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Lattice QCD
SU(N) gauge theory on the discrete space-time lattice

Advantage : a good way to approach the non-perturbative dynamics
Disadvantage : some difficulties to construct  

        　　　　　　　　　　　　　　　　　　lattice energy momentum tensor (EMT) Tµ⌫

There is an indirect method using thermodynamical partition function
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Lattice Energy Momentum Tensor from the Yang-Mills gradient flow  
H. Suzuki (2013)

But, full consistency is not yet verified! 
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Comparative calculation with the integral method  
 Asakawa et al (Flow QCD collaboration) (2013)

Trace anomaly Entropy

To confirm validly and applicability of this new EMT construction, 
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Yang-Mills gradient flow
It’s a diffusion equation that evolves gauge fields       to fictitious time t

G⌫µ = @µB⌫ � @⌫Bµ + [Bµ, B⌫ ], Dµ = @µ + [Bµ, · ]

Quantum correlation functions of the flowed gauge field

are finite without wave function renormalization 

hBµ1(t1, x1) · · ·Bµn(tn, xn)i, t1 > 0, . . . , tn > 0

Dµ = @µ + [Bµ, · ]

Ḃµ = D⌫G⌫µ Bµ|t=0 = Aµ

Initial conditionYang-Mills gradient flow

Aµ

M. Lüscher(2010)

represents the flowed gauge fieldBµ
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dimensional regularization
g20 = µ2✏g2ZE =

1

4
Gµ⌫(t, x)Gµ⌫(t, x)

hEi = 3(N2 � 1)g2

128⇡2t2
�
1 + c1g

2 +O(g4)
 c1: finite

 no dependance of      →✏ UV finite (regularization independent)

proved for any correlation functions at all order,  Lüscher, Weisz (2012)

Translational invariant  
regularization
{Tµ⌫}R(x)

Lattice regularization
Numerical calculation is possible

Yang-Mills gradient flow

Define a proper EMT on the lattice
H.Suzuki(2013)

small flow time expansion

M. Lüscher(2010)Yang-Mills gradient flow
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small flow time expansion (a kind of operator product expansion)

O(t, x) �!
t!0

X

k

ck(t)OR
k (x) +O(t)

ck(t)：Wilson coefficients that are perturbatively calculable in the small t region  

M. Lüscher(2013)Yang-Mills gradient flow

  T. Hatsuda,  FlowQCD Collaboration            

 the local operator  
in the flowed fields
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Uµ⌫(t, x) = Gµ⇢(t, x)G⌫⇢(t, x)�
�µ⌫

4
Gµ⌫Gµ⌫

E(t, x) =
1

4
G

µ⌫(t,x)Gµ⌫(t,x)

T

R
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Two Wilson coefficients

which have been obtained within one-loop perturbative theory by H. Suzuki (2013)

M. Lüscher(2013)
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Yang-Mills gradient flow

  T. Hatsuda,  FlowQCD Collaboration            
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Lattice QCD
A unique non-perturbative approach for gauge theory

lattice grids：quark fields

links : link variables correspond  to the gauge fields

Uµ(na) = eiagAµ(na)

 (na)

QCD is defined on the discrete space-time lattice (lattice spacing a)

The continuum theory is recovered  
by taking the limit of a → 0  

hOi =
R DAO(A)e�SG

R DAe�SG
!

R DUO(U)e�Slat

R DUe�Slat

In order to measure the physical quantity
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SlatThe choice of lattice action        is not unique

Simplest action (Wilson action)
� =

2NC

g2(a)
S
Wilson

= �
X⇢

1� 1
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Tr

�

lattice discretization errors⇠
a!0

NC � g2a4

2
Tr{Fµ⌫Fµ⌫}+O(a6)Tr

To reduce discretization errors

SG = �

⇢
cPlaq

X
[1� 1

NC
ReTr ] + crect

X
[1� 1

NC
ReTr ]

�

Normalization condition
cplaq + 8crect = 1

・Iwasaki action crect = �0.331

・Symanzik action crect = � 1

12

Lattice QCD
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Lattice QCD thermodynamics from gradient flow

gradient flowDefine a fiducial window(physical meaning region) 

                                        
expolate to t → 0 
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V (t, x, µ)|t=0 = Uµ(x)

example：previous works for entropy
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hTiii

(Wilson action and wilson flow at T=1.65Tc)
β6.56
6.40
6.20

Asakawa et al(2013)
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Yang-Mills gradient flow on lattice
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Entropy
Visible discrepancy with the Integral method  (Wilson action)

In this context, we intend to improve previous results by using
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X
[1� 1

NC
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�

？

The possibility of systematic errors due to discretization
@tV (t, x, µ)V (t, x, µ)�1 = �g

2
0@Slat

Lattice QCD thermodynamics from gradient flow Asakawa et al(2013)
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Lattice set-up

Lattice size NV ⇥NT and input parameter �

Flow action @tV (t, x, µ)V (t, x, µ)�1 = �g

2
0@Slat

Wilson flow

Symanzilk flow

Iwasaki flow

S
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= �
X⇢

1� 1
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Tr

�
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X
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ReTr ] + crect

X
[1� 1
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ReTr ]

�

Gauge configurations are generated by the Wilson gauge action

NV = 323

T =
1

NTa
= 1.65TC

NT 6 8 10

� 6.20 6.40 6.56

of cons 300 300 300

All the parameters are chosen to be the same with the original work
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Results for entropy given by YM gradient flow with various gauge actions

Red : Wilson flow(previous work), Green : Symanzilk flow, Blue : Iwasaki flow

Effects from the discretization error Red ＞ Green ＞ Blue

� = 6.20 � = 6.40

Integral 
method

coarse lattice fine lattice

discretize 
error
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Results for entropy from the Iwasaki flow

�

a

Magenta : 6.56, Blue: 6.40,  Red: 6.20
Lattice spacing fine coarse

Integral method

Measurement of thermodynamics using gradient flow Masakiyo Kitazawa
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Figure 1: Flow time dependence of the dimensionless interaction measure (top panel) and the dimensionless
entropy density (bottom panel) for different lattice spacings at fixed T/Tc = 1.65 [12]. The circles (red) the
squares (blue), and the diamonds (black) correspond to Nt = 6, 8, and 10, respectively. The bold error bars
denote the statistical errors, while the thin error bars (brown, cyan, and magenta) include both statistical and
systematic errors.

configurations are necessary to obtain these results. Similar plateaues as in Fig. 1 also appear
inside the fiducial window for other temperatures, T/Tc = 1.24 and 0.99, with comparable error
bars. These features imply that the double extrapolation (a, t)! (0,0) is indeed possible.

Our lattice results at fixed T with three different lattice spacings allow us to take the continuum
limit. First, we pick up a flow time

p
8tT = 0.40 which is in the middle of the fiducial window.

Then we extract D/T 4 and s/T 3 for each set of Nt and b . In the left panel of Fig. 2, resultant values
taking into account the statistical errors (bold error bars) and the statistical plus systematic errors
(thin error bars) are shown. The lattice data for D/T 4 with the same lattice setup at Nt = 6 and 8
in Ref. [4] are also shown by the cross (green) symbols in the top panel; our results with 300 gauge
configurations have substantially smaller error bars at these points.

We note that the continuum extrapolation in this analysis [12] is taken with fixed t; this proce-
dure is graphically shown in Fig. 3 (a). Strictly speaking, however, the double limit (a, t)! (0,0)
has to be taken as mentioned above. Although we have checked that different choices of t do not
change the final results within the error bar as long as it is in the plateau region in the analysis in
Setting 1, in the next section we will see that the limit with fixed t shows a deviation compared
with the double limit when the statistics is improved.

The horizontal axis of the left panel of Fig. 2, 1/N2
t , is a variable suited for making continuum

extrapolation of the thermodynamic quantities [4]. We consider two ways of extrapolation: A linear
fit with the data at Nt = 6, 8, and 10 (the solid lines in the left panel of Fig. 2), and a constant fit with
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change the final results within the error bar as long as it is in the plateau region in the analysis in
Setting 1, in the next section we will see that the limit with fixed t shows a deviation compared
with the double limit when the statistics is improved.

The horizontal axis of the left panel of Fig. 2, 1/N2
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Continuum limit

Previous work(wilson flow) 

Our result(Iwasaki flow)

6.56 6.40 6.20
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 0  0.005  0.01  0.015  0.02  0.025  0.03

(✏
�
3P

)/
T

4

1/N2
T

NT =
1

Ta

number of temporal 
lattice sites

Our work  5.07 ± 0.15 
Previous work  4.72 ± 0.24

Asakawa et al(2013)

Integral method  5.15  
Borsanyi et al (2012)
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Prospects

Analysis of trace anomaly
Study at other temperature

16

the EMT defined through the Yang-Mills gradient flow is  
 highly  sensitive to discretization errors on the flow action. 

Conclusion

the improvement on the flow action is really important  
to reduce hidden discretization errors in the new method 

Conclusion and prospects

We get the much better agreement with results from the integral method.

⌘ ⇠ hT12(x)T12(y)iTransport coefficients
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THE END

THE END


