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Lattice gauge theory and the energy—momentum tensor (EMT)

@ Lattice gauge theory: the most successful non-perturbative formulation of gauge
theory. By discretizing the spacetime. ..
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Lattice gauge theory and the energy—momentum tensor (EMT)

@ Lattice gauge theory: the most successful non-perturbative formulation of gauge
theory. By discretizing the spacetime. ..

@ preserves internal gauge symmetry exactly. ..

@ but incompatible with spacetime symmetries (translation, Poincaré, SUSY,
conformal, ...) fora# 0

@ For a # 0, one cannot define the Noether current associated with the translational
invariance, EMT {T,. }r(x)

@ Even for the continuum limit a — 0, this is difficult, because EMT is a composite
operator which generally contains UV divergences:
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EMT in lattice gauge theory?

@ Is it possible to construct EMT on the lattice, which becomes the correct EMT
automatically in the continuum limit a — 0?
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@ This contains the correct normalization and the conservation law

@ If such a construction is possible, we expect wide application:
QCD thermodynamics, transport coefficients in gauge theory, momentum/spin
structure of baryons, conformal field theory, dilaton physics, . ..
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EMT in lattice gauge theory?

@ Is it possible to construct EMT on the lattice, which becomes the correct EMT
automatically in the continuum limit a — 0?

@ The correct EMT is characterized by the Ward—Takahashi relation

<oext/ dDX 0;1, {T/u/}/q (X) Oint> = - <Oext ainnt>
D

D
. (@) ext

@ This contains the correct normalization and the conservation law

@ If such a construction is possible, we expect wide application:
QCD thermodynamics, transport coefficients in gauge theory, momentum/spin
structure of baryons, conformal field theory, dilaton physics, . ..

@ The present work is also an attempt to understand EMT in quantum field theory in
the non-perturbative level
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EMT on the lattice (Caracciolo et al. (1989-))

@ Under the hypercubic symmetry, the operator reproducing the correct EMT of
QCD for a — 0 is given by

{TMV}F{ (X Z Z/O/HV |Iat1|ce - VEV’

where

Onn(X) = S Fa, (X)FE,(x), Oa,ul0) = b 3 F5()F (4.

O (X) = %) (3D 47 D) ¥(x),  Oapu(x) = 6Ww(x) D(x),
Osp(X) = 5uum0w(x)¢(x)a

and, Lorentz non-covariant ones:

Osy(x) = m FE(0),  O7(X) = 8, d(X) D utb(x)
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@ Under the hypercubic symmetry, the operator reproducing the correct EMT of
QCD for a — 0 is given by

{TMV}F{ (X Z Z/O/HV |Iat1|ce - VEV7

where

Onn(X) = S Fa, (X)FE,(x), Oa,ul0) = b 3 F5()F (4.

O (X) = %) (3D 47 D) ¥(x),  Oapu(x) = 6Ww(x) D(x),
Osp(X) = 5uum0w(x)¢(x)a

and, Lorentz non-covariant ones:

Osy(x) = m FE(0),  O7(X) = 8, d(X) D utb(x)

@ Seven non-universal coefficients Z; must be determined by lattice perturbation
theory or by a non-perturbative method
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EMT on the lattice (Caracciolo et al. (1989-))

@ Under the hypercubic symmetry, the operator reproducing the correct EMT of
QCD for a — 0 is given by

{TMV}F{ (X Z Z/O/HV |Iat1|ce - VEV7

where

Onn(X) = S Fa, (X)FE,(x), Oa,ul0) = b 3 F5()F (4.

O (X) = %) (3D 47 D) ¥(x),  Oapu(x) = 6Ww(x) D(x),
Osp(X) = 5uum0w(x)¢(x)a

and, Lorentz non-covariant ones:

Osy(x) = m FE(0),  O7(X) = 8, d(X) D utb(x)

@ Seven non-universal coefficients Z; must be determined by lattice perturbation
theory or by a non-perturbative method

@ Determination of Z;’s using the gradient flow! (Del Debbio’s talk)
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Yang—Mills gradient flow (LUscher, (2009-)) (cf. Kaplan’s talk)

@ Yang—Mills gradient flow is an evolution of the gauge field A,.(x) wrt a fictitious
time t € R, according to

5S
OB, (t,x) = —QSW;MX) =D,Guu(t,x) = AB,(t,X) + -,

where the initial value is the conventional gauge field
B.(t=0,x) = Au(x)
and

GMV(tv X) = auBV(t? X) - aVBH(t’ X) + [Bﬂ(t7 X)7 BV(t7 X)]v DH = 8# + [B}H ]

Hiroshi Suzuki (Kyushu University) Yang-Mills gradient flow and. .. 2015/03/16 @ YITP 5/28



Yang—Mills gradient flow (LUscher, (2009-)) (cf. Kaplan’s talk)

@ Yang—Mills gradient flow is an evolution of the gauge field A,.(x) wrt a fictitious
time t € R, according to

5S
OB, (t,x) = —QSW;MX) =D,Guu(t,x) = AB,(t,X) + -,

where the initial value is the conventional gauge field
Bu(t=0,x) = Au(x)
and
G (t, X) = 0B, (t, X) — 00 Bu(t, X) + [Bu(t, ), B.(t, X)l, Dy = 0.+ [By, ]
@ This is a sort of diffusion equation in which the diffusion length is

x ~ V8t
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where the initial value is the conventional gauge field
B.(t=0,x) = Au.(x)
and
G (t, X) = 0B, (t, X) — 00 Bu(t, X) + [Bu(t, ), B.(t, X)l, Dy = 0.+ [By, ]
@ This is a sort of diffusion equation in which the diffusion length is
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Yang—Mills gradient flow (LUscher, (2009-)) (cf. Kaplan’s talk)

@ Yang—Mills gradient flow is an evolution of the gauge field A,.(x) wrt a fictitious
time t € R, according to

5S
OB, (t,x) = —QSW;MX) =D,Guu(t,x) = AB,(t,X) + -,

where the initial value is the conventional gauge field
B.(t=0,x) = Au.(x)
and
G (t, X) = 0B, (t, X) — 00 Bu(t, X) + [Bu(t, ), B.(t, X)l, Dy = 0.+ [By, ]
@ This is a sort of diffusion equation in which the diffusion length is
X ~ /8t

@ But, why this can be relevant to lattice EMT???
@ The key is the UV finiteness of the gradient flow
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Perturbative expansion of the gradient flow

@ Yang-Mills gradient flow
OB, (t,x) = D,Guu(t, X) + agD,0, B, (t, X), B.(t=0,x) = A.(x),

where the term with «y is introduced to suppress the gauge mode. This can be
formally solved as

B.(t.x) = [ oy [Kitx— A+ [ 5K o(x = V) Ruls,)] |

where K is the heat kernel (for ag = 1)

1 _2

_ iox —p? _
Ki(X)po = 0, | €€ = 0pv (47rt)D/26 a

14
and R denotes non-linear terms

R, =2[B,,0,B.] — [Bv,0.B.] + (cg — 1)[B,, 0. B.] + [B., [Bv, B.]]

Pictorially, (double lines: K, crosses: A, white circles: R) (cf. Kaplan’s talk),

e e o -
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Perturbative expansion of the gradient flow

@ Quantum correlation function of the flowed gauge field
<BM1 (t1 ’ X1) Bun(t”7 Xn - /DA BM (t1 X1) Bun(tm X”) e_SYM

is obtained by taking the quantum expectation value of the initial value A, (x). For
example, the contraction of two A,’s

U
AAVMX XA = AWV
produces the free propagator of the flowed field (in the Feynman gauge)

<Bz(t> X)BS(S, y)> 6abgo IUJ / eiP(X—Y) T
P

2
e_(H’S)p
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Perturbative expansion of the gradient flow

@ Quantum correlation function of the flowed gauge field
<BM1 (t1 ’ X1) Bun(t”7 Xn - /DA BM (t1 X1) Bun(tm X”) e_SYM

is obtained by taking the quantum expectation value of the initial value A, (x). For
example, the contraction of two A,’s

U
AAVMX XA = AWV
produces the free propagator of the flowed field (in the Feynman gauge)

<Bz(t> X)BS(S, y)> 6abgo IUJ / eiP(X—Y) T
P

2
e_(H’S)p

@ Similarly, for (black circle: Yang—Mills vertex)

e, o

we have the loop flow-line Feynman diagram

o e
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backup: Gauge invariance of the gradient flow

@ Under the infinitesimal gauge transformation (no B:(t, x); in 4D sense),
B.(t,x) — Bu(t,x) + D,w(t, x),
the flow equation
0Bu(t,x) = D.Guu(t, X) + 2 D,0, Bu(t, x),
changes to

3B, (t,X) = D, Gy u(t, X) + 0D, 0, B, (t, X) — D, (8: — oD, 8, )w(t, X)
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backup: Gauge invariance of the gradient flow

@ Under the infinitesimal gauge transformation (no B:(t, x); in 4D sense),
B.(t,x) — Bu(t,x) + D,w(t, x),
the flow equation
0B (t, x) = D, Gy u(t, X) + a0 D,0. B, (1, X),
changes to
0B, (t,x) = D, G, .(t,x) + a0 D.8, B, (t,x) — D, (0t — D, 0, )w(t, x)
@ Choosing w(t, x) as
(0 — DL )w(t, X) = =6y B (t, X), w(t=0,x)=0,
ap can be changed accordingly
g — ag + oy

That is, B,.(t, x)’s corresponding to different «’s are related by a gauge
transformation
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backup: Gauge invariance of the gradient flow

@ Under the infinitesimal gauge transformation (no B:(t, x); in 4D sense),
B,.(t,x) = Bu(t, x) + Duw(t, x),
the flow equation
0B (t, x) = D, Gy u(t, X) + a0 D,0. B, (1, X),
changes to
0B, (t,x) = D, G, .(t,x) + a0 D.8, B, (t,x) — D, (0t — D, 0, )w(t, x)
@ Choosing w(t, x) as
(0 — DL )w(t, X) = =6y B (t, X), w(t=0,x)=0,
ap can be changed accordingly
g — ag + oy

That is, B,.(t, x)’s corresponding to different «’s are related by a gauge
transformation

@ Gauge invariant quantity (in 4D sense) is independent of ag
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UV finiteness of the gradient flow | (Lischer—Weisz (2011))

@ Correlation function of the flowed gauge field
<BM1(t17X1)"'Bun(tn,xn», tt>0,...,t >0,

when expressed in terms of renormalized parameters, is UV finite without the
wave function renormalization
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UV finiteness of the gradient flow | (Lischer—Weisz (2011))

@ Correlation function of the flowed gauge field
<BM1(t17X1)"'Bun(tn,xn», tt>0,...,t >0,

when expressed in terms of renormalized parameters, is UV finite without the
wave function renormalization

@ Two-point function in the tree level (in the Feynman gauge)
e_(t+5)P2

(Bi(t.X)Bs.y)), = 6o | 15—
P
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UV finiteness of the gradient flow | (Lischer—Weisz (2011))

@ Correlation function of the flowed gauge field
<BM1(t1»X1)"'Bun(tn,xn»7 tt>0,...,t >0,

when expressed in terms of renormalized parameters, is UV finite without the
wave function renormalization

@ Two-point function in the tree level (in the Feynman gauge)
. —(t+s)p?
_pe
(Bt X)Bs.¥)) = 6%Gb., | &P E——
0 o P

@ One-loop corrections (consisting only from Yang—Mills vertices)

A o S

where the last counter term arises from the parameter renormalization

gg _ H2€g22> )\0 _ )\23—1
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UV finiteness of the gradient flow | (Lischer—Weisz (2011))

@ Correlation function of the flowed gauge field
<BM1(t17X1)"'Bun(tn,xn»7 tt>0,...,t >0,

when expressed in terms of renormalized parameters, is UV finite without the
wave function renormalization

@ Two-point function in the tree level (in the Feynman gauge)
. —(t+s)p?
_pe
(Bi(t.x)BY(s,y)) = 6" GBo., | &P E
0 o P

@ One-loop corrections (consisting only from Yang—Mills vertices)

A o S

where the last counter term arises from the parameter renormalization
%=1z, r=2Z"

@ Usually, for the two-point function to become UV finite, further wave function
renormalization (A2 = Z'/2Z}/?(Ag)2) is required
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UV finiteness of the gradient flow | (Lischer—Weisz (2011))

@ In the present flowed system, we instead have the white circles (flow vertex)

o e ol

It turns out that these provide the same effect as the wave function renormalization
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@ In the present flowed system, we instead have the white circles (flow vertex)

o e ol

It turns out that these provide the same effect as the wave function renormalization
@ All order proof, using a local D + 1-dimensional field theory

RS

e
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@ In the present flowed system, we instead have the white circles (flow vertex)

o e ol

It turns out that these provide the same effect as the wave function renormalization
@ All order proof, using a local D + 1-dimensional field theory

RS

e
L

@ No bulk (t > 0) counterterm: because of the Gaussian damping factor ~ e in
the propagator
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UV finiteness of the gradient flow | (Lischer—Weisz (2011))

@ In the present flowed system, we instead have the white circles (flow vertex)

o e ol

It turns out that these provide the same effect as the wave function renormalization
@ All order proof, using a local D + 1-dimensional field theory

RS

e
L

@ No bulk (t > 0) counterterm: because of the Gaussian damping factor ~ e in
the propagator

@ No boundary (t = 0) counterterm besides Yang—Mills ones: because of a BRS
symmetry
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UV finiteness of the gradient flow |l

@ Correlation function of the flow gauge field
<Bﬂ1 (t17X1)BH2(t2, Xz) s Bﬂn(tn,xn)) s t > 07 ey th > 07
remains finite even for the equal-point product

t — tz, X1 — Xo,

oA &
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@ The new loop always contains the Gaussian damping factor ~ e~ which makes
integral finite; no new UV divergences arise
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remains finite even for the equal-point product

t — tz, X1 — Xo,

oA &

@ The new loop always contains the Gaussian damping factor ~ e~ which makes
integral finite; no new UV divergences arise

@ Composite operators of the flowed gauge field B, (t, x) are renormalized UV finite
quantities, although the flowed field is a certain combination of the bare gauge field
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UV finiteness of the gradient flow |l

@ Correlation function of the flow gauge field
<Bﬂ1 (t17X1)BH2(t2, Xz) s Bﬂn(tn,xn)) s t > 07 ey th > 07
remains finite even for the equal-point product

t — tz, X1 — Xo,

oA &

@ The new loop always contains the Gaussian damping factor ~ e~ which makes
integral finite; no new UV divergences arise

@ Composite operators of the flowed gauge field B, (t, x) are renormalized UV finite
quantities, although the flowed field is a certain combination of the bare gauge field

@ Such UV finite quantities must be independent of the regularization
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Our strategy for lattice EMT

@ We try to bridge lattice regularization and dimensional regularization which
preserves the translational invariance, by using a flowed composite operator as an
intermediate tool
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Our strategy for lattice EMT

@ We try to bridge lattice regularization and dimensional regularization which
preserves the translational invariance, by using a flowed composite operator as an
intermediate tool

@ Schematically,

regularization independent

flowed composite operator
dimensiony \\Iittice

correct EMT low energy correlation functions
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EMT in dimensional regularization

@ EMT in dimensional regularization is simple and explicit, because it preserves the
translational invariance:

{Tuwv}r ()

1 1 1 1
go {01;1,1/( ) 202;_“/()()} + Zos;w(x) - 504;“,()() - Osy‘y(x) - VEV7
where
O1 (%) = S FR(0F2, (), Oz (X) = 6 3 Fo (X)F20 (%),
P p,o

O3 () = 0() (1 Dv 7% D) ¥(%), O (X) = 8,85(x) Dis(x),
Os0(X) = 5;wm01/_’(x)¢(x)a
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EMT in dimensional regularization

@ EMT in dimensional regularization is simple and explicit, because it preserves the
translational invariance:

{Tuwv}r ()

1 1 1 1
go {01;1,1/( ) 202;_“/()()} + Zos;w(x) - 504;“,()() - Osy‘y(x) - VEV7
where
O1 (%) = S FR(0F2, (), Oz (X) = 6 3 Fo (X)F20 (%),
P p,o

O3 () = 0() (1 Dv 7% D) ¥(%), O (X) = 8,85(x) Dis(x),
Os0(X) = 5;wm01/_’(x)¢(x)a

@ We want to find a composite operator of the flowed fields which reproduces this
combination. ..
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Small flow-time expansion

@ However, the relation between composite operators in t > 0 (heaven) and in 4D
(the earth) is not obvious in general. ..
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Small flow-time expansion

@ However, the relation between composite operators in t > 0 (heaven) and in 4D
(the earth) is not obvious in general. ..

@ The relation becomes tractable, in the limit in which the flow time becomes
smallt — 0
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Small flow-time expansion

@ However, the relation between composite operators in t > 0 (heaven) and in 4D
(the earth) is not obvious in general. ..

@ The relation becomes tractable, in the limit in which the flow time becomes
smallt — 0

@ Small flow-time expansion (Lischer-Weisz (2011))

(5,-,“,(1‘,x)

Gr(t.%) = (B (t.0)) + 226D [0 (x) ~ VEVI + 0D
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Small flow-time expansion

@ However, the relation between composite operators in t > 0 (heaven) and in 4D
(the earth) is not obvious in general. ..

@ The relation becomes tractable, in the limit in which the flow time becomes
smallt — 0

@ Small flow-time expansion (Lischer-Weisz (2011))

(5,’,,4,,(1‘, X)

Gr(t.%) = (B (t.0)) + 226D [0 (x) ~ VEVI + 0D

@ Inverting this relation,

Oy (x) = VEV = lim {Z( )ij(t) [ (%) = (Opuu(t, x)>]}
J
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Small flow-time expansion

@ However, the relation between composite operators in t > 0 (heaven) and in 4D
(the earth) is not obvious in general. ..

@ The relation becomes tractable, in the limit in which the flow time becomes
smallt — 0

@ Small flow-time expansion (Lischer-Weisz (2011))

(5,’,,4,,(1‘, X)

Gr(t.%) = (B (t.0)) + 226D [0 (x) ~ VEVI + 0D

@ Inverting this relation,

O (X) = VEV = lim {Z (¢7), @ [ Gt x) = (B (t.00) }
)

@ So, if we know the t — 0 behavior of the coefficients ¢;(t), the 4D operator in the
LHS can be extracted
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Renormalization group argument

@ We are interested in the t — 0 behavior of the coefficients ¢;(t) in

Ot 3) = (Bpu£:3)) + 3 GO 10 (3) = (O (X1 + O(1)
i
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Renormalization group argument

@ We are interested in the t — 0 behavior of the coefficients ¢;(t) in

Ot 3) = (Bpu£:3)) + 3 GO 10 (3) = (O (X1 + O(1)
i

@ When 9, (t, x) are indep. of renormalized parameters,

(u%) G(h) =0,

and ¢;(t) are indep. of the renormalization scale g, when expressed in terms of
running parameters. We may take, for example, g = 1/+/8t, and

Gi(1) [g.m; ] = Gy(t) [G(1/V/BE), i(1/v/BD); 1/VBI]
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Renormalization group argument

@ We are interested in the t — 0 behavior of the coefficients ¢;(t) in

Ot 3) = (Bpu£:3)) + 3 GO 10 (3) = (O (X1 + O(1)
i

@ When 9, (t, x) are indep. of renormalized parameters,

(u%) G(h) =0,

and ¢;(t) are indep. of the renormalization scale g, when expressed in terms of
running parameters. We may take, for example, g = 1/+/8t, and

Gi(1) [g.m; ] = Gy(t) [G(1/V/BE), i(1/v/BD); 1/VBI]

@ Fort — 0, g(1/+/8t) — 0 because of the asymptotic freedom; perturbation theory
is justified!
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Flow of fermion fields

@ A possible choice (Lischer (2013))

an(t7 X) = [A - aoa#BH(tv X)] X(tv X)7 X(t = va) = w(XL
Ot X) = X(t,%) [B + 0duBu(t.X)] . R(t=0.%) = $(x),

where
A:D‘LD#, D#:aM“FB/J‘:
— — = — —
A=D,D,, D,=9,-B,
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Flow of fermion fields

@ A possible choice (Lischer (2013))
atX(t: X) = [A - aoa#BH(t7 X)] X(ta X): X(t = va) = w(X)v
— -
Ot X) = X(t,%) [B + 0duBu(t.X)] . R(t=0.%) = $(x),
where
A:DHD#, D#:(?M“FB/J‘:
— — — —
A=D,D,, D,=0,—-B,
@ Unfortunately, the flowed fermion field requires the wave function renormalization:

xa(t,x) = Z1/2X(tX) '( x) = ZV/%x(t, x),

ZX:1+(4 )ch(R)s +0(g"),

although composite operators of xg(t, x) are UV finite
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Ringed fermion fields

@ To avoid the complication associated with Z,,, we introduce

wt=c—20  _o xaltd = xa(t,X)+0(g")
\/t2 (X(tX) Dt %)) \/rz (Ralt,X) D xalt X))

_[—2dim(R)N;
=T @

where

and similarly for x(t, x)
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Ringed fermion fields

@ To avoid the complication associated with Z,,, we introduce

wt=c—20  _o xaltd = xa(t,X)+0(g")
\/t2 (X(tX) Dt %)) \/rz (Ralt,X) D xalt X))

_[—2dim(R)N;
=T @

@ Since Z, is cancelled out in %(f, x), composite operators of ¥(t, x) and x(t, x) are
UV finite

where

and similarly for x(t, x)
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EMT from the gradient flow

@ Small flow-time expansion:

@iu,,(t7 X)

= (Buut.X)) + 3 6(1) [0 (X) = Oy GN] + O(1)

We consider following composite operators of flowed fields:

(51.1“’(ta X) = Gzp(ta X)Ggp(ta X):

@Z;Lu(ty X) = 6MVGia(t7X)G;]o'(t7X)7

B (1,3) = K(3) (3 Do+ D ) (. ),
Oy (1,%) = 8, %(6,X) DAL, X),

@5HV(17 X) = 6MVm>£<(t7 X))%(tv X)
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EMT from the gradient flow

@ Small flow-time expansion:
O (t.%) = (B (1.%) ) + 37 1) [Ops (¥) = (Op ()] + O(1)

We consider following composite operators of flowed fields:
(51.1“’(ta X) = Gzp(ta X)Ggp(ta X):
@Z;Lu(ty X) = 6MVGia(t7X)G20'(t,X)7
s (,X) = £(8.%) (7 D v+ D ) X(E,%),
~ ° «—
04uu(ta X) = 5!“’)2(1.5 X) D;((L X)a
@5HV(17 X) = 5;u/m>£c(t7 X))%(tv X)

@ We compute (j(t) to the one-loop order and substitute

Ot (X) = (s (x)) = lim {Z (1), [Gu(t.5) = (Bi(t.00) } :
i

in the expression of EMT in dimensional regularization
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Calculation of ¢;(t)

@ To the one-loop order, we have to evaluate following flow-line Feynman diagrams:
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Master formula

@ Gathering all the above elements, we have
(Tuda () = m{ 0 (G2t X)GE(6x) + [0alt) = 3o1(0)] 61 Gia(t )G (11
+ (D%t X) (7. D+ D ) X(t, %)
+ [ea(t) — 268(1)] 6, (t, %) D (1, X) + SH(D)F(1, X)%(t, X) — VEV},
where (for the MS scheme; Inm — ~£ — 2In 2 for MS)
N — 71 {%cz(e) - gT(R)M} ,

a(/vee T 8 (any

cz(t):%(4;)2[ C(G) + 131T(F;)Nf},

og(t)—l{1 (1(/() C(H){ +In(432)]}

(1) = Lobg(1/vBI,

N — P 9(1/v8t)? 7
cs(t) = —m(1/V8t){ 1+ Wcz(R) [3|n7r+ 5+ In(432)] ,
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Master formula

® and 1 11 4 1
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Master formula

@ and
1

(4m)? (4 )?

@ Correlation functions of the RHS of the master formula can be computed
non-perturbatively by using lattice regularization

by = [%Cz(G)— %T(H)Nf], % = 7028C(R)
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Master formula

@ and
1

(4m)? (4 )?

@ Correlation functions of the RHS of the master formula can be computed
non-perturbatively by using lattice regularization

by = [%Cz(G)— %T(H)Nf], % = 7028C(R)

@ The coefficients c;(t) are universal, i.e., indep. of the lattice transcription
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Master formula

@ and
b= —— e - 2rRN b =
(4r)2 | 3 2 3 ik 0~ (4 )2
@ Correlation functions of the RHS of the master formula can be computed
non-perturbatively by using lattice regularization

@ The coefficients c;(t) are universal, i.e., indep. of the lattice transcription

——56C2(R)

@ Ideally, one should first take the continuum limit a — 0 to restore the “universality”
and then take t — 0
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Master formula

@ and
1

(4m)? (4 )?

@ Correlation functions of the RHS of the master formula can be computed
non-perturbatively by using lattice regularization

by = [%Cz(G)— %T(H)Nf}, % = 7028C(R)

@ The coefficients c;(t) are universal, i.e., indep. of the lattice transcription

@ Ideally, one should first take the continuum limit a — 0 to restore the “universality
and then take t — 0

@ Practically, we cannot simply take a — 0 and may take t as small as possible in

”

the window,
1
a< Vet n
Thus the usefulness with presently-accessible lattice parameters is not obvious a
priori. ..
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Master formula

@ and
1

(4m)? (4 )?

@ Correlation functions of the RHS of the master formula can be computed
non-perturbatively by using lattice regularization

by = [%Cz(G)— %T(H)Nf}, % = 7028C(R)

@ The coefficients c;(t) are universal, i.e., indep. of the lattice transcription

”

@ Ideally, one should first take the continuum limit a — 0 to restore the “universality
and then take t — 0

@ Practically, we cannot simply take a — 0 and may take t as small as possible in

the window,
1
ak Vet< n
Thus the usefulness with presently-accessible lattice parameters is not obvious a
priori. ..

@ Non-perturbative determination of c;(t) (Del Debbio—Patella—Rago (2013))
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Application to thermodynamics of SU(3) pure Yang—Mills theory

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration)
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Application to thermodynamics of SU(3) pure Yang—Mills theory

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration)
@ Thermal average of diagonal elements of EMT: the trace part (the trace anomaly),

(e—=3p);=— <{THM}F((X >T’

and the traceless part (the entropy density),

e+p)r=—{Too}p(x) >T+7 Z {Tixp ()7

i=1,2,3
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Application to thermodynamics of SU(3) pure Yang—Mills theory

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration)
@ Thermal average of diagonal elements of EMT: the trace part (the trace anomaly),

(e=3p); =— <{THM}H(X >T’
and the traceless part (the entropy density),
(e+P)r=—{{Too}g (X)), + 3 Z {Tita %))+
i=1,2,3

@ Thermodynamical quantities are obtained by the expectation value of EMT just at
that temperature T (no integration wrt the temperature)
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Application to thermodynamics of SU(3) pure Yang—Mills theory

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration)
@ Thermal average of diagonal elements of EMT: the trace part (the trace anomaly),
(e=3p); =— <{THM}H(X >T’
and the traceless part (the entropy density),
(e+pP)r=— <{T00}R (%) >T + a Z <{TM}R X)>
i=1,2,3

@ Thermodynamical quantities are obtained by the expectation value of EMT just at
that temperature T (no integration wrt the temperature)

@ We do not need to compute renormalization factors Z;
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Application to thermodynamics of SU(3) pure Yang—Mills theory

@ Asakawa—Hatsuda—ltou—Kitazawa—H.S. (FlowQCD Collaboration)
@ Thermal average of diagonal elements of EMT: the trace part (the trace anomaly),

(e—=3p);=— <{THM}H(X >T’

and the traceless part (the entropy density),

(e+pP)r=—{{Too}g (x) >T+* Z {Tita %))+

i=1,2,3

@ Thermodynamical quantities are obtained by the expectation value of EMT just at
that temperature T (no integration wrt the temperature)

@ We do not need to compute renormalization factors Z;

@ Experiment setting

Wilson plaquette action

o N2 x N, =323 x (6,8,10,32), 3 = 5.89-6.56, ~ 300 configurations

e Wilson flow: 4th order Runge—Kutta with ¢/a? = 0.025

o Scale setting: 8 « al\yg from ALPHA Collaboration, aTc at 8 = 6.20 from Boyd et al.
o

"]

4-loop running coupllng in the MS scheme
Clover field strength G7,,, (x)
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Application to thermodynamics of SU(3) pure Yang—Mills theory

@ Thermal expectation values versus the flow time /8t

31—

2a>sqri(80) |

forNt=10 1 &—8 beta=6.20 Nt=10
1

— beta=6.56 Nt=10
6—o beta=6.36

>
n

o

- (e3p)T"

(e+P)T!

Hiroshi Suzuki (Kyushu University)

g—Mills gradient flow a

e
2a>sqdn |
for Nt=10— :

for Nt =§—!

03/16 @ YITP
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Application to thermodynamics of SU(3) pure Yang—Mills theory

@ Thermal expectation values versus the flow time /8t

3

>
n

o
T

- 31

O
T

T T
| 2a>sqr8) |

1
forNt=10 1
1

— beta=6.56 Nt=10
6—o beta=6.36 Nt=10
&—=8 beta=6.20 Nt=10

E+P)T!
T T 1T

. T
[ 2a>squn ||
B 1

1

for Nt =10—4
for Nt =8 —!
for Nt =631

Pover |
:smeared|

@ We observe stable behavior for 2a < /8t < 1/(2T)) which indicates (!!!) the

t — 0 limit
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@ Continuum limit (from values at v/8t T = 0.40)

O ourresult
— Borsanyi et. al.
4 Okamoto et. al.
— Boydet.al.

I R
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Application to thermodynamics of SU(3) pure Yang—Mills theory

Boyd et. al.
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Application to thermodynamics of SU(3) pure Yang—Mills theory

@ Continuum limit (from values at v/8t T = 0.40)

S—_ 77

Boyd et. al.
NPB469,419 (1996)

O ourresult

— Borsanyi et. al.
4 Okamoto et. al.
— Boydet.al.

I R

Okamoto et. al. (CP-PACS)

| PRD60, 094510 (1999)
05
O Borsanyi et. al.
o[- 1 JHEP 1207, 056 (2012)
<+ S 1
~ 4
= 4 E
A ]
+ 31 ]
w 4
~ 2 -
s ]
0 ‘ Y
038 1 12 14 16 18 2

@ That our simple method produces results being consistent with past
comprehensive studies (within 20) indicates that our reasoning is correct. This
finding encouraged us very much!
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Ongoing numerical experiment

@ Asakawa—Hatsuda-Iritani—ltou—Kitazawa—H.S. (FlowQCD Collaboration)
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Ongoing numerical experiment

@ Asakawa—Hatsuda-Iritani—ltou—Kitazawa—H.S. (FlowQCD Collaboration)

@ Much much finer lattice!: N2 x N; = (64,96, 128)° x (12,16, 20, 24, 64, 96),
3 =6.3-7.3
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Ongoing numerical experiment

@ Asakawa—Hatsuda-Iritani—ltou—Kitazawa—H.S. (FlowQCD Collaboration)

@ Much much finer lattice!: N& x N; = (64,96, 128)3 x (12,16,20,24,64,96),
3 =6.3-7.3

@ Wider stable regions and much less errors
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Ongoing numerical experiment

@ Asakawa—Hatsuda-Iritani—ltou—Kitazawa—H.S. (FlowQCD Collaboration)

@ Much much finer lattice!: N& x N; = (64,96, 128)3 x (12,16,20,24,64,96),
3 =6.3-7.3

@ Wider stable regions and much less errors

@ More convincing results are expected
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Further recent developments
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Further recent developments

@ Gradient flow in the 2D O(N) non-linear sigma model (cf. Kikuchi-Onogi,
Aoki—Kikuchi—-Onogi)
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@ Gradient flow in the 2D O(N) non-linear sigma model (cf. Kikuchi-Onogi,
Aoki—Kikuchi—-Onogi)
@ All order proof of the UV finiteness (Makino—H.S.)
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Further recent developments

@ Gradient flow in the 2D O(N) non-linear sigma model (cf. Kikuchi-Onogi,
Aoki—Kikuchi—-Onogi)
o All order proof of the UV finiteness (Makino—H.S.)
o Energy—momentum tensor

{Tu}gp(x) = }@{01(t) [6 ni(t, x)8,ni(t,x) — 6W6 n'(t, x)8,n (t, x)]

+cg(t){ 8, 0p0 (t,X)c’)pn"(t,x)fVEV}},

where
1 1

g(1/venE  4n
)= 2 (N-2) -

C1(t): (N—2)In7r,

@ )(N 2)(N —4)3(1/v8t)?
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Further recent developments

@ Gradient flow in the 2D O(N) non-linear sigma model (cf. Kikuchi-Onogi,
Aoki—Kikuchi—-Onogi)
o All order proof of the UV finiteness (Makino—H.S.)
o Energy—momentum tensor

{Tu}gp(x) = }@{01(t) [6 ni(t, x)8,ni(t,x) — 6W6 n'(t, x)8,n (t, x)]

+cg(t){ 8, 0p0 (t,X)c’)pn"(t,x)fVEV}},

where
1 1

g(1/venE  4n
)= 7-(N-2) - 1

C1(t): (N—2)In7r,

@ny s (N—2)(N - 4)g(1/v8t)?

@ Thermodynamic quantities at large N (Makino—Sugino—H.S.)
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@ Gradient flow in the 2D O(N) non-linear sigma model (cf. Kikuchi-Onogi,
Aoki—Kikuchi—-Onogi)
o All order proof of the UV finiteness (Makino—H.S.)
o Energy—momentum tensor

{Tu}gp(x) = }@{01(t) [8 ni(t, x)8,ni(t,x) — 6W6 n'(t, x)8,n (t, x)]

+cg(t){ 8, 0p0 (t,X)c’)pn"(t,x)fVEV}},

where
1 1

g(1/venE  4n
)= 7-(N-2) - 1

C1(t): (N—2)In7r,

@ny s (N—2)(N - 4)g(1/v8t)?

@ Thermodynamic quantities at large N (Makino—Sugino—H.S.)
@ Gradient flow in the two-dimensional Gross—Neveu model

Hiroshi Suzuki (Kyushu University) Yang-Mills gradient flow and. .. 2015/03/16 @ YITP



Further recent developments
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o Energy—momentum tensor

{Tu}gp(x) = }@{01(t) [8 ni(t, x)8,ni(t,x) — 6W6 n'(t, x)8,n (t, x)]
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@ Thermodynamic quantities at large N (Makino—Sugino—H.S.)
@ Gradient flow in the two-dimensional Gross—Neveu model
o Energy—-momentum tensor

Hiroshi Suzuki (Kyushu University) Yang-Mills gradient flow and. .. 2015/03/16 @ YITP



Further recent developments

@ Gradient flow in the 2D O(N) non-linear sigma model (cf. Kikuchi-Onogi,
Aoki—Kikuchi—-Onogi)
o All order proof of the UV finiteness (Makino—H.S.)
o Energy—momentum tensor

{Tu}gp(x) = }@{01(t) [8 ni(t, x)8,ni(t,x) — 6W6 n'(t, x)8,n (t, x)]

+cg(t){ 8, 0p0 (t,X)c’)pn"(t,x)fVEV}},

where
1 1

g(1/velR  4n
)= 7-(N-2) - 1

C1(t): (N—2)In7r,

@ny s (N—2)(N - 4)g(1/v8t)?

@ Thermodynamic quantities at large N (Makino—Sugino—H.S.)
@ Gradient flow in the two-dimensional Gross—Neveu model

o Energy—-momentum tensor
o Conservation law at large N
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Further recent developments

@ Gradient flow in the 2D O(N) non-linear sigma model (cf. Kikuchi-Onogi,
Aoki—Kikuchi—-Onogi)
o All order proof of the UV finiteness (Makino—H.S.)
o Energy—momentum tensor

{Tu}gp(x) = }@{01(t) [8 ni(t, x)8,ni(t,x) — 6W6 n'(t, x)8,n (t, x)]

+cg(t){ 8, 0p0 (t,X)c’)pn"(t,x)fVEV}},

where
1 1

g(1/venE  4n
)= 7-(N-2) - 1

C1(t): (N—2)In7r,

——5(N—2)(N—4)g(1/V8t)?

(47)?
@ Thermodynamic quantities at large N (Makino—Sugino—H.S.)

@ Gradient flow in the two-dimensional Gross—Neveu model

o Energy—-momentum tensor
o Conservation law at large N
@ Large N computation of thermodynamic quantities
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Further recent developments

@ Gradient flow in the 2D O(N) non-linear sigma model (cf. Kikuchi-Onogi,
Aoki—Kikuchi—-Onogi)
o All order proof of the UV finiteness (Makino—H.S.)
o Energy—momentum tensor

{Tu}gp(x) = }@{01(t) [8 ni(t, x)8,ni(t,x) — 6W6 n'(t, x)8,n (t, x)]

+cg(t){ 8, 0p0 (t,X)c’)pn"(t,x)fVEV}},

where
1 1

g(1/venE  4n
)= 7-(N-2) - 1

C1(t) = (N—2)In7r,

@ny s (N—2)(N - 4)g(1/v8t)?

@ Thermodynamic quantities at large N (Makino—Sugino—H.S.)
@ Gradient flow in the two-dimensional Gross—Neveu model

o Energy—-momentum tensor
o Conservation law at large N
@ Large N computation of thermodynamic quantities

@ Similar “universal” formula for the flavor non-singlet axial current
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Summary and prospects

@ We developed a formula that relates a correctly-normalized conserved EMT and
composite operators defined through the gradient flow:

(Tuda 00 = m{ & (G2t X)GE(tx) + [0alt) = 3o1(0)] 61 Gia(t )G (11
+ 0o(0%(6,X) (3 D+ 73D ) 1(t%)

+ [ea(t) — 205(1)] 8, X(8,%) D X(t, %) + GH(HF(E X)Xt X) - VEV}
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Summary and prospects

@ We developed a formula that relates a correctly-normalized conserved EMT and
composite operators defined through the gradient flow:

(Tuda 00 = m{ & (G2t X)GE(tx) + [0alt) = 3o1(0)] 61 Gia(t )G (11
+ 0o(0%(6,X) (3 D+ 73D ) 1(t%)
+1au(t) - 205(0] 8, K(1 ) DR(E 1) + GO 0K(E. ) - VEV

@ Correlation functions of RHS can be computed by lattice Monte Carlo simulation
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(Tuda 00 = m{ & (G2t X)GE(tx) + [0alt) = 3o1(0)] 61 Gia(t )G (11
+ 0o(0%(6,X) (3 D+ 73D ) 1(t%)
+lan(t) ~ 26a( 0] K60 D R( ) + DT 0R(E ) - VEV |

@ Correlation functions of RHS can be computed by lattice Monte Carlo simulation
@ Possible obstacle would be

a< V8t
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Summary and prospects

@ We developed a formula that relates a correctly-normalized conserved EMT and
composite operators defined through the gradient flow:

(Tuda 00 = m{ & (G2t X)GE(tx) + [0alt) = 3o1(0)] 61 Gia(t )G (11
+ Ca(t)fé( X) (’YM(BV + 'YV(BM) X(t, x)
+lan(t) ~ 26a( 0] K60 D R( ) + DT 0R(E ) - VEV |

@ Correlation functions of RHS can be computed by lattice Monte Carlo simulation
@ Possible obstacle would be

a< V8t

@ One-point functions at the finite temperature show encouraging results; the
method appears promising even practically!
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Summary and prospects

@ Further physical applications: EoS of QCD, viscosities in gauge theory,
momentum/spin structure of baryons, critical exponents in low-energy conformal
field theory, dilaton physics, ...
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Summary and prospects

@ Further physical applications: EoS of QCD, viscosities in gauge theory,
momentum/spin structure of baryons, critical exponents in low-energy conformal
field theory, dilaton physics, ...

Numerical check of the conservation law < indispensable!
Full QCD code (fermion flow)

O(&%) improvement? (Talk by Sint, Kamata, in this workshop)
Universal formula for the SUSY current?

Further theoretical applications of the gradient flow?
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