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Lattice gauge theory and the energy–momentum tensor (EMT)

Lattice gauge theory: the most successful non-perturbative formulation of gauge
theory. By discretizing the spacetime. . .

.

.

a

preserves internal gauge symmetry exactly. . .

but incompatible with spacetime symmetries (translation, Poincaré, SUSY,
conformal, . . . ) for a 6= 0

For a 6= 0, one cannot define the Noether current associated with the translational
invariance, EMT {Tµν}R(x)

Even for the continuum limit a→ 0, this is difficult, because EMT is a composite
operator which generally contains UV divergences:

a× 1
a

a→0→ 1
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EMT in lattice gauge theory?

Is it possible to construct EMT on the lattice, which becomes the correct EMT
automatically in the continuum limit a→ 0?

The correct EMT is characterized by the Ward–Takahashi relation
fi

Oext

Z

D
dDx ∂µ {Tµν}R (x)Oint

fl

= −〈Oext ∂νOint〉

.

.

x

.

D

.

Oint

.

Oext

This contains the correct normalization and the conservation law

If such a construction is possible, we expect wide application:
QCD thermodynamics, transport coefficients in gauge theory, momentum/spin
structure of baryons, conformal field theory, dilaton physics, . . .

The present work is also an attempt to understand EMT in quantum field theory in
the non-perturbative level
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EMT on the lattice (Caracciolo et al. (1989–))

Under the hypercubic symmetry, the operator reproducing the correct EMT of
QCD for a→ 0 is given by

{Tµν}R (x) =
7

X

i=1

ZiOiµν(x)|lattice − VEV,

where

O1µν(x) ≡
X

ρ

F a
µρ(x)F a

νρ(x), O2µν(x) ≡ δµν

X

ρ,σ

F a
ρσ(x)F a

ρσ(x),

O3µν(x) ≡ ψ̄(x)
“

γµ
←→
D ν + γν

←→
D µ

”

ψ(x), O4µν(x) ≡ δµν ψ̄(x)
←→
/D ψ(x),

O5µν(x) ≡ δµνm0ψ̄(x)ψ(x),

and, Lorentz non-covariant ones:

O6µν(x) ≡ δµν

X

ρ

F a
µρ(x)F a

µρ(x), O7µν(x) ≡ δµν ψ̄(x)γµ
←→
D µψ(x)

Seven non-universal coefficients Zi must be determined by lattice perturbation
theory or by a non-perturbative method
Determination of Zi ’s using the gradient flow! (Del Debbio’s talk)
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Yang–Mills gradient flow (Lüscher, (2009–)) (cf. Kaplan’s talk)

Yang–Mills gradient flow is an evolution of the gauge field Aµ(x) wrt a fictitious
time t ∈ R, according to

∂tBµ(t , x) = −g2
0

δSYM

δBµ(t , x)
= DνGνµ(t , x) = ∆Bµ(t , x) + · · · ,

where the initial value is the conventional gauge field

Bµ(t = 0, x) = Aµ(x)

and

Gµν(t , x) = ∂µBν(t , x)− ∂νBµ(t , x) + [Bµ(t , x),Bν(t , x)], Dµ = ∂µ + [Bµ, ·]

This is a sort of diffusion equation in which the diffusion length is

x ∼
√

8t

But, why this can be relevant to lattice EMT???

The key is the UV finiteness of the gradient flow
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Perturbative expansion of the gradient flow

Yang–Mills gradient flow

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x), Bµ(t = 0, x) = Aµ(x),

where the term with α0 is introduced to suppress the gauge mode. This can be
formally solved as

Bµ(t , x) =

Z

dDy
»

Kt(x − y)µνAν(y) +

Z t

0
ds Kt−s(x − y)µνRν(s, y)

–

,

where K is the heat kernel (for α0 = 1)

Kt(x)µν = δµν

Z

p
eipx e−tp2

= δµν
1

(4πt)D/2 e− x2
4t ,

and R denotes non-linear terms

Rµ = 2[Bν , ∂νBµ]− [Bν , ∂µBν ] + (α0 − 1)[Bµ, ∂νBν ] + [Bν , [Bν ,Bµ]]

Pictorially, (double lines: K , crosses: Aµ, white circles: R) (cf. Kaplan’s talk),

+ + + + . . .
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Perturbative expansion of the gradient flow

Quantum correlation function of the flowed gauge field

〈Bµ1(t1, x1) · · ·Bµn (tn, xn)〉 =
1
Z

Z

DAµ Bµ1(t1, x1) · · ·Bµn (tn, xn) e−SYM

is obtained by taking the quantum expectation value of the initial value Aµ(x). For
example, the contraction of two Aµ’s

≡

produces the free propagator of the flowed field (in the Feynman gauge)
D

Ba
µ(t , x)Bb

ν(s, y)
E

0
= δabg2

0δµν

Z

p
eip(x−y) e−(t+s)p2

p2

Similarly, for (black circle: Yang–Mills vertex)

we have the loop flow-line Feynman diagram
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backup: Gauge invariance of the gradient flow

Under the infinitesimal gauge transformation (no Bt(t , x); in 4D sense),

Bµ(t , x)→ Bµ(t , x) + Dµω(t , x),

the flow equation

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x),

changes to

∂tBµ(t , x) = DνGνµ(t , x) + α0Dµ∂νBν(t , x)− Dµ(∂t − α0Dν∂ν)ω(t , x)

Choosing ω(t , x) as

(∂t − α0Dν∂ν)ω(t , x) = −δα0∂νBν(t , x), ω(t = 0, x) = 0,

α0 can be changed accordingly

α0 → α0 + δα0

That is, Bµ(t , x)’s corresponding to different α0’s are related by a gauge
transformation
Gauge invariant quantity (in 4D sense) is independent of α0
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UV finiteness of the gradient flow I (Lüscher–Weisz (2011))

Correlation function of the flowed gauge field

〈Bµ1(t1, x1) · · ·Bµn (tn, xn)〉 , t1 > 0, . . . , tn > 0,

when expressed in terms of renormalized parameters, is UV finite without the
wave function renormalization

Two-point function in the tree level (in the Feynman gauge)

D

Ba
µ(t , x)Bb

ν(s, y)
E

0
= δabg2

0δµν

Z

p
eip(x−y) e−(t+s)p2

p2

One-loop corrections (consisting only from Yang–Mills vertices)

where the last counter term arises from the parameter renormalization

g2
0 = µ2εg2Z , λ0 = λZ−1

3

Usually, for the two-point function to become UV finite, further wave function
renormalization (Aa

µ = Z 1/2Z 1/2
3 (AR)a

µ) is required
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0
= δabg2

0δµν

Z

p
eip(x−y) e−(t+s)p2

p2

One-loop corrections (consisting only from Yang–Mills vertices)

where the last counter term arises from the parameter renormalization

g2
0 = µ2εg2Z , λ0 = λZ−1

3

Usually, for the two-point function to become UV finite, further wave function
renormalization (Aa

µ = Z 1/2Z 1/2
3 (AR)a

µ) is required
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UV finiteness of the gradient flow I (Lüscher–Weisz (2011))

In the present flowed system, we instead have the white circles (flow vertex)

It turns out that these provide the same effect as the wave function renormalization

All order proof, using a local D + 1-dimensional field theory
t

No bulk (t > 0) counterterm: because of the Gaussian damping factor ∼ e−tp2
in

the propagator
No boundary (t = 0) counterterm besides Yang–Mills ones: because of a BRS
symmetry
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UV finiteness of the gradient flow II

Correlation function of the flow gauge field

〈Bµ1(t1, x1)Bµ2(t2, x2) · · ·Bµn(tn, xn)〉 , t1 > 0, . . . , tn > 0,

remains finite even for the equal-point product

t1 → t2, x1 → x2,

The new loop always contains the Gaussian damping factor ∼ e−tp2
which makes

integral finite; no new UV divergences arise

Composite operators of the flowed gauge field Bµ(t , x) are renormalized UV finite
quantities, although the flowed field is a certain combination of the bare gauge field

Such UV finite quantities must be independent of the regularization
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Our strategy for lattice EMT

We try to bridge lattice regularization and dimensional regularization which
preserves the translational invariance, by using a flowed composite operator as an
intermediate tool

Schematically,

.

.

regularization independent

.

flowed composite operator

.

dimensional

.

lattice

.

correct EMT

.

low energy correlation functions
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EMT in dimensional regularization

EMT in dimensional regularization is simple and explicit, because it preserves the
translational invariance:

{Tµν}R (x)

=
1
g2

0



O1µν(x)− 1
4
O2µν(x)

ff

+
1
4
O3µν(x)− 1

2
O4µν(x)−O5µν(x)− VEV,

where

O1µν(x) ≡
X

ρ

F a
µρ(x)F a

νρ(x), O2µν(x) ≡ δµν

X

ρ,σ

F a
ρσ(x)F a

ρσ(x),

O3µν(x) ≡ ψ̄(x)
“

γµ
←→
D ν + γν

←→
D µ

”

ψ(x), O4µν(x) ≡ δµν ψ̄(x)
←→
/D ψ(x),

O5µν(x) ≡ δµνm0ψ̄(x)ψ(x),

We want to find a composite operator of the flowed fields which reproduces this
combination. . .
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Small flow-time expansion

However, the relation between composite operators in t > 0 (heaven) and in 4D
(the earth) is not obvious in general. . .

The relation becomes tractable, in the limit in which the flow time becomes
small t → 0
Small flow-time expansion (Lüscher–Weisz (2011))

.

.

Õiµν(t , x)

.

x

.

√
8t

Õiµν(t , x) =
D

Õiµν(t , x)
E

+
X

j

ζij(t) [Ojµν(x)− VEV] + O(t)

Inverting this relation,

Oiµν(x)− VEV = lim
t→0

8

<

:

X

j

“

ζ−1
”

ij
(t)

h

Õjµν(t , x)−
D

Õjµν(t , x)
Ei

9

=

;

So, if we know the t → 0 behavior of the coefficients ζij(t), the 4D operator in the
LHS can be extracted
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Õiµν(t , x)

.

x

.

√
8t
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Õjµν(t , x)−
D
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Renormalization group argument

We are interested in the t → 0 behavior of the coefficients ζij(t) in

Õiµν(t , x) =
D

Õiµν(t , x)
E

+
X

j

ζij(t) [Ojµν(x)− 〈Ojµν(x)〉] + O(t)

When Õjµν(t , x) are indep. of renormalized parameters,
„

µ
∂

∂µ

«

0
ζij(t) = 0,

and ζij(t) are indep. of the renormalization scale q, when expressed in terms of
running parameters. We may take, for example, q = 1/

√
8t , and

ζij(t) [g,m;µ] = ζij(t)
h

ḡ(1/
√

8t), m̄(1/
√

8t); 1/
√

8t
i

For t → 0, ḡ(1/
√

8t)→ 0 because of the asymptotic freedom; perturbation theory
is justified!
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When Õjµν(t , x) are indep. of renormalized parameters,
„

µ
∂

∂µ

«

0
ζij(t) = 0,

and ζij(t) are indep. of the renormalization scale q, when expressed in terms of
running parameters. We may take, for example, q = 1/

√
8t , and

ζij(t) [g,m;µ] = ζij(t)
h
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Flow of fermion fields

A possible choice (Lüscher (2013))

∂tχ(t , x) = [∆− α0∂µBµ(t , x)]χ(t , x), χ(t = 0, x) = ψ(x),

∂t χ̄(t , x) = χ̄(t , x)
h←−
∆ + α0∂µBµ(t , x)

i

, χ̄(t = 0, x) = ψ̄(x),

where

∆ = DµDµ, Dµ = ∂µ + Bµ,
←−
∆ =

←−
D µ
←−
D µ,

←−
D µ ≡

←−
∂ µ − Bµ

Unfortunately, the flowed fermion field requires the wave function renormalization:

χR(t , x) = Z 1/2
χ χ(t , x), χ̄R(t , x) = Z 1/2

χ χ̄(t , x),

Zχ = 1 +
g2

(4π)2 C2(R)3
1
ε

+ O(g4),

although composite operators of χR(t , x) are UV finite
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Ringed fermion fields

To avoid the complication associated with Zχ, we introduce

χ̊(t , x) = C χ(t , x)
r

t2
D

χ̄(t , x)
←→
/D χ(t , x)

E

= C χR(t , x)
r

t2
D

χ̄R(t , x)
←→
/D χR(t , x)

E

= χR(t , x)+O(g2),

where

C ≡

s

−2 dim(R)Nf

(4π)2 ,

and similarly for χ̄(t , x)

Since Zχ is cancelled out in χ̊(t , x), composite operators of χ̊(t , x) and ˚̄χ(t , x) are
UV finite
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EMT from the gradient flow

Small flow-time expansion:

Õiµν(t , x) =
D

Õiµν(t , x)
E

+
X

j

ζij(t) [Ojµν(x)− 〈Ojµν(x)〉] + O(t)

We consider following composite operators of flowed fields:

Õ1µν(t , x) ≡ Ga
µρ(t , x)Ga

νρ(t , x),

Õ2µν(t , x) ≡ δµνGa
ρσ(t , x)Ga

ρσ(t , x),

Õ3µν(t , x) ≡ ˚̄χ(t , x)
“

γµ
←→
D ν + γν

←→
D µ

”

χ̊(t , x),

Õ4µν(t , x) ≡ δµν ˚̄χ(t , x)
←→
/D χ̊(t , x),

Õ5µν(t , x) ≡ δµνm˚̄χ(t , x)χ̊(t , x)

We compute ζij(t) to the one-loop order and substitute

Oiµν(x)− 〈Oiµν(x)〉 = lim
t→0

8

<

:

X

j

“

ζ−1
”

ij
(t)

h

Õjµν(t , x)−
D

Õjµν(t , x)
Ei

9

=

;

,

in the expression of EMT in dimensional regularization
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Calculation of ζij(t)

To the one-loop order, we have to evaluate following flow-line Feynman diagrams:
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Master formula

Gathering all the above elements, we have

{Tµν}R (x) = lim
t→0



c1(t)Ga
µρ(t , x)Ga

νρ(t , x) +

»

c2(t)−
1
4

c1(t)
–

δµνGa
ρσ(t , x)Ga

ρσ(t , x)

+ c3(t)˚̄χ(t , x)
“

γµ
←→
D ν + γν

←→
D µ

”

χ̊(t , x)

+ [c4(t)− 2c3(t)] δµν ˚̄χ(t , x)
←→
/D χ̊(t , x) + c′

5(t)˚̄χ(t , x)χ̊(t , x)− VEV
ff

,

where (for the MS scheme; lnπ → γE − 2 ln 2 for MS)

c1(t) =
1

ḡ(1/
√

8t)2
− b0 lnπ − 7

8
1

(4π)2

»

11
3

C2(G)− 12
7

T (R)Nf

–

,

c2(t) =
1
8

1
(4π)2

»

11
3

C2(G) +
11
3

T (R)Nf
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Master formula

and

b0 =
1

(4π)2

»

11
3

C2(G)− 4
3

T (R)Nf

–

, d0 =
1

(4π)2 6C2(R)

Correlation functions of the RHS of the master formula can be computed
non-perturbatively by using lattice regularization

The coefficients ci(t) are universal, i.e., indep. of the lattice transcription

Ideally, one should first take the continuum limit a→ 0 to restore the “universality”
and then take t → 0

Practically, we cannot simply take a→ 0 and may take t as small as possible in
the window,

a�
√

8t � 1
Λ

Thus the usefulness with presently-accessible lattice parameters is not obvious a
priori. . .

Non-perturbative determination of ci(t) (Del Debbio–Patella–Rago (2013))
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Application to thermodynamics of SU(3) pure Yang–Mills theory

Asakawa–Hatsuda–Itou–Kitazawa–H.S. (FlowQCD Collaboration)

Thermal average of diagonal elements of EMT: the trace part (the trace anomaly),

〈ε− 3p〉T = −
˙

{Tµµ}R (x)
¸

T ,

and the traceless part (the entropy density),

〈ε+ p〉T = −
˙

{T00}R (x)
¸

T +
1
3

X

i=1,2,3

˙

{Tii}R (x)
¸

T

Thermodynamical quantities are obtained by the expectation value of EMT just at
that temperature T (no integration wrt the temperature)

We do not need to compute renormalization factors Zi

Experiment setting
Wilson plaquette action
N3

s × Nτ = 323 × (6, 8, 10, 32), β = 5.89–6.56, ∼ 300 configurations
Wilson flow: 4th order Runge–Kutta with ε/a2 = 0.025
Scale setting: β ↔ aΛMS from ALPHA Collaboration, aTc at β = 6.20 from Boyd et al.
4-loop running coupling in the MS scheme
Clover field strength Ga

µν(x)
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Application to thermodynamics of SU(3) pure Yang–Mills theory

Thermal expectation values versus the flow time
√

8t

0

0.5
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2

2.5

3
(¡

-3
P)

/T
4

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

(¡
+P

)/T
4

beta=6.56 No=10
beta=6.36 No=10
beta=6.20 No=10

/8t T^

over
smeared2a > sqrt(8t)

for No =10
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P)
/T
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0

1

2

3

4

5

(¡
+P

)/T
4

beta=6.20 No=6
beta=6.40 No=8
beta=6.56 No=10

/8t T^

over
smeared2a > sqrt(8t)

for No =10

for No =8

for No =6

We observe stable behavior for 2a <
√

8t < 1/(2T )) which indicates (!!!) the
t → 0 limit
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Application to thermodynamics of SU(3) pure Yang–Mills theory

Continuum limit (from values at
√

8tT = 0.40)

That our simple method produces results being consistent with past
comprehensive studies (within 2σ) indicates that our reasoning is correct. This
finding encouraged us very much!
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Ongoing numerical experiment

Asakawa–Hatsuda–Iritani–Itou–Kitazawa–H.S. (FlowQCD Collaboration)

Much much finer lattice!: N3
s × Nt = (64, 96, 128)3 × (12, 16, 20, 24, 64, 96),

β = 6.3–7.3

Wider stable regions and much less errors

More convincing results are expected
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Further recent developments

Gradient flow in the 2D O(N) non-linear sigma model (cf. Kikuchi–Onogi,
Aoki–Kikuchi–Onogi)

All order proof of the UV finiteness (Makino–H.S.)
Energy–momentum tensor

{Tµν}R (x) = lim
t→0



c1(t)
»

∂µni (t , x)∂νni (t , x) −
1
2

δµν∂ρni (t , x)∂ρni (t , x)

–

+ c2(t)
»

1
2

δµν∂ρni (t , x)∂ρni (t , x) − VEV
–ff

,

where

c1(t) =
1

ḡ(1/
√

8t)2
−

1
4π

(N − 2) ln π,

c2(t) =
1

4π
(N − 2) −

1
(4π)2 (N − 2)(N − 4)ḡ(1/

√
8t)2

Thermodynamic quantities at large N (Makino–Sugino–H.S.)

Gradient flow in the two-dimensional Gross–Neveu model

Energy–momentum tensor
Conservation law at large N
Large N computation of thermodynamic quantities

Similar “universal” formula for the flavor non-singlet axial current
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ḡ(1/
√

8t)2
−

1
4π

(N − 2) ln π,

c2(t) =
1

4π
(N − 2) −

1
(4π)2 (N − 2)(N − 4)ḡ(1/
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Summary and prospects

We developed a formula that relates a correctly-normalized conserved EMT and
composite operators defined through the gradient flow:

{Tµν}R (x) = lim
t→0



c1(t)Ga
µρ(t , x)Ga

νρ(t , x) +

»

c2(t)−
1
4

c1(t)
–

δµνGa
ρσ(t , x)Ga

ρσ(t , x)

+ c3(t)˚̄χ(t , x)
“

γµ
←→
D ν + γν

←→
D µ

”

χ̊(t , x)

+ [c4(t)− 2c3(t)] δµν ˚̄χ(t , x)
←→
/D χ̊(t , x) + c′

5(t)˚̄χ(t , x)χ̊(t , x)− VEV
ff

Correlation functions of RHS can be computed by lattice Monte Carlo simulation

Possible obstacle would be
a�

√
8t

One-point functions at the finite temperature show encouraging results; the
method appears promising even practically!
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Summary and prospects

Further physical applications: EoS of QCD, viscosities in gauge theory,
momentum/spin structure of baryons, critical exponents in low-energy conformal
field theory, dilaton physics, . . .

Numerical check of the conservation law← indispensable!

Full QCD code (fermion flow)

O(a2) improvement? (Talk by Sint, Kamata, in this workshop)

Universal formula for the SUSY current?

Further theoretical applications of the gradient flow?
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