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Phase structure of QCD at high temperature and density 

Lattice QCD Simulations

• Phase transition lines
• Equation of state

• Direct simulation: 
Impossible at µ≠0.
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QCD phase transition at finite T and µ

Expansion of the parameter space and Extrapolation

• Large chemical potential µ (at physical mass)
– Different quark mass at low density
– Large number  of flavor

• Chiral limit of 2-flavor QCD
– (2+1)-flavor or (2+many)-flavor at finite mass

• Large volume limit
– Complex parameter: Lee-Yang zero
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Quark Mass dependence of QCD phase trantion

• On the line of physical mass, the crossover at low density       1st order 
transition at high density.

• However, the 1st order region is very small, and simulations with very 
small quark mass are required.               Difficult to study.
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κ>κc: crossover

Tµ
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Finite T and µ phase transition in (2+many)-flavor QCD

• Many-flavor QCD to construct Technicolor models 
• Chiral phase transition of QCD

→  Electroweak phase transition at finite temperature
• Nambu-Goldstone bosons

– 3 bosons are absorbed into gauge bosons. (3 massless bosons)

– The other bosons have not observed yet. (The other bosons: heavy)

– 2 techni-felmions are massless, and the others are heavy.

• Electro-weak baryogenesis
– Strong first order transition: required. (SM: Not strong 1st order.)
– From the analogy of 2+1-flavor QCD, 1st order at small mass; 

2nd order or crossover at large mass.
• It is important to determine the endpoint of the first order region 

in (2+many)-flavor QCD. 6



Nature of phase transition of 2+Nf-flavor QCD

• Assumption: Nf-flavors are heavy.    
– Hopping parameter κ expansion

• Parameter:       

• As increasing Nf, critical mass becomes 
larger.                   Easy to investigate.

• Tricritical scaling: the same as (2+1)-flavor 
QCD
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S. E. & N. Yamada, Phys. Rev. Lett. 110, 172001 (2013)

2-flavor limit is the same as 2+1-flavor.
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hm1

Nature of 2-flavor QCD in the chiral limit
2nd order or 1st order?

Long standing problem
Light quark mass (ml) dependence of the critical line
• Trictitical scaling behavior?
• Is there a first order transition region in 2-flavor QCD?
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Tricritical point
Critical points

Tricritical scaling
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No tricritical point Critical points

First order transition region

mh=∞, 2-flavor 2-flavor

or

Similar study in QCD with an imaginary chemical potential:
Bonati, D’ Elia, de Forcrand, Philipsen, Sanfilippo, arXiv:1311.0473; 1408.5086
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Singularities of QCD in the complex µq plane
Lee-Yang zero/ Fisher zero: partition function Z=0 

Prediction near the chiral limit, assuming O(4) universality
• M. Stephanov Phys. Rev. D73, 094508 (2006)

• The distribution of Z=0            Nature of phase transition
by Mote-Carlo simulations (order & universality class)
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Phase transitions in many-flavor QCD
We investigate the critical surface

in 2-flavor QCD and QCD with 2-light flavors + Nf-
massive flavors.

• (2+Nf)-flavor QCD
– Electro-weak baryogenesis - Technicolor model
– Good testing ground for (2+1)-flavor QCD

Plan of this talk
– Histogram method to study nature of phase transitions
– Nf-dependence of the critical heavy quark mass.
– Light quark mass-dependence of the critical curve

• The chiral limit of 2-flavor QCD:  2nd order or 1st order?
– µ-dependence of the critical curve.
– Singularities in the complex µ plane, Lee-Yang zeros 10



Probability distribution function
 Distribution function (Histogram)

X: order parameters, total quark number, average plaquette etc.

 In the Matsubara formalism,

 where   detM: quark determinant,   Sg: gauge action.

 Useful to identify the nature of phase transitions
 e.g. At a first order transition, two peaks are expected in W(X).

( ) ( ) ,,, ,, µ=µ ∫ TmXWdXTmZ
histogram

( ) ( ) ( )( ) gSNmMXX-DUTmXW −µ′δ≡µ′ ∫ e ,det ,,, f

( ) ( )( ) gSNmMDUTmZ −µ≡µ ∫ e ,det,, f



µ-dependence of the effective potential

T

µ

hadron

QGP

CSC?

1st order phase transition

Critical point( )µ,,eff TXV

Crossover

Correlation length: short 
V(X): Quadratic function

Correlation length: long
Curvature: Zero

Two phases coexist
Double well potential

)(ln)(eff XWXV −=( ) ( ),,, , µ=µ ∫ TXWdXTZ
X: order parameters, total quark number, average plaquette, quark determinant etc. 



Plaquette and Polyakov loop
Dynamical variables
• Gauge field: Uµ ∈ SU(3), on a link
• Quark field: ψ, ψ,  Grassmann, on a site 

Standard gauge action

=P: plaquette
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First order transition point: two phases coexist
Plaquette distribution function

• Performing simulations of 2-flavor QCD,
• Dynamical effect of Nf-flavors are included by the reweighting.
• We assume Nf-flavors are heavy.
• Hopping parameter (κ) expansion（Wilson quark）

• Effective potential

( ) ( )[ ]=βκ−=κβ 0,, ,ln),,(eff PWPRPV
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Rewighting of the effective potential 

• β-dependence is only in the linear term.

( ) ( ) ( )+µ−β=µβ ,,ln0,0,,,,, 0effeff hPRPVhPV (linear term of P)

( ) ( )
fixed:

36exp 
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( ) tNNh hf 22 κ=
Wilson quark 

( )( )tNmNh hf 24=
Staggered quark

( ) ( ) ( )
( ) ( )

fixed:

3

fixed:0

ˆ6 ˆ6exp ln
0,det

,det
 lnln 0site

PRs

Pf

ffPN hN
M

M
ePR Ω≈

κ

µκ
= ∏β−β

(degenerate mass case at µ=0)

+(linear term of P)

16



Phase structure of (2+many)-flavor QCD

Improved-Wilson Simulations
Iwasaki gauge action + Nf=2 clover -Wilson fermion action,
κ=0.145, 0.475, 0.150, 0.1505, 
mπ/mρ = 0.6647, 0.5761, 0.4677, 0.4575,
163x4 lattice.

Dynamical heavy quark effect is added by the reweighting 
method. 
detM： Hopping parameter expansion

P4-imprived staggered Simulations
Nf=2 p4-staggered, mπ/mρ≈0.7
data: Beilefeld-Swansea Collab., PRD71,054508(2005)
163x4 lattice.
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Curvature of the effective potential 

• Linear term of P is irrelevant to the curvature
• β-dependence is only in the linear term.
• The curvature is independent of β.

• If there exists the negative curvature region,
First order transition (double-well potential)
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Effective potential at h≠0

Nf=2 p4-staggered, 
mπ/mρ≈0.7

data: Beilefeld-Swansea Collab.,
PRD71,054508(2005)

• detM: hopping 
parameter expansion.

• lnR increases as 
increasing h.

• The slope increases 
with h.

Rln
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Curvature of the effective potential 

• First order transition for h > 0.6
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Slope of the effective potential

• The shape of dVeff/dP is independent of β.
• If dVeff/dP is an S-shaped function, 

First order phase transition (double-well potential).
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Nf –dependence of the critical mass 

• Critical mass increases as Nf increases.

– When Nf is large, κ is small. Then, the hopping 
parameter (κ) expansion is good.

– On the hand, when Nf is small, the κ-expansion is bad.

• In a quenched simulation with Nt=4, the first and second terms 
becomes comparable around κ=0.18.

• For Nf=10, Nt=4, 
– It may be applicable  for Nf~10.
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Phase structure of (2+many)-flavor 
QCD using Wilson quark action

2-flavor QCD simulations + reweighting
Light quark mass dependence of the critical line
• Is there a first order transition region in 2-flavor QCD?
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Tricritical point
Critical points

Tricritical scaling
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No tricritical point Critical points

First order transition region

mh=∞, 2-flavor 2-flavor

or
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Light quark mass dependence

• The derivative of Veff becomes an S-shaped function at large h.
• Critical point: light quark mass dependence is small in this region.

mπ/mρ≈0.576

mπ/mρ≈0.468mπ/mρ≈0.458

mπ/mρ≈0.665

h 
la

rg
edP

dVeff

Color:
Different 
fit function
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Light quark mass dependence

• Critical point: light quark mass dependence is small in the region we 
investigated. 

• The red & green lines are the critical point at ml = ∞ (Nf=0+16).
• The first order transition in the massless 2-flavor QCD is not 

suggested.

( ) tNNh hf 22 κ= for Wilson quarks 

PCAC quark mass dependence mp/mr ratio dependence 
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The effective potential at finite µ
Reweighting factor

light quarks    heavy quarks
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• Cumulant expansion method (SE,PRD77,014508(2008), WHOT-QCD,PRD82,014508(2010))

– Odd terms vanish from a symmetry under µ ↔ −µ (θ ↔ −θ)
Source of the complex phase

– If the distribution of θ is Gaussian,             term dominates.
– Assuming the Gaussian distribution, we approximate


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i iie 432
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Critical line at finite density (staggered)

• Calculations of detM: Taylor 
expansion up to O(µ6)

• Distribution function of the 
complex phase of detM:  
approximated by a Gaussian 
function

( ) tNNh hf 22 κ=

( )( )tNmNh hf 24=

for Wilson quarks 

for staggered quarks First order

crossover

S. E. & N. Yamada, Phys. Rev. Lett. 110, 172001 (2013)

The first order region becomes wider as increasing µ. 28



µ-dependence of critical h

critical surface in (µl, µh)
( ) tNNh hf 22 κ=( )Th hC µcosh ( )Thµtanh

tN
fhC Nκ

T
hµ

T
lµ

The effect from the phase of heavy-flavor is small ( < 30%).
The Critical κh decreases exponentially as µh.
Hopping parameter expansion is good for large µh.

(light quark)

Taylor expansion up to O(µl
2)
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Singularities of QCD in the complex µq plane
M. Stephanov Phys. Rev. D73, 094508 (2006)

• Lee-Yang zero/ Fisher zero: partition function Z=0 
– Prediction near the chiral limit, assuming O(4) universality

• Singularities exist at large Im(µq) even for crossover.
– Application range of Taylor expansion of 

• The distribution of Z=0            Nature of phase transition
by Mote-Carlo simulations (order & universality class)
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Singularities of pure SU(3) gauge theory in the 
complex β plane (SE, Phys.Rev.D73,054502(2006))

Relation between distribution of Z=0 and plaquette distribution function

436242
site ××=N

Plaquette data by QCDPAX, 
Phys.Rev.D46, 4657,(1992)
#conf.~O(1M)
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Lee-Yang zeros in the complex β for pure SU(3)
• Normalized partition function (reweighting for Imaginary β)

• Plaquette distribution function (histogram)

Fourier transformation (∆P → βIm Nsite)
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Fourier transformation   (∆P → βIm Nsite) 

Non-singular:
No Lee-Yang zero 

P∆

( )Pw ∆

(n:integer)

Gauss

P∆

( )Pw ∆

A− A

Gauss

Double peak

( )siteImNβ

normZ

( ) ANn siteIm 1212 +π=β

First order transition V1~Imβ

)( site tVNN =

( )siteImNβ

normZ Lee-Yang zero

Normal

( )( ) ( )siteImnorm 6  NdPweZ i βθθ∆= ∫ θPN ∆β=θ siteIm6
Distribution function of the complex phase



Singularities of full QCD with complex µ

• Partition function written by a distribution function of P.

When Veff is a double-well potential
And                                                  Lee-Yang zeros  appear.
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Numerical calculation of the reweighting factor
2 approximations (SE, Phys.Rev.D77,014508(2008))

• Estimation of detM by a Taylor expansion up to 

• Sign problem: If      changes its sign,

• Gaussian approximation
– Distribution function of θ: Gaussian.
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• Assumption: Gaussian distribution of the phase.
• dV/dP becomes an s-shaped function.

( ) ( ) ( )0site0
effeff 6,, β−β−β=β NP
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( )PVeff( )P
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65.30 =β

Derivative of the effective potential

double-well potential

Nf=2 p4-staggared, mπ/mρ≈0.7
data: Beilefeld-Swansea Collab.,
PRD71,054508(2005)



Singularities in the complex µq plane
(SE & Yoneyama, in progress)

• Probability distribution function becomes a double-peaked function at 
large µIm as well as large µRe.

Position of Lee-Yang zeros for each β.

Critical line 

Lee-Yang zeros

Non singular

double-well

single-well



Summary
• We studied the phase structure of (2+Nf)-flavor QCD.

– This model is interesting  for the feasibility study of the electroweak 
baryogenesis in the technicolor scenario.

• Applying the reweighting method, we determine the critical mass of 
heavy flavors terminating the first order region. 
– The critical mass becomes larger with Nf.
– The first order region becomes wider as increasing µ.
– The light quark mass dependence of the critical heavy quark 

mass is small in the region we investigated.
– The first order transition in 2-flavor QCD is not suggested.

• This may be a good approach for the determination of boundary of 
the first order region in (2+1)-flavor QCD at finite density.

• In the complex µ plane, the probability distribution function 
becomes a double-peaked function at large µIm
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