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Introduction

Lattice QCD
SU(N) gauge theory on the discrete space-time lattice

Advantage . a good way to approach the non-perturbative dynamics

Disadvantage : some difficulties to construct
lattice energy momentum tensor (EMT) 1},

Yang-Mlills fields at finite T
Thermodynamics <TW>

There Is an Indirect method using thermodynamical partition function

Integral method 5; = E/DU(— a—;)(detM)Nfe—ng _ <6_;>
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Introduction

Lattice Energy Momentum Tensor from the Yang-Mills gradient flow
H. Suzuki (201 3)

Tr = lim{ozUl(t)UW(t,a:) | 5Z”agl(t)[E(t,x)— <E(t,az)>0]}

t—0

To confirm validly and applicability of this new EMT construction,
Comparative calculation with the integral method
Asakawa et al (Flow QCD collaboration) (2013)
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But, full consistency is not yet verified!
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Yang-Mills gradient flow M. LUscher(2010)

t's a diffusion equation that evolves gauge fields Au to fictitious time t

Yang-Mills gradient flow Initial condition
B, = D,Gyy Bu‘tzO — Au
B, represents the flowed gauge field

DM:aM_I_[B,U7 ]
Gy, =0,B,—0,B,+ |B,, B,

=

Quantum correlation functions of the flowed gauge field

(Bui(ti,21) -+ Bun(tn, ),  t1>0,...,t, >0

are finite without wave function renormalization
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Yang-Mills gradient flow

M. Lischer(2010)

3(N? —1)

1
E = ZGW(t’ )G, (t, ) —;

B =
) 12872t2

no dependance of € — UV finite (regularization independent)

proved for any correlation functions at all order, Luscher, Weisz (201 2)

dimensional regularization

%
T {1+ag®+0(gY)}  C1:finite

g9 = w9’ Z

Translational invariant
regularization

{T/w}R(l')

Yang-Mills gradient flow

small flow time expansion

L attice regularization

Numerical calculation is possible

Define a proper EMT on the lattice
H.Suzuki(201 3)
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Yang-Mills gradient flow M. LUscher(2013)

small flow time expansion (a kind of operator product expansion)

Ot,z) — > ()0 (z) + O(t)

t—0
k

ck(t) : Wilson coefficients that are perturbatively calculable in the small t region

4D boundar,, (4+1)D bulk

the local operator
in the flowed fields

O(t,x)

y t (extra dimension)

>

T. Hatsuda, FlowQCD Collaboration
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Yang-Mills gradient flow M. LUscher(2013)

Ot ) — > cu(t)Of (z) + O(t)
k

| : _ . O _ ‘ D
T/fi(l) = }21(1) {aul(t)(,”,(/. xr) + l4 aEl(t) |E(t, z) — (E(t, .1'))0]}

4D bounda,, (4+1)D bulk
| . .
U/W(t?m) — Gﬂp(tv x)GVP(tam) B %GIH/GW/
1
E(ta ZIZ‘) — ZG,UJ/(t,w)G,uI/(t,m)
R
T, (z)
et
T t (extra dimension) .

T. Hatsuda, FlowQCD Collaboration
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Lattice QCD

A unigue non-perturbative approach for gauge theory

QCD is defined on the discrete space-time lattice (lattice spacing a)
lattice grids - quark fields w(na) T = *
links : link variables correspond to the gauge fields e N 2
U,(na) = glag4u(na) L

In order to measure the physical quantity

_ [DAO(A)e=%¢  [DUO(U)e >
N fDAe—SG ' fDUe—Slat

0)

The continuum theory Is recovered
by taking the Iimit of a = O
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Lattice QCD

The choice of lattice action Sj,¢ is not unique i

Simplest action (Wilson action) LD
1 2No
Swilson = I — —1r 5=
Wil 5 Z{ N¢o } gQ(a)
T ga’ 6\ lattice discretization errors
r ~ Ngo — Tr{F,F.}+ O(a’)

a—0 2

O reduce discretization errors

1 1
Sg = 5{CPlaq Z[l No Re'lr ] =+ Crect Z[l N Re'lr ]}
. T | | )
Normalization condition . Symanzik action  creet = ——
C + 8¢ =N
plaq rect - lwasaki action Crect = —0.331
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Lattice QCD thermodynamics from gradient flow  Asakawa et al(2013)

Yang-Mills gradient flow on lattice

OV (t,a, )V (t,x,0) = =g50Sae  V(t, 2, 1)|i—o = Uy ()

15— i 0 (0U(t,2) + 220 (0B (6 2) — (B2l |

t—0

Define a fiducial window(physical meaning region) gradient flow
) . —a\
— < VST < = ( O
Ny 2
<« > “a’
expolate to t — O EAhg I -Na

example : previous works for entropy

1 &
e+ P = (Too) — 3 > (Ty) SRRy

(Wilson action and wilson flow at T=1.65Tc)

B 6.56

e - —————————

A o 1
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NBLT
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Lattice QCD thermodynamics from gradient flow  Asakawa et al(2013)

Visible discrepancy with the Integral method (Wilson action)
Entropy

Il 1 l | . l 1 E !
0 0.1 0.2 03 04 05

NBLT

The possibility of systematic errors due to discretization
@tv(ta €Ly M)V(t7 €L, :u)_l — _ggaslat

In this context, we intend to improve previous results by using

1 1
Sg = 5{CPlaq Z[l T N—CReTr ] + Crect Z[l _ N—CReTr ]}
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attice set-up

Gauge configurations are generated by the Wilson gauge action
Lattice size Ny X Np and input parameter 3

Nr 6 8 10 Ny = 32°
B 0.20 6.40 0.0 1
T = = 1.651 ¢
of cons 300 300 300 Nra
All the parameters are chosen to be the same with the original work
Flow action OV (t,z, W)V (t, 2, 1)~ = —g50S1at
Wilson flow Swilson = 62{1 — N%Tr }

Symanzilk flow

lwasaki flow
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Results for entropy given by YM gradient flow with various gauge actions

55
Integral
45 | o e, | | discretiZe q
-+ | | error
; 4 ’ 1 ‘ .
a. |
+ 3.5 + . | 4
w ] n n
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Red : Wilson flow(previous work), Green : Symanzilk flow, Blue : Iwasaki flow

Effects from the discretization error Red > Green > Blue
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Results for entropy from the Iwasaki flow

5.5

Integral method e

l { lwasaki action

! ! ! !
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Lattice spacing a fine < . coarse
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Continuum limit

5.6 . . . . .
5.4 | 6.56 6.40 0.20-
5.2 T

=
> 5

= 4.8
|

L 4.6
4.4 +

1 Our result(lwasaki flow)

T 1 1
*

Previous work(wilson flow)

number of temporal
lattice sites

) O 0.005 0.01 0.015 0.02 0.025 0.03
= Ta 1/N=

Our work 5.07 £0.15
Previous work 4.72 = 0.24

Asakawa et al(2013)

Integral method 5.15

Borsanyi et al (2012)

4.2

Nt
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Conclusion and prospects

Conclusion
the EMT defined through the Yang-Mills gradient flow is

highly sensitive to discretization errors on the flow action.
the improvement on the flow action is really important

to reduce hidden discretization errors in the new method

We get the much better agreement with results from the integral method.

Prospects

Transport coefficients N~ (Ti2(z)Tr2(y))
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