions from the
different regions of the phase space. On the other hand, analytic
and semianalytic calculations based on the functional integral
formulation are usually based on the assumption that in order
to recover the relevant physics it is sufficient to consider the
contribution from the configurations near a single dominant
saddle point of the action (mean-field solution).

In these methods one (at least formally) goes through the
following steps. (i) The dominant mean-field solution (saddle
point) of the action is found; this saddle point may or may not
lie in the original domain of integration (Rn). (ii) The domain
of integration is shifted to pass through the saddle point and
to lie along the directions of stationary phase/steepest descent
of the action. (iii) At the lowest order the integrals are simply
replaced by their values at the saddle point. (iv) Small quantum

fluctuations are then included by expanding the action up to
quadratic order at the saddle point and integrating along the
directions of steepest descent for this approximate quadratic
action.

It is natural to conjecture, then, that full quantum correc-
tions about a mean-field solution can be accounted for by
replacing step (iv) above by an integration along the directions
of steepest descent of the full action. Next, we provide further
motivation for this conjecture and its implication for the
sign problem, and we provide a concrete procedure based on
stochastic sampling for calculating the quantum corrections so
defined.

Assume, for the time being, that the action S[φ] is analytic
for all φ ∈ Cn, that the integrals in Eq. (8) are convergent,
and that all its saddle points are nondegenerate. In that case,
one of the main results of Morse theory states that the
integrals in Eq. (8) can be reproduced exactly by replacing the
integration over the real domainRn by integrations over curved
complex n-dimensional manifolds, J n

σ , called the Lefschetz
thimbles [15],

∫

Rn

=
∑

σ

nσ

∫

J n
σ

. (10)

This result is basically the generalization of the contour shift
method for one-variable integrals. The Lefschetz thimbles are
the many-variable analogs of the paths of steepest descent. In
fact, each Lefschetz thimbleJ n

σ is attached to a saddle point φ0
σ

∂S
∂φ

∣∣∣∣
φ=φ0

σ

= 0 (11)

and is the union of all paths of steepest descent which
asymptotically end at the saddle point at τ → ∞; the paths
of steepest descent are given by the solutions of the equations

dφ

dτ
= −∂S

∂φ
, (12)

where the overline represents complex conjugation. (Please
note that the parameter τ is in no way connected with the
imaginary time.) The integers nσ are the intersection numbers
between the hypersurface generated by the paths of steepest
ascent and the original domain of integration, in this case Rn.

The Lefschetz thimbles are extremely attractive from the
perspective of stochastic sampling because of two important
properties [both of which can be easily verified from Eq. (12)]:

(i) The imaginary part of the action, ImS[φ], is a constant
on a thimble, i.e., there is no sign problem due to the action on
a thimble.

(ii) The weight, e−ReS[φ], on a thimble is maximally
localized near the saddle point, i.e., stochastic sampling is
maximally effective on the thimble.

The presence of spontaneous breaking of continuous
symmetries can lead to degenerate saddle points (det ∂2

φS = 0).
This degeneracy can be lifted by introducing an explicit
symmetry-breaking term, ϵχ †(φ)χ (φ), where χ (φ) is the
eigenvector of ∂2

φS with a zero eigenvalue.
Multiple calculations should be performed with succes-

sively smaller values of ϵ, and the limit ϵ → 0 should be taken
numerically. One of the directions of steepest descent at finite
ϵ becomes, in the limit of vanishing ϵ, the Goldstone mode
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and each imaginary time slice in Eq. (4) with the help of a
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where O is a generic operator. By doing so, the interacting
many-body problem is converted to a problem of noninteract-
ing fermions with background auxiliary fields. The price to be
paid is that one now needs to integrate over all allowed values
of the auxiliary fields φ.

The fermionic degrees of freedom can be integrated out
(traced over) exactly resulting in the following expression for
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where the action S is
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and ν is the time slice index. The determinant of the matrix
M is obtained after integrating out the fermionic degrees of
freedom.

The bilinear forms Oα are not unique; there is considerable
freedom in choosing them. However, barring some special
cases, an HST decoupling cannot be found such that S[φ] is
real, i.e., the weight e−S[φ] is positive semidefinite for all φ.
This is the source of the sign problem.

In the presence of the sign problem, e−S[φ] cannot be
treated as a probability density, and hence Monte Carlo
sampling cannot be used to evaluate the ratio of the integrals
in Eq. (8). In principle, it is possible to interpret e−ReS[φ] as the
probability density and include e−iImS[φ] into the calculation
of the observables. This reweighting method is sometimes
successful when the sign problem is not particularly severe
(high temperature, small systems). But with increasing system
size or decreasing temperature, the right-hand side in Eq. (8) is
reduced to a ratio of exponentially small quantities with large
variances, thus rendering these simulations unfeasible.

III. QUANTUM CORRECTIONS VIA INTEGRATION ON
THE PATHS OF STEEPEST DESCENT

The smallness of the average sign ⟨e−iImS⟩ is a result
of delicate cancellations between the contributions from the
different regions of the phase space. On the other hand, analytic
and semianalytic calculations based on the functional integral
formulation are usually based on the assumption that in order
to recover the relevant physics it is sufficient to consider the
contribution from the configurations near a single dominant
saddle point of the action (mean-field solution).

In these methods one (at least formally) goes through the
following steps. (i) The dominant mean-field solution (saddle
point) of the action is found; this saddle point may or may not
lie in the original domain of integration (Rn). (ii) The domain
of integration is shifted to pass through the saddle point and
to lie along the directions of stationary phase/steepest descent
of the action. (iii) At the lowest order the integrals are simply
replaced by their values at the saddle point. (iv) Small quantum

fluctuations are then included by expanding the action up to
quadratic order at the saddle point and integrating along the
directions of steepest descent for this approximate quadratic
action.

It is natural to conjecture, then, that full quantum correc-
tions about a mean-field solution can be accounted for by
replacing step (iv) above by an integration along the directions
of steepest descent of the full action. Next, we provide further
motivation for this conjecture and its implication for the
sign problem, and we provide a concrete procedure based on
stochastic sampling for calculating the quantum corrections so
defined.

Assume, for the time being, that the action S[φ] is analytic
for all φ ∈ Cn, that the integrals in Eq. (8) are convergent,
and that all its saddle points are nondegenerate. In that case,
one of the main results of Morse theory states that the
integrals in Eq. (8) can be reproduced exactly by replacing the
integration over the real domainRn by integrations over curved
complex n-dimensional manifolds, J n

σ , called the Lefschetz
thimbles [15],

∫

Rn

=
∑

σ

nσ

∫

J n
σ

. (10)

This result is basically the generalization of the contour shift
method for one-variable integrals. The Lefschetz thimbles are
the many-variable analogs of the paths of steepest descent. In
fact, each Lefschetz thimbleJ n

σ is attached to a saddle point φ0
σ

∂S
∂φ

∣∣∣∣
φ=φ0

σ

= 0 (11)

and is the union of all paths of steepest descent which
asymptotically end at the saddle point at τ → ∞; the paths
of steepest descent are given by the solutions of the equations

dφ

dτ
= −∂S

∂φ
, (12)

where the overline represents complex conjugation. (Please
note that the parameter τ is in no way connected with the
imaginary time.) The integers nσ are the intersection numbers
between the hypersurface generated by the paths of steepest
ascent and the original domain of integration, in this case Rn.

The Lefschetz thimbles are extremely attractive from the
perspective of stochastic sampling because of two important
properties [both of which can be easily verified from Eq. (12)]:

(i) The imaginary part of the action, ImS[φ], is a constant
on a thimble, i.e., there is no sign problem due to the action on
a thimble.

(ii) The weight, e−ReS[φ], on a thimble is maximally
localized near the saddle point, i.e., stochastic sampling is
maximally effective on the thimble.

The presence of spontaneous breaking of continuous
symmetries can lead to degenerate saddle points (det ∂2

φS = 0).
This degeneracy can be lifted by introducing an explicit
symmetry-breaking term, ϵχ †(φ)χ (φ), where χ (φ) is the
eigenvector of ∂2

φS with a zero eigenvalue.
Multiple calculations should be performed with succes-

sively smaller values of ϵ, and the limit ϵ → 0 should be taken
numerically. One of the directions of steepest descent at finite
ϵ becomes, in the limit of vanishing ϵ, the Goldstone mode
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Hubbard model on the Lefschetz thimble
Real saddle-point @2

�S real matrix 
Steepest descent are in Rn

Lefschetz thimble is a subsector of initial domain of integration
region around the saddle point bounded by det[M]=0

We can use hybrid Monte Carlo with a stepsize small enough  
to prevent the trajectories from crossing the zero of det[M] 
(usually non-ergodicity is bad but in this case is what we want)

Double occupancy  
extremely local, 
thermodynamic limit 
reached very quickly as a 
function of the lattice size
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in the above equation. The θi , θ ′
i , and ξi can be arbitrary,

illustrating the ambiguity in the HSTs, as noted earlier. In
fact, this is not even the most general decomposition of the
interaction into a sum of squares of fermion bilinears and
one-body terms.

No matter which decoupling HST is used, there is a sign
problem for all parameter values except for certain special
cases: the repulsive case at half filling (U > 0, µσ = 0) and
the attractive case with spin balance (U < 0, µ↑ = µ↓) [20].
Here, we study the repulsive Hubbard model (U > 0) away
from half filling (µ < 0).

We use ξi = 1 and θi = π/2 in Eq. (20). Thus the auxiliary
fields will couple to the on-site magnetization ni↑ − ni↓. In
this case, for φ ∈ Rn, det M[φ] is real; but it can be positive
or negative. This means that ImS[φ] can only take discrete
values [0,π ].

We present results for the intermediate to strong coupling
regime (U/t = 4 and 8). For each set of parameters we con-
sider a single phase associated with uniform time-independent
real mean-field solutions. The results presented here are
limited to temperatures T > 0.4t . Below these temperatures
the dominant mean fields are most likely nonuniform.

For a real saddle point, ∂2
φS is a real matrix, and the

directions of steepest descent are along Rn. Also, Eq. (12)
preserves the reality of the φ fields. Therefore, the Lefschetz
thimble is a subsector of the original domain of integration: it is
the region around the saddle point bounded by det M[φ] = 0.

The action is invariant under the transformation, φ → −φ.
This symmetry is broken in the mean-field theory, leading to
two saddle points related by the symmetry. We sample only on
one of the thimbles and generate configurations on the other
as discussed in the previous section.

Since the thimble is simply a subsector of Rn, the sampling
methods discussed in step 4 of the previous section are not
necessary. Instead, we use hybrid Monte Carlo with a leap-frog
integrator for sampling [21]. The step size is kept small enough
to prevent the trajectories from crossing the zeros of det M[φ].
The residual phase is identically zero, i.e., there is no sign
problem.

The nonergodicity of hybrid Monte Carlo due to the
inability to cross the zeros of det M[φ] is usually considered
to be an undesirable feature (note that this can happen even
if there is no sign problem, i.e., when det M[φ] is positive
semidefinite but not positive definite) [22,23]. This conclusion
would be absolutely correct if one wanted to explore the
whole phase space. However, we want to stay in a single
(special) subsector of the phase space. And it is precisely this
nonergodicity of the method that we exploit to achieve that.

In Fig. 1 we show the double occupancy as a function
of the number density for different temperatures and in-
teraction strengths. Double occupancy has been proposed
as an experimentally accessible probe for signatures of
antiferromagnetism [24]. It has also been suggested that this
observable can be used for thermometry in optical lattices
in the high-temperature regime (T/t > 1) [25]. The double
occupancy is an extremely local observable and it reaches its
thermodynamic limit very quickly as a function of the lattice
size. Our results shown in Fig. 1 are for an 82 lattice, but we
have checked in some selected cases that the results for 102

and 122 lattices are within ∼1%.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

D
 =

 〈n
↑n

↓〉

〈n〉 = 〈n↑〉 + 〈n↓〉

T/t = 2

T/t = 1

T/t = 2

T/t = 1

U/t = 4

U/t = 8

This work
DCA DMFT

FIG. 1. (Color online) Double occupancy vs number density for
the repulsive Hubbard model. Our results are shown with filled red
squares, while the results from extrapolated DCA [18] are shown with
filled blue circles. The error bars, where not visible, are smaller than
the size of the symbols. The lines are meant as a guide to the eye.

At half filling, ⟨n⟩ = 1, our results are in perfect agreement
with the latest determinantal quantum Monte Carlo (DQMC)
results [25,26]. In Fig. 1 we compare our results for different
fillings with the recent extrapolated dynamical cluster approx-
imation (DCA) calculations [18]. There is excellent agreement
between results obtained from these two methods.

In Fig. 2 (top panel) we show double occupancy as a
function of temperature for µ = −1. Our results (shown with
square symbols) are in good agreement with the resummed
numerical linked cluster expansion (NLCE) results (shown
with lines) [19]. We see a slight enhancement of the double
occupancy below T/t < 1. It was proposed in Ref. [27] that
this effect, which is much more pronounced in dynamical
mean-field theory, can be exploited to achieve interaction-
induced cooling for cold fermions in an optical lattice.
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FIG. 2. (Color online) Our results (solid red squares) for double
occupancy, effective hopping parameter, and energy vs temperature
at µ/t = −1.0 for the repulsive Hubbard model. The blue solid lines
in the top panel are results from resummed NLCE calculations [19].
The error bars, where not visible, are smaller than the size of the
symbols. The dotted lines are meant as a guide to the eye.
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Real time dynamics on the Lefschetz thimble

This is the 1/2 example because I only have results on, more or less,  trivial cases

The idea is the following:
assume you have a system in some initial condition at time t0 
and you want to know the expectation value of some observable at time tf  
If you can solve in some way the associated classical equation of motions 
I will give you all the quantum correction attached to that solution

How?
Start from Schwinger-Keldysh formulation to non-equilibrium QFT 

speculations



Real time dynamics on the Lefschetz thimble

Schwinger-Keldish contour

Given an initial state the evolution in time of an operator is given by

hOit = Tr[⇢(t)O] ⇢(t) Time dependent density matrix

In the Hisemberg picture we can write it as

⇢(t0) state at initial time t0hOit = Tr[⇢(t0)U†(t, t0)O(t)U(t, t0)]

In the same way we can compute correlation functions

hO(t)O(t 0)it0 = Tr[⇢(t0)U†(t, t0)O(t)U(t, t 0)O(t 0)U(t 0, t0)]

forward backward

tt0
(+)

(—)

speculations



Real time dynamics on the Lefschetz thimble

Schwinger-Keldish contour

hOit = Tr[⇢(t0)U†(t, t0)O(t)U(t, t0)]

t1 (+)

(—)

t2 tN

tN+1=tNt2N

can be expressed in term of a path integral

hO(�)i =
Z

d�1d�2⇢(�1,�2)

Z ��(0)=�2

�+(0)=�1

D0��D�+e
iS[�+]�iS[��]O(�+)

How we compute this?

As a first step we consider the case in equilibrium case

⇢(�1,�2) = �(�1,�2)

speculations



Real time dynamics on the Lefschetz thimble

Schwinger-Keldish contour

t1 (+)

(—)

t2 tN

tN+1=tNt2N

hO(�)i =
Z

d�1d�2⇢(�1,�2)

Z ��(0)=�2

�+(0)=�1

D0��D�+e
iS[�+]�iS[��]O(�+)

How we compute this?

I have an idea for the case:

⇢(�1,�2) = �(�1,�2)

Solve numerically or analytically the classical equation of motions
This classical solution is a stationary point for the action
now we can evaluate the expectation value 
integrating on the thimble attached to that critical point

in this way we have included all the quantum fluctuations  
around the classical solution

the initial conditions 
fix the UNIQUE thimble 
on which you have to 
integrate

speculations



Real time dynamics on the Lefschetz thimble

Schwinger-Keldish contour

Since now I have tried with the free particle

and

the 0+1 dim. non-interacting non-relativistic scalar field theory = Harmonic oscillator

works

works  
less trivial than previous case  
but still the thimble is flat so you can do it semi-analytically
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QCD (just one slide)
A

a
⌫(x) ! A

a,R
⌫ (x) + iA

a,R
⌫ (x)Complexification:

SU(3)4V ! SL(3,C)4V

Covariant derivative: r
x,⌫,a

F [U ] :=
@

@↵

F [ei↵Ta
U

⌫

(x)]|↵=0

r
x,⌫,a

= rR

x,⌫,a

� irI

x,⌫,a

r
x,⌫,a

= rR

x,⌫,a

+ irI

x,⌫,a

Equation of steepest descent:

First thing to try: consider the stationary point with the 
lower value of the real part of the action and with nσ≠0 
Define a QFT on the thimble attached to this point. 

In lattice QCD this should be the trivial vacuum

d

d⌧
U

⌫

(x; ⌧) = (�iT

a

r
x,⌫,a

S[U ])U
⌫

(x; ⌧)

Defining the thimble for gauge theories is possible: substitute the concept of non-
degenerate critical point with  that of non-degenerate critical manifold 



Conclusions

There are a lot of thing that one can try to study  
in the framework of the Lefschetz thimbles

There are a lot of thing that one need to clarify  
in order to have all the details under control

Hope that some of you would like to try playing with this!



thank you


