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The fundamental issue
• Lattice simulations are done in finite volumes	



• Experiments are not

2

How do we connect these?
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• Lattice QCD can calculate energy levels of multiple 
particle systems in a box	



• How are these related to scattering amplitudes?

4

iMn!m
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spectrum
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When is spectrum related to scattering amplitudes?

L<2R	


No “outside” region.	



Spectrum NOT related to scatt. amps.	


Depends on finite-density properties

L

R (interaction 	


range)

 [Lüscher]

✔✘

L

L>2R	


There is an “outside” region.	



Spectrum IS related to scatt. amps.	


up to corrections proportional to

e�M⇡L
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Problems considered today

Theoretically understood;	


numerical implementations mature.	


Will sketch as warm-up problem Formalism under development—	



will present new solution based on generalizing	


Lüscher’s formalism.	



Practical applicability under investigation
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Outline
•Motivations	



•Status of multi particle quantization conditions	



•Set-up and main ideas	



•Recap of 2-particle quantization condition	



•3-particle quantization condition (in terms of Kdf,3)	



•Utility of 3-particle result: truncation	



•Infinite volume relation between Kdf,3  and M3	



•Conclusions and outlook

7
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HALQCD method
• There is an alternative approach, followed by the 

HALQCD collaboration [Aoki et al.], using the 
Bethe-Salpeter wave-function calculated with 
lattice QCD to determine scattering amplitudes	



• Extended from 2 particle to 3 (and higher) particle 
case in non-relativistic domain	



• Potentially more powerful than the Lüscher-like 
methods I discuss today, but based on certain 
assumptions

8
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Motivations

9
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1.Studying resonances
• Most hadrons are resonances	



• Resonances are not asymptotic states; show up in behavior of scatt. amplitudes	



• FV methods determine scattering amplitudes indirectly

10
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ρ resonance in	


ππ phase shift

[Dudek et al., 2013]

m⇡ = 391MeV
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1.Studying resonances
• Most hadrons are resonances	



• Resonances are not asymptotic states; show up in behavior of scatt. amplitudes	



• FV methods aim to determine scattering amplitudes indirectly

12

• Many resonances have three particle decay channels	



!(782)! ⇡⇡⇡ N(1440)! N⇡⇡K⇤ �! K⇡⇡
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1.Studying resonances
• Most hadrons are resonances	



• Resonances are not asymptotic states; show up in behavior of scatt. amplitudes	



• FV methods aim to determine scattering amplitudes indirectly

12

• Many resonances have three particle decay channels	



!(782)! ⇡⇡⇡ N(1440)! N⇡⇡K⇤ �! K⇡⇡

Need three-particle methods to!

systematically predict resonance!

properties from first principles
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2.Determining interactions

• For nuclear physics need NN and NNN interactions	



• Input for effective field theory treatments of larger nuclei & nuclear matter

13

• Meson interactions needed for understanding pion & 
kaon condensates	



• ππ, KK, πππ, πKK, etc. 
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2.Determining interactions

• For nuclear physics need NN and NNN interactions	



• Input for effective field theory treatments of larger nuclei & nuclear matter

13

• Meson interactions needed for understanding pion & 
kaon condensates	



• ππ, KK, πππ, πKK, etc. 

Need three-particle methods to!

systematically determine !

3-particle interactions from first principles
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3.Decay amplitudes

• Calculating weak decay amplitudes allows tests of SM	



• Many amplitudes involve 3 (or more) particles	



• K→ππ, πππ	



• D→ππ, KK, ηη, 4π, ….	



• …

14



/71S. Sharpe, “3-particle quantization condition” 03/20/2015, YITP workshop, Kyoto

3.Decay amplitudes

• Calculating weak decay amplitudes allows tests of SM	



• Many amplitudes involve 3 (or more) particles	



• K→ππ, πππ	



• D→ππ, KK, ηη, 4π, ….	



• …

14

Need 3, 4, … particle methods to!

determine such decay amplitudes!

from first principles
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Status of multi particle 
quantization conditions

15
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Status for 2 particles
• Long understood in NRQM [Huang & Yang 57, ....]	



• Quantization formula in QFT for energies below inelastic threshold converted 
into NRQM problem and solved by [Lüscher 86 & 91]	



• Solution generalized to arbitrary total momentum P, multiple (2 body) channels, 
general BCs and arbitrary spins [Rummukainen & Gottlieb 85; Kim, Sachrajda & SS 
05; Bernard, Lage, Meißner & Rusetsky 08; Hansen & SS 12; Briceño & Davoudi 12; 
… ]	



• Relation between finite volume 1→2 weak amplitude (e.g. K→ππ) and infinite 
volume decay amplitude determined [Lellouch & Lüscher 00]	



• LL formula generalized to general P, to multiple (2 body) channels, to arbitrary 
currents, general BCs & arbitrary spin (e.g. γ*π→ρ→ππ, γ*N→Δ→πN, 
γD→NN)     [Kim, Sachrajda & SS 05; Christ, Kim & Yamazaki 05; Meyer 12; 
Hansen & SS 12; Briceño & Davoudi 12;  Agadjanov, Bernard, Meißner & Rusetsky 
14; Briceño, Hansen & Walker-Loud 14; Briceño & Hansen 15;… ]	



• Leading order QED effects on quantization condition determined [Beane & Savage 
14]
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State of the art

17

[Dudek, Edwards,	


Thomas & Wilson 14]

Coupled two-body	


channels
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Status for 3 particles

• [Beane, Detmold & Savage 07 and Tan 08] derived threshold expansion for n 
particles in NRQM, and argued it applied also in QFT	



• [Polejaeva & Rusetsky 12] showed in NREFT that 3 body spectrum 
determined by infinite-volume scattering amplitudes, using integral equation	



• [Briceño & Davoudi 12] used a dimer approach in NREFT, with s-wave 
interactions only, to determine relation between spectrum and a finite volume 
quantity, itself related to infinite-volume amplitudes by an integral equation	



• [Hansen & SS 14, 15] derived quantization condition in (fairly) general, 
relativistic QFT relating spectrum and M2 and 3-body scattering quantity Kdf,3; 
relation between Kdf,3 & M3 via integral equations now known	



• [Meißner, Rios & Rusetsky 14] determined volume dependence of 3-body 
bound state in unitary limit
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Status for 3 particles

• [Beane, Detmold & Savage 07 and Tan 08] 
particles in NRQM, and argued it applied also in QFT	



• [Polejaeva & Rusetsky 12] 
determined by infinite-volume scattering amplitudes, using integral equation	



• [Briceño & Davoudi 12] 
interactions only, to determine relation between spectrum and a finite volume 
quantity, itself related to infinite-volume amplitudes by an integral equation

• [Meißner, Rios & Rusetsky 14] 
bound state in unitary limit

• [Hansen & SS 14, 15] derived quantization condition in (fairly) general, 
relativistic QFT relating spectrum and M2 and 3-body scattering quantity 
Kdf,3; relation between Kdf,3 & M3 via integral equations now known
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Set-up & main ideas

20
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Set-up

21

• Work in continuum (assume that LQCD                                                   
can control discretization errors)	



!

• Cubic box of size L with periodic BC,                                                         
and infinite (Minkowski) time	



• Spatial loops are sums: 	



• Consider identical particles with physical mass m, interacting arbitrarily except 
for a Z2 (G-parity-like) symmetry	



• Only vertices are 2→2, 2→4, 3→3, 3→1, 3→5, 5→7, etc.	



• Even & odd particle-number sectors decouple

1
L3

P
~k

~k = 2⇡
L ~n

L

L

L



/88S. Sharpe, “3-particle quantization condition” 03/20/2015, YITP workshop, Kyoto

Methodology

22

• Calculate (for some P=2πnP/L)

• Poles in CL occur at energies of finite-volume spectrum	



• For 2 & 3 particle states, σ ~ π2 & π3, respectively

Full propagators	


Normalized to unit residue at pole

Infinite-volume	


vertices

Boxes indicated summation	


over finite-volume momenta

• E.g.  for 2 particles:

CM energy is	


E*=√(E2-P2)
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3-particle correlator

23

Full propagator

Infinite-volume	


vertices

Boxes indicate summation	


over finite-volume momenta

�†
3

�3

CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·
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Key step 1

• Replace loop sums with integrals where possible	



• Drop exponentially suppressed terms (~e-ML,  e-(ML)^2, etc.) while keeping power-law dependence

24
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Key step 1

• Replace loop sums with integrals where possible	



• Drop exponentially suppressed terms (~e-ML,  e-(ML)^2, etc.) while keeping power-law dependence

24

Exp. suppressed if g(k) is smooth	


and scale of derivatives of g is ~1/M
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Key step 2
• Use “sum=integral + [sum-integral]” if integrand has pole, with [KSS]

25

q* is relative momentum	


of pair on left in CM

f & g evaluated for ON-SHELL momenta	


Depend only on direction in CM

Kinematic function

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
) + exp. suppressed
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Key step 2
• Use “sum=integral + [sum-integral]” if integrand has pole, with [KSS]

25

q* is relative momentum	


of pair on left in CM

f & g evaluated for ON-SHELL momenta	


Depend only on direction in CM

Kinematic function

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Example
Focus on this loop

k

P-k

P = (E, ~P )

g is right-hand part 	


of integrand

f is left-hand part 	


of integrand

+ exp. suppressed
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Key step 2
• Use “sum=integral + [sum-integral]” where integrand has pole, with [KSS]

26

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Decomposed into spherical harmonics, F becomes
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Kinematic functions

27

= x2 = x2

[Luu & Savage, `11]Z4,0 & Z6,0 for P=0

=(q*L/2π)2=(q*L/2π)2
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Key step 2
• Use “sum=integral + [sum-integral]” where integrand has pole, with [KSS]

28

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Diagrammatically

off-shell on-shell

1

L3

X

~k

Z

~k

finite-volume	


residue
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Variant of key step 2
• For generalization to 3 particles use (modified) PV prescription instead of iε

29

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Key properties of FPV (discussed below): real and no unitary cusp at threshold	



gPV

gPV
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Variant of key step 2
• For generalization to 3 particles use (modified) PV prescription instead of iε

29

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Key properties of FPV (discussed below): real and no unitary cusp at threshold	



gPV

gPV

F

= +

off-shell on-shell

Bottom propagator is	


first set on-shell.	


Has finite-volume	



momentum

gPV

Upper loop integrated• Example of appearance in 3-particle analysis:
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Key step 3

• Identify potential singularities:  can use time-ordered PT (i.e. do k0 integrals)	



• Example

30

��†
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Key step 3
• 2 out of 6 time orderings:

31

�

�

�†

�†

1’

2’

3’

4’

2

5

1
1

2
3

4

5’

5

6

E�!1�!2�!3�!4�!0
5

!j =
q
~k2j +M2On-shell energy

E�!0
1�!0

2�!0
3�!0

4�!5

1 1 1 1P
j=1,6 !jE�!1�!2�!5
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Key step 3
• 2 out of 6 time orderings:

31

�

�

�†

�†

1’

2’

3’

4’

2

5

1
1

2
3

4

5’

5

6

E�!1�!2�!3�!4�!0
5

E�!0
1�!0

2�!0
3�!0

4�!5

1 1 1 1P
j=1,6 !j

• If restrict M < E*< 5M then only 3-particle “cuts” have singularities, and these 
occur only when all three particles to go on-shell

E�!1�!2�!5
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Combining key steps 1-3
• For each diagram, determine which momenta must be summed, and which can 

be integrated	



• In our 3-particle example, find:

32

��†

Can integrate

Must sum momenta	


passing through box
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Combining key steps 1-3
• For each diagram, determine which momenta must be summed, and which can 

be integrated	



• In our 2-particle example, find:

33

Can replace sum with integral here

But not here
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Combining key steps 1-3
• For each diagram, determine which momenta must be summed, and which can 

be integrated	



• In our 2-particle example, find:

33

• Then repeatedly use sum=integral + “sum-integral” to simplify 

Can replace sum with integral here

But not here
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Key issues 4-6

• Dealing with cusps, avoiding divergences in 3-particle scattering amplitude, and 
dealing with breaking of particle interchange symmetry	



• Discuss later!

34
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2-particle quantization 
condition

35

Following method of [Kim, Sachrajda & SS 05]
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+

+ + + · · ·

�†

�†

�†

�†

�

�

�

�

CL(E, ~P ) = these loops are now 
integrated

• Apply previous analysis to 2-particle correlator (0 < E* < 4M)

• Collect terms into infinite-volume Bethe-Salpeter kernels

�† �

+ · · ·�† �+ + + · · ·
�

+

⇢

CL(E, ~P ) = iB
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• Apply previous analysis to 2-particle correlator

• Collect terms into infinite-volume Bethe-Salpeter kernels

�† �

+ · · ·�† �+ + + · · ·
�

+

⇢

CL(E, ~P ) =

+

+ · · ·+

�† � �† �

�† �

CL(E, ~P ) =

• Leading to

iB

iB

iB

iB
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A0

⇢ ⇢
+ + · · ·� �

⇢
+ · · ·

F

iB iB + ...

38

+

+ · · ·+

�† � �† �

�† �
+�† � �† �

CL(E, ~P ) =

�† � �† � �† � �† �+ + +

F

F F F F

• Next use sum identity

A

CL(E, ~P ) = C1(E, ~P )

+
⇢

+ �†�†

zero F cuts 

matrix elements: 

• And regroup according to number of  “F cuts”

iB iB

iB

iB iBiB iB

one F cut
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⇢ ⇢
+ + · · · + · · ·+

iM

A0A

CL(E, ~P ) = C1(E, ~P )+

two F 
cuts

A0A

F F

F

the infinite-volume, on-shell 2→2 
scattering amplitude

• And keep regrouping  according to number of  “F cuts”

39

+

+ · · ·+

�† � �† �

�† �
+�† � �† �

CL(E, ~P ) =

�† � �† � �† � �† �+ + +

F

F F F F

• Next use sum identity

iB iB

iB

iB iBiB iB

iB iB iB
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⇢ ⇢
+ + · · · + · · ·+ A0A

CL(E, ~P ) = C1(E, ~P )+ A0A

F F

F

the infinite-volume, on-shell 	


2→2 K-matrix 

• Alternate form if use PV-tilde prescription:

40

+

+ · · ·+

�† � �† �

�† �
+�† � �† �

CL(E, ~P ) =

�† � �† � �† � �† �+ + +

F

F F F F

• Next use sum identity

iB iB

iB

iB iBiB iB

iB iB iB

gPV

gPVgPV

iK

gPV

gPV gPV

gPV gPV
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• Final result:

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

CL(E, ~P ) = C1(E, ~P ) +
1X

n=0

A0iF [iM2!2iF ]nA

F F F

F F F

•  

• Correlator is expressed in terms of infinite-volume, physical quantities and 
kinematic functions encoding the finite-volume effects
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•                                diverges whenever                                      diverges

•  

42

• Final result:

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

CL(E, ~P ) = C1(E, ~P ) +
1X

n=0

A0iF [iM2!2iF ]nA

F F F

F F F

CL(E, ~P ) = C1(E, ~P ) +A0iF
1

1� iM2!2iF
A

no poles,	


only cuts

•  

no poles,	


only cuts

matrices in l,m space

iF
1

1� iM2!2iF
CL(E, ~P )
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•  

43

• Final result:

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

CL(E, ~P ) = C1(E, ~P ) +
1X

n=0

A0iF [iM2!2iF ]nA

F F F

F F F

CL(E, ~P ) = C1(E, ~P ) +A0iF
1

1� iM2!2iF
A

no poles,	


only cuts

•  

no poles,	


only cuts

matrices in l,m space

�L,~P (E) = det
⇥
(iF )�1 � iM2!2

⇤
= 0⇒
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•  

43

• Final result:

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

CL(E, ~P ) = C1(E, ~P ) +
1X

n=0

A0iF [iM2!2iF ]nA

F F F

F F F

CL(E, ~P ) = C1(E, ~P ) +A0iF
1

1� iM2!2iF
A

no poles,	


only cuts

•  

no poles,	


only cuts

matrices in l,m space

�L,~P (E) = det
⇥
(FgPV )

�1 +K2

⇤
= 0⇒

Alternative!
form
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2-particle quantization condition

• At fixed L & P, the finite-volume spectrum E1, E2, ... is given by solutions to

44

• K2 , FPV  are matrices in l,m space 

• K2 is diagonal in l,m	



• FPV is off-diagonal, since the box violates rotation symmetry	



• To make useful, truncate by assuming that K2 vanishes above lmax	



iK2;00;00(E
⇤
n) =

h
iFgPV ;00;00(En, ~P ,L)

i�1

�L,~P (E) = det
⇥
(FgPV )

�1 +K2

⇤
= 0

Equivalent to generalization of s-wave Lüscher equation to moving frame [Rummukainen & Gottlieb]
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3-particle quantization 
condition

45

Following [Hansen & SS 14]
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Final result

46

• Spectrum is determined (for given L, P) by solutions of

• Superficially similar to 2-particle form ...

�L,P (E) = det
⇥
F�1
3 +Kdf,3

⇤
= 0

• ... but F3 contains both kinematical, finite-volume quantities (FPV & G) and the 
dynamical, infinite-volume quantity K2 

�L,~P (E) = det
⇥
(FgPV )

�1 +K2

⇤
= 0
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Final result

46

• Spectrum is determined (for given L, P) by solutions of

• Superficially similar to 2-particle form ...

�L,P (E) = det
⇥
F�1
3 +Kdf,3

⇤
= 0

• ... but F3 contains both kinematical, finite-volume quantities (FPV & G) and the 
dynamical, infinite-volume quantity K2 

Known 
kinematical 

quantity: 
essentially	


the same	


as FPV in	



2-particle	


analysis

Infinite volume 
3-particle 
scattering 
quantity

G is known 
kinematical 

quantity 
containing	



cut-off 
function H

F3 =
FfPV

2!L3


�2

3
+

1

1 + (1 +K2G)�1K2FfPV

�

�L,~P (E) = det
⇥
(FgPV )

�1 +K2

⇤
= 0
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Final result

47

• All quantities are (infinite-dimensional) matrices, e.g. (F3)klm;pl’m’, with indices

�L,P (E) = det
⇥
F�1
3 +Kdf,3

⇤
= 0

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

Three on-shell particles with total energy-momentum (E, P)

[finite volume “spectator” momentum: k=2πn/L] x [2-particle CM angular momentum: l,m]

• For large k other two particles are below threshold; must include such 
configurations by analytic continuation up to a cut-off at k~m [provided by H(k)]

F3 =
FfPV

2!L3


�2

3
+

1

1 + (1 +K2G)�1K2FfPV

�
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Final result

48

• Important limitation: our present derivation requires that all two-particle sub-
channels are non-resonant at the spectral energy under consideration	



• Resonances imply that K2 has a pole, and this leads to additional finite volume 
dependence not accounted for in the derivation	



• We only have an ugly solution—searching for something better

�L,P (E) = det
⇥
F�1
3 +Kdf,3

⇤
= 0

F3 =
FfPV

2!L3


�2

3
+

1

1 + (1 +K2G)�1K2FfPV

�
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Final result

49

• Successfully separated infinite volume quantities from finite volume kinematic 
factors, but….	



• What is Kdf,3? 	



• How do we obtain this result?	



• How can it be made useful?

�L,P (E) = det
⇥
F�1
3 +Kdf,3

⇤
= 0

F3 =
FfPV

2!L3


�2

3
+

1

1 + (1 +K2G)�1K2FfPV

�
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Key issue 4: dealing with cusps
• Can sum subdiagrams without 3-particle cuts into Bethe-Salpeter kernels

50

⇒ Skeleton expansion in terms of Bethe-Salpeter kernels

iB2 iB3
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Key issue 4: dealing with cusps
• Want to replace sums with integrals + F-cuts as in 2-particle analysis	



• Straightforward implementation fails when have 3 particle intermediate states 
adjacent to 2→2 kernels

51
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Cusp analysis (1)
• Aim: replace sums with integrals + finite-volume residue	



• E.g. 

52

(E, ~P ) �!
~k

~a

dressed 	


propagators

interpolating	


operator

2PI Bethe-Salpeter	


kernel 

• Can replace sums with integrals for smooth, non-singular parts of summand	



• Singular part of left-hand 3-particle intermediate state

p
~k2 +m2 p

~a2 +m2

q
(~P � ~k � ~a)2 +m2

smooth	


functions

denominator	


vanishes on-shell

1

L6

X

~k

X

~a

A(~k,~a)B(~k,~a)

E � !k � !a � !ka

1

L6

X

~k

X

~a
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Cusp analysis (2)

53

1
L6

P
~k

P
~a

A(~k,~a)B(~k,~a)
E�!k�!a�!ka

Difference gives zeta-function F with 	


A & B projected on shell [Lüscher,...]

~k

~a

F has multiple singularities,	


so leave k summed	



for F-term

1
L3

P
~a �!

R
~a +( 1

L3

P
~a �

R
~a)

Step 1: treat sum over a
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Cusp analysis (2)

53

1
L6

P
~k

P
~a

A(~k,~a)B(~k,~a)
E�!k�!a�!ka

Difference gives zeta-function F with 	


A & B projected on shell [Lüscher,...]

~k

~a

F has multiple singularities,	


so leave k summed	



for F-term

1
L3

P
~a �!

R
~a +( 1

L3

P
~a �

R
~a)

Step 1: treat sum over a

Step 2: treat sum over k

• Want to replace sum over k with integral for       term	


• Only possible if integral over a gives smooth function	


• iε prescription and standard principal value (PV) lead to 

cusps at threshold ⇒ sum-integral ~1/L4 [Polejaeva & Rusetsky]	



• Requires use of modified       prescription

R
~a

fPV

Result: 1
L6

P
~k

P
~a =

R
~k

R
~a +

P
~k “F term”
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Cusp analysis (3)

54

• Simple example:
R
~a

A(~k,~a)B(~k,~a)
E�!k�!a�!ka

f(c) =
R1
0 dx

p
xe

�(x�c)

c�x

x ⇠ (a⇤)2

c

Re f(c)

PV & iε

fPV
threshold

c

Im f(c)

iε

threshold

• Far below threshold,        smoothly turns back into PVfPV



/88S. Sharpe, “3-particle quantization condition” 03/20/2015, YITP workshop, Kyoto

Cusp analysis (4)

• Bottom line: must use        prescription for all loops	



• This is why K-matrix K2 appears in 2-particle summations 	



• K2  is standard above threshold, and given below by analytic continuation (so 
there is no cusp)

55

fPV

• This prescription is that used previously when studying finite-volume effects on 
bound-state energies using two-particle quantization condition [Detmold, Savage,...]	



• Far below threshold smoothly turns into M2
l
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Key issue 5: dealing with “switches”

56
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Key issue 5: dealing with “switches”

56

0 switches:

2 switches:

1 switch:

“switch state”
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Key issue 5: dealing with “switches”

56

• With cusps removed, no-switch diagrams can be summed as for 2-particle case	



• “Switches” present a new challenge

0 switches:

2 switches:

1 switch:

“switch state”
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One-switch diagrams

57

+ · · ·

+ +

+

C(2)
L =

k0

k Can treat similarly to 2-particle case	


leading to a series of FPV’s and K2’s

`,m

~k
`0,m0

iK2 ~p

iK2

• End up with L-dependent part of C(2) having at its core:

On-shell
On-shell

• This is our first contribution to the infinite-volume 3 particle scattering amplitude
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One-switch problem

58

`,m

~k

`0,m0

• Amplitude is singular for some choices of k, p in physical regime	



• Propagator goes on shell if top two (and thus bottom two) scatter elastically	



• Not a problem per se, but leads to difficulties when amplitude is symmetrized	



• Occurs when include three-switch contributions

`0,m0
`,m

~k

• Singularity implies that decomposition in Yl,m will not converge uniformly	



• Cannot usefully truncate angular momentum expansion	



~p

~p
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• Define divergence-free amplitude by subtracting singular part	



• Utility of subtraction noted in [Rubin, Sugar & Tiktopoulos, ’66]	



One-switch solution

59

�`0,m0
`,m

~k
`0,m0

`,m

~k

• Key point: Kdf,3 is local and its expansion in harmonics can be truncated	



• Subtracted term must be added back---leads to G contributions to F3	



• Can extend divergence-free definition to any number of switches

Always on-shell;	


can be below	



threshold

Off-shell except 	


at pole

iKdf,3 �

iK2 iG iK2

~p ~p



/88S. Sharpe, “3-particle quantization condition” 03/20/2015, YITP workshop, Kyoto

Key issue 6: symmetry breaking
• Using        prescription breaks particle interchange symmetry	



• Top two particles treated differently from spectator	



• Leads to very complicated definition for Kdf,3, e.g.

60

fPV

K2

propagator with	


divergence subtracted

divergent part	


of propagator

With PV-tilde prescription 	


need to specify order of integrals	



diagram by diagram!

amputated 	


external	



legs

• Can extend definition of Kdf,3 to all orders, in such a way that it is symmetric 
under interchange of external particles

iKdf,3 �
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Key issue 6: symmetry breaking

61

• Final definition of Kdf,3 is, crudely speaking:	



• Sum all Feynman diagrams contributing to M3 	



• Use       prescription, plus a (well-defined) set of rules for ordering integrals	



• Subtract leading divergent parts 	



• Apply a set of (completely specified) extra factors (“decorations”) to ensure 
external symmetrization	



• Kdf,3 is an UGLY infinite-volume quantity related to scattering	



• At the time of our initial paper, we did not know the relation between Kdf,3 and 
M3 & M2, although we had reasons to think that such a relationship exists	



• Now we know the relationship

fPV
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Final result

62

• Successfully separated infinite volume quantities from finite volume kinematic 
factors, but …	



• But what is Kdf,3? 	



• How do we obtain this result?	



• How can it be made useful?

�L,P (E) = det
⇥
F�1
3 +Kdf,3

⇤
= 0

✔

✔

F3 =
FfPV

2!L3


�2

3
+

1

1 + (1 +K2G)�1K2FfPV

�
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Utility of result: 
truncation

63
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Truncation in 2 particle case

• If M (which is diagonal in l,m) vanishes for l > lmax then can show that need 
only keep l ≤ lmax in F (which is not diagonal) and so have finite matrix 
condition which can be inverted to find M(E) from energy levels

64

�L,~P (E) = det
⇥
(FgPV )

�1 +K2

⇤
= 0
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Truncation in 3 particle case

• For fixed E & P, as spectator momentum |k| increases, remaining two-particle 
system drops below threshold, so FPV becomes exponentially suppressed 	



• Smoothly interpolates to FPV=0 due to H factors; same holds for G	



• Thus k sum is naturally truncated (with, say, N terms required)	



• l is truncated if both K2 and Kdf, 3  vanish for l > lmax	



• Yields determinant condition truncated to [N(2lmax+1)]2 block

65

�L,P (E) = det
⇥
F�1
3 +Kdf,3

⇤
= 0

F3 =
FgPV
2!L3

h
� 2

3 + 1
1+(1+K2G)�1K2FgPV

i
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Truncation in 3 particle case

66

�L,P (E) = det
⇥
F�1
3 +Kdf,3

⇤
= 0

• Given prior knowledge of K2 (e.g. from 2-particle quantization condition) each 
energy level Ei of the 3 particle system gives information on Kdf,3 at the 
corresponding 3-particle CM energy Ei*	



• Probably need to proceed by parameterizing Kdf,3→3, in which case one would 
need at least as many levels as parameters at given energy	



• Given K2 and Kdf,3 one can reconstruct M3	



• The locality of Kdf,3 is crucial for this program	



• Clearly very challenging in practice, but there is an existence proof....

F3 =
FgPV
2!L3

h
� 2

3 + 1
1+(1+K2G)�1K2FgPV

i
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Isotropic approximation

•Assume Kdf,3 depends only on E* (and thus is indep. of k, l, m)	



•Also assume K2 only non-zero for s-wave (⇒ lmax=0) and known	



•Truncated [N x N] problem simplifies: Kdf,3 has only 1 non-zero 
eigenvalue, and problem collapses to a single equation:

fPV
fPV

Known in terms of	


two particle scattering amplitude
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Infinite volume relation 
between Kdf,3 & M3

68

 [Hansen & SS 15, in preparation]
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The issue
•Three particle quantization condition depends on Kdf,3 rather 

than the three particle scattering amplitude M3	



•Kdf,3 is an infinite volume quantity (loops involve integrals) but 
is not physical 	



• Has a very complicated, unwieldy definition	



• Depends on the cut-off function H 	



• However, it was forced on us by the analysis, and is some 
sort of local vertex	



•To complete the quantization condition we must relate Kdf,3 

to M3

69
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The method

•Define a “finite volume scattering amplitude” ML,3 which goes 
over to M3 in an (appropriately taken) L→∞ limit	



•Relate ML,3 to Kdf,3 at finite volume—which turns out to 
require a small generalization of the methods used to derive 
the quantization condition	



•Take L→∞, obtaining nested integral equations

70
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Modifying CL to obtain ML,3

71
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Modifying CL to obtain ML,3

72

Step 1:  “amputate”
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Modifying CL to obtain ML,3

73

Step 2:  Drop disconnected diagrams
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Modifying CL to obtain ML,3

74

Step 3:  Symmetrize
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ML,3 in terms of Kdf,3

75
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ML,3 in terms of Kdf,3

76

•LL and RL depend only on ML,2, G and FPV	



•ML,2 is “finite volume two particle scattering amplitude”

fPV



/88S. Sharpe, “3-particle quantization condition” 03/20/2015, YITP workshop, Kyoto

ML,3 in terms of Kdf,3

77

•Key point: the same (ugly) Kdf,3 appears in ML,3 as in CL 

•Can use ML,3 to derive quantization condition
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Final step: taking L→∞ 

78

fPV
fPV

•All equations involve matrices with indices k, l, m

Spectator momentum 
k =2 n π / L 

Summed over n

Already in infinite 
volume variables
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Final step: taking L→∞ 

79

fPV
fPV

•Sums over momenta → integrals (+ now irrelevant 1/L terms!)	



•Must introduce pole prescription for sums to avoid singularities
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Final result: nested integral equations

80

• Quantities are still matrices in l,m space	



• Presence of cut-off function means that integrals have finite range	



• D(u,u) sums geometric series which gives physical divergences in M3

(1) Obtain L→∞ limit of DL

+ + …

G1 G1 G1M2
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Final result: nested integral equations

81

• ρ(k) is a phase space factor (analytically continued when below threshold) 	



• Requires D(u,u) and M2	



• Corresponds to summing the core geometric series, i.e.

(2) Sum geometric series involving Kdf,3
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Final result: nested integral equations

82

• Sums geometric series on “outside” of Kdf,3’s

(3) Add in effects of external 2→2 scattering:

M3(~p,~k)� S
n

D(u,u)(~p,~k)
o

| {z }

Mdf,3

= �S
⇢

Z

s

Z

r
L(u,u)(~p,~s)T (~s,~r)R(u,u)(~r,~k)

�

lim
L!1

( )

• Can also invert and determine Kdf,3 given M3 and M2
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Conclusions & Outlook

83
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Summary: successes

•Obtained a 3-particle quantization condition	



•Confirmed that 3-particle spectrum determined by infinite-
volume scattering amplitudes in a general relativistic QFT	



•Truncation to obtain a finite problem occurs naturally	



•Threshold expansion and other checks give us confidence in 
the expression  

84
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Summary: limitations

•Relation of Kdf,3 to M3 requires solving integral equations	



•K2 is needed below (as well as above) 2-particle threshold	



•Formalism fails when K2 is singular ⇒ each two-particle 

channel must have no resonances within kinematic range	



•Applies only to identical, spinless particles, with Z2 symmetry

85
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•Fully develop 3 body formalism	



• Allow two particle sub-channels to be resonant	



• Extend to non-identical particles, particles with spin	



• Generalize LL factors to 1→3 decay amplitudes (e.g. for 
K→πππ)	



• Include 1→2, 2→3, … vertices	



•Develop models of amplitudes so that new results can be 
implemented in simulations	



•Onwards to 4 or more particles?!?

Many challenges remain!
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Many challenges remain!
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Thank you! 
Questions?

88


