Across the deconfinement transition: parity doubling in the nucleon sector & diffusion of light quarks

Gert Aarts

Swansea University Prifysgol Abertawe

Introduction

QCD phase diagram:

- at $T \neq 0$ and $\mu = 0$
- from hadronic to quark-gluon plasma
- standard observables:
 - pressure, entropy, fluctuations
 - confinement, chiral symmetry
 - light mesons, quarkonia
 - **.** . . .
- Iess standard observables:
 - transport
 - baryons

Outline

across the deconfinement transition:

nucleons: medium effects and parity doubling

conductivity and charge diffusion

all results:

- anisotropic $N_f = 2 + 1$ ensembles with Wilson-clover fermions
- part of FASTSUM collaboration

nucleons across the deconfinement transition

Benjamin Jäger, GA, Chris Allton, Simon Hands, Kristi Praki and Jonivar Skullerud

arXiv:1502.03603 [hep-lat]

Mesons/baryons in a medium

mesons in a medium very well studied

- thermal broadening and mass shift in hadronic phase
- deconfinement/melting in the QGP
- quarkonia survival as thermometer
- conductivity/dileptons from vector current
- chiral symmetry restoration

relatively easy on the lattice

high-precision correlators

what about baryons?

Baryons in a medium

lattice studies of baryons at finite temperature very limited

- **SCIEEDING MASSES** De Tar and Kogut 1987
- Source and the second state of the second s
- Itemporal correlators Datta, Gupta, Mathur et al 2013

not much more (afaik)

but what about

- in-medium modification?
- chiral symmetry?
- parity doubling?

simplest nucleon operator

$$O_N(\mathbf{x},\tau) = \epsilon_{abc} u_a(\mathbf{x},\tau) \left[u_b^T(\mathbf{x},\tau) \mathcal{C} \gamma_5 d_c(\mathbf{x},\tau) \right]$$

essential difference with mesons: role of parity

$$\mathcal{P}O_N(\mathbf{x},\tau) = \gamma_4 O_N(-\mathbf{x},\tau)$$

positive/negative parity operators

$$O_{N_{\pm}}(\mathbf{x},\tau) = P_{\pm}O_N(\mathbf{x},\tau) \qquad P_{\pm} = \frac{1}{2}(1\pm\gamma_4)$$

euclidean correlators

$$G_{\pm}(\tau) = \int d^3x \, \left\langle O_{N_{\pm}}(\mathbf{x},\tau) \overline{O}_{N_{\pm}}(\mathbf{0},0) \right\rangle$$

Mesons/baryons in a medium

meson versus baryon correlators

- meson correlators symmetric around $\tau = 1/2T$
- baryon correlators not symmetric
- contain both positive and negative parity channels

for $G_+(\tau)$:

- positive parity state propagates with τ
- negative parity state propagates with $1/T \tau$
- minimum typically not at $\tau = 1/2T$

$$G_{\pm}(\tau) = \int d^3x \, \left\langle O_{N_{\pm}}(\mathbf{x},\tau) \overline{O}_{N_{\pm}}(\mathbf{0},0) \right\rangle$$

Baryons in a medium

example: nucleon ground state

$$G_{\pm}(\tau) = A_{\pm}e^{-m_{\pm}\tau} + A_{\mp}e^{-m_{\mp}(1/T-\tau)}$$

■ nucleon:
$$m_+ = m_N = 0.939 \text{ GeV}$$

 $m_- = m_{N^*} = 1.535 \text{ GeV}$

no parity doubling: manifestation of chiral symmetry breaking

parity doubling:

- degeneracy between +/- parity channels
- sufficient condition is unbroken chiral symmetry

$$G_{\pm}(\tau) = G_{\mp}(\tau) = G_{\pm}(1/T - \tau)$$

On the lattice

FASTSUM ensembles

- $N_f = 2 + 1$ dynamical quark flavours, Wilson-clover
- \square many temperatures, below and above T_c
- anisotropic lattice, $a_s/a_{\tau} = 3.5$, many time slices
- strange quark: physical value
- two light flavours: somewhat heavy $m_{\pi} = 384(4)$ MeV

N_s	24	32	24	24	32/24	32/24	32/24	24	32/24
$N_{ au}$	128	48	40	36	32	28	24	20	16
T/T_c	0.24	0.63	0.76	0.84	0.95	1.09	1.27	1.52	1.90
$N_{ m cfg}$	400	600	500	500	500	32/24 28 1.09 500	500	1000	1000

• tuning and $N_{\tau} = 128$ data from HadSpec collaboration

various interpolation operators, here simplest one

$$O_N(\mathbf{x},\tau) = \epsilon_{abc} u_a(\mathbf{x},\tau) \left[u_b^T(\mathbf{x},\tau) \mathcal{C} \gamma_5 d_c(\mathbf{x},\tau) \right]$$

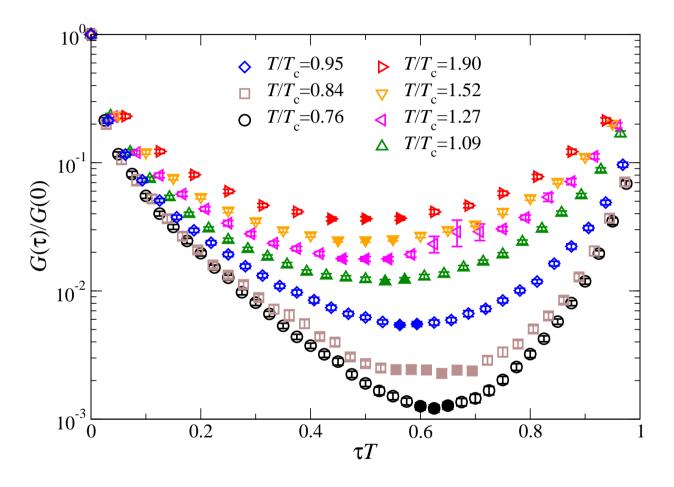
- Gaussian smearing for multiple sources and sinks
- same smearing parameters at all temperatures

questions:

- in-medium effects below T_c
- parity doubling
- deconfinement transition, chiral symmetry

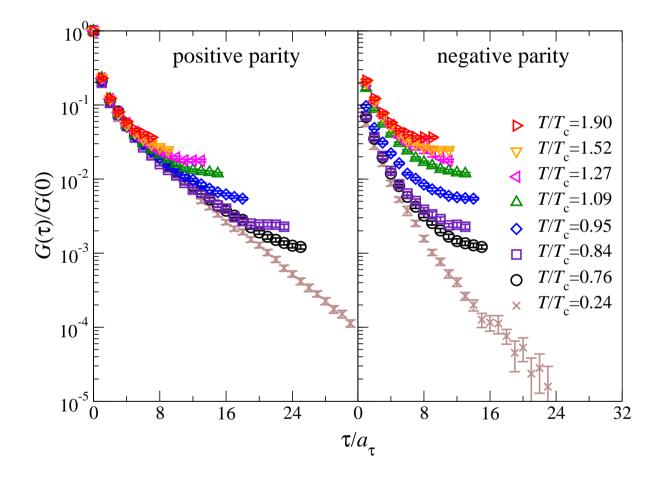
Lattice correlators

• euclidean correlator $G_+(\tau)$



- not symmetric around $\tau = 1/2T$ below T_c
- more symmetric as temperature increases

separate positive and negative parity channels



● below T_c : $m_- > m_+$ $m_+ = m_N, m_- = m_{N*}$

much more T dependence in negative-parity channel

• exponential fits/effective masses below T_c

T/T_c	$a_{\tau}m_N$	$a_{ au}m_{N^*}$	m_N [GeV]	m_{N^*} [GeV]
0.24	0.213(5)	0.33(5)	1.20(3)	1.9(3)
0.76	0.209(16)	0.28(3)	1.18(9)	1.6(2)
0.84	0.192(17)	0.28(2)	1.08(9)	1.6(1)
0.95	0.198(25)	0.22(4)	1.12(14)	1.3(2)

- m_{\pm} larger than in Nature (probably \sim heavy pions)
- mass splitting $m_{N^*} m_N \sim 700 \text{ MeV}$
- \blacksquare nucleon ground state largely T independent
- N^* ground state significant temperature dependence
- relevant for heavy-ion phenomenology?

parity doubling

correlator ratio

$$R(\tau) = \frac{G_{+}(\tau) - G_{+}(1/T - \tau)}{G_{+}(\tau) + G_{+}(1/T - \tau)}$$

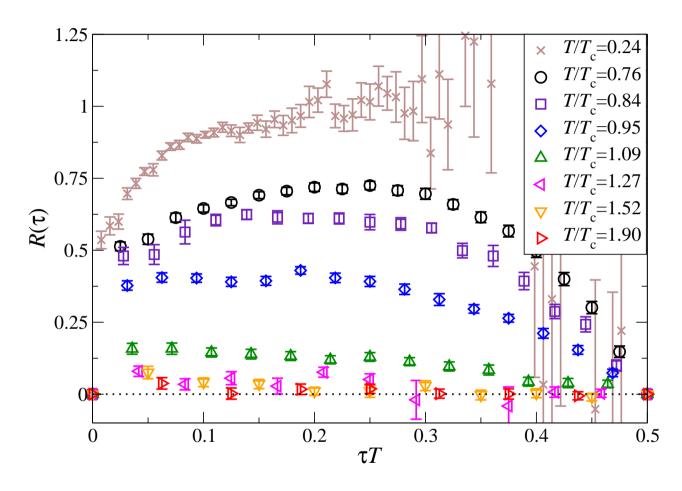
if

- no parity doubling and $m_- \gg m_+$: $R(\tau) = 1$
- **parity doubling:** $R(\tau) = 0$

note

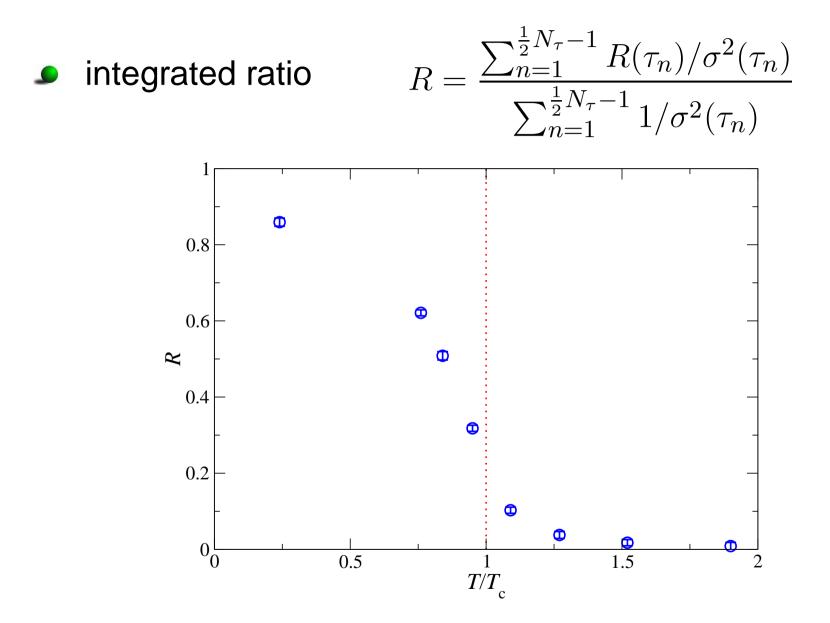
•
$$R(1/T - \tau) = -R(\tau)$$
 and $R(1/2T) = 0$

Parity doubling



- \checkmark ratio close to 1 below T_c , decreasing uniformly
- \checkmark ratio close to 0 above T_c , parity doubling
- technical note: smearing essential

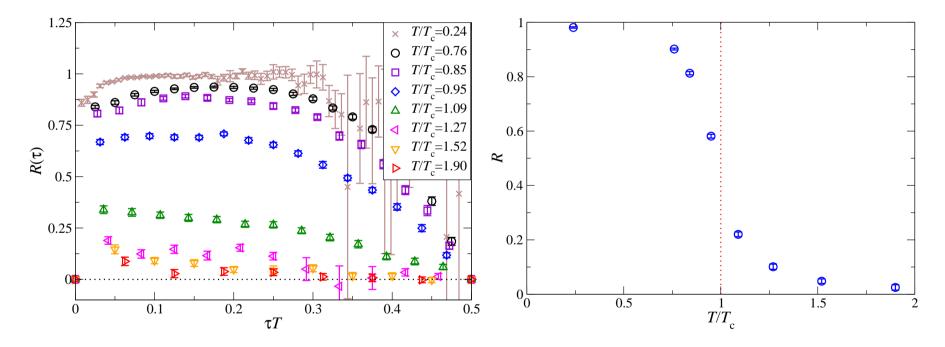
Quasi-order parameter



crossover behaviour, tied with deconfinement transition

Quasi-order parameter

- signal depends quantitatively on interpolating operator
- different (more complicated) operator
- more suppression of excited states



- but semi-quantitative agreement
- parity doubling coincides with deconfinement transition: tied to restoration of chiral symmetry

Summary: nucleons in medium

- N mostly temperature independent below T_c
- significant T dependence in N^* channel reduction in mass
- parity doubling above T_c
- closely linked to deconfinement transition and chiral symmetry restoration

outlook

- baryons with strange quarks
- role of smearing
- use chiral fermions

diffusion and conductivity

Alessandro Amato, Pietro Giudice, GA, Chris Allton, Simon Hands and Jonivar Skullerud

arXiv:1307.6763 [hep-lat] (PRL), arXiv:1412.6411 [hep-lat] (JHEP)

Transport coefficients

dynamics on long length and timescales:

- effective theory: hydrodynamics
- ideal hydrodynamics: equation of state
- viscous hydro: transport coefficients

shear/bulk viscosity, conductivity, ...

- depend on underlying microscopic theory
- typically:
 - Iarge in weakly interacting theory
 - small in strongly coupled systems

perfect-fluid paradigm: $\eta/s = 1/4\pi$ (holography)

Transport coefficients

in the past

- emphasis on viscosity
- bound from holography $\eta/s = 1/4\pi$
- scale invariance and bulk viscosity

recently

- more interest in electrical conductivity
- role in heavy-ion collisions
- charge density fluctuations
- strong magnetic fields

Conductivity/diffusion

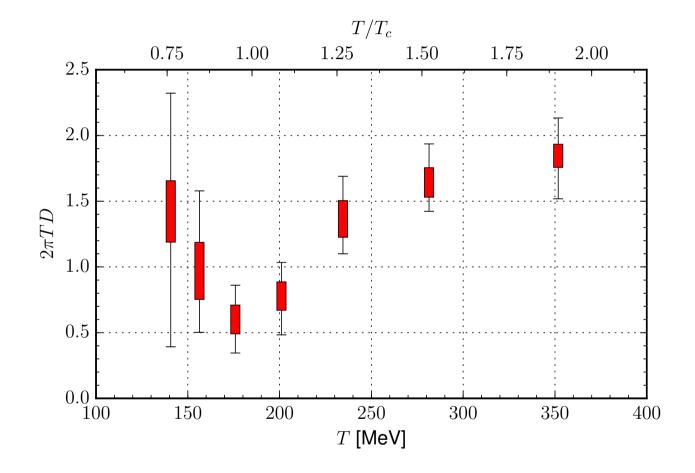
- \bullet electrical conductivity σ
- \checkmark charge susceptibility χ
- both σ and χ proportional to EM factor

$$C_{\rm em} = e^2 \sum_f q_f^2$$
 $q_f = \frac{2}{3}, -\frac{1}{3}$

- $C_{\rm em}$ cancels
- finite large N_c limit
- weak coupling: $D \sim 1/g^4 T$
- strong coupling: $D = 1/2\pi T$ (holography)

Diffusion coefficient

new result: D across the deconfinement transition



- minimal around T_c
- order of magnitude $D \sim 1/2\pi T$

Conductivity/diffusion

linear response: Kubo relation

$$\sigma = \lim_{\omega \to 0} \frac{1}{6\omega} \rho_{ii}(\omega, \mathbf{0})$$

where $\rho_{\mu\nu}(x) = \langle [j_{\mu}(x), j_{\nu}(0)] \rangle_{eq}$

is current-current spectral function, j_{μ} is EM current

- real-time correlator in equilibrium
- on the lattice: euclidean correlator
- related to spectral function

$$G(\tau) = \int d\omega \, K(\tau, \omega) \rho(\omega) \qquad K(\tau, \omega) = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

inversion/analytical continuation

Conductivity from the lattice

use same ensembles

 $T/T_c = 0.24, 0.76, 0.84, 0.95, 1.09, 1.27, 1.52, 1.90$

• $N_f = 2 + 1$ dynamical quark flavours

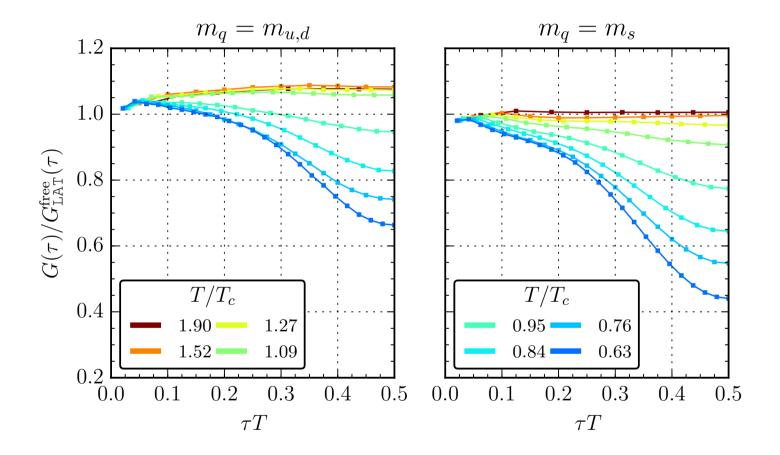
conserved lattice current (no renormalisation required)

$$j^{\rm em}_{\mu} = \frac{2e}{3}j^{u}_{\mu} - \frac{e}{3}j^{d}_{\mu} - \frac{e}{3}j^{s}_{\mu}$$

- strange and up/down quarks: mass effect in
 - correlators
 - spectral functions
 - flavour susceptibilities
 - conductivity

Conserved current-current correlator

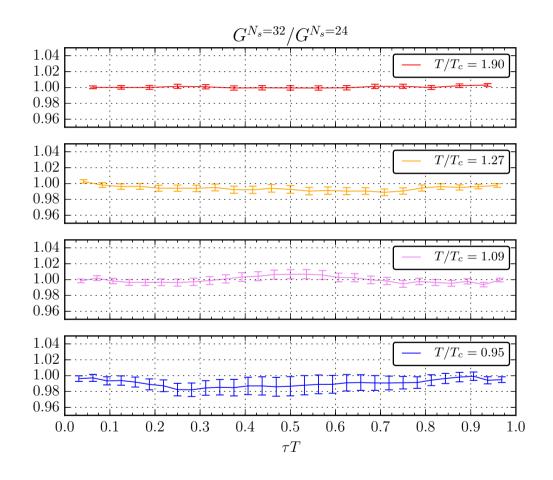
ratio with free massless lattice correlator



- distinction between below/above T_c
- quark mass dependence

Conserved current-current correlator

finite-size effects?



• only change is in spatial volume, $L_s = 2.9$ and 3.9 fm

no finite-size effects

Spectral functions

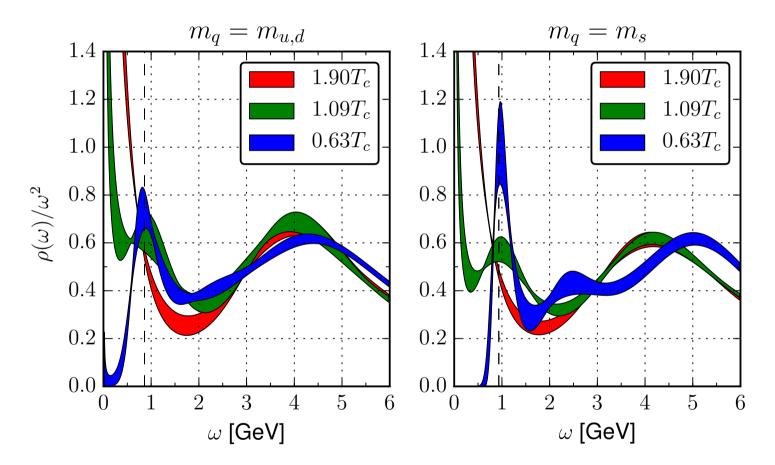
from correlator to spectral function

$$G(\tau) = \int d\omega \, K(\tau, \omega) \rho(\omega) \qquad K(\tau, \omega) = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

- inversion/analytical continuation
- Juse Maximal Entropy Method (MEM) Asakawa, Hatsuda & Nakahara 2001
- with $1/\omega$ instability fixed GA, Allton, Foley, Hands & Kim 2007
- many systematic checks (see below)

Spectral functions

• $\rho(\omega)/\omega^2$

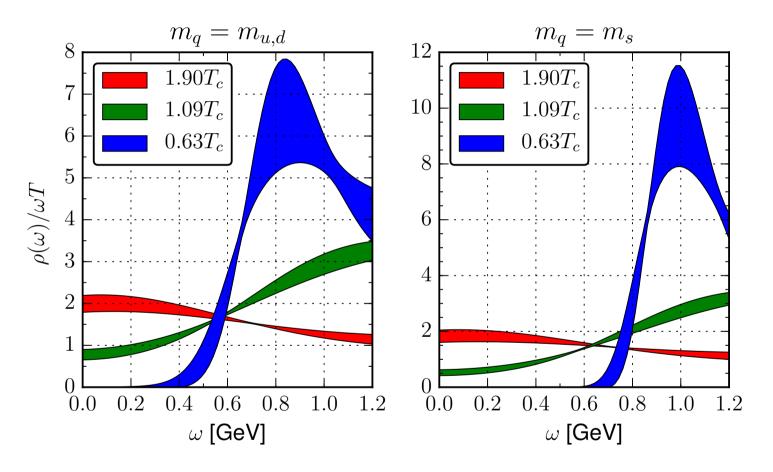


• peak below T_c corresponds to ρ , ϕ particle

• divergence as $\omega \to 0$ corresponds to transport peak

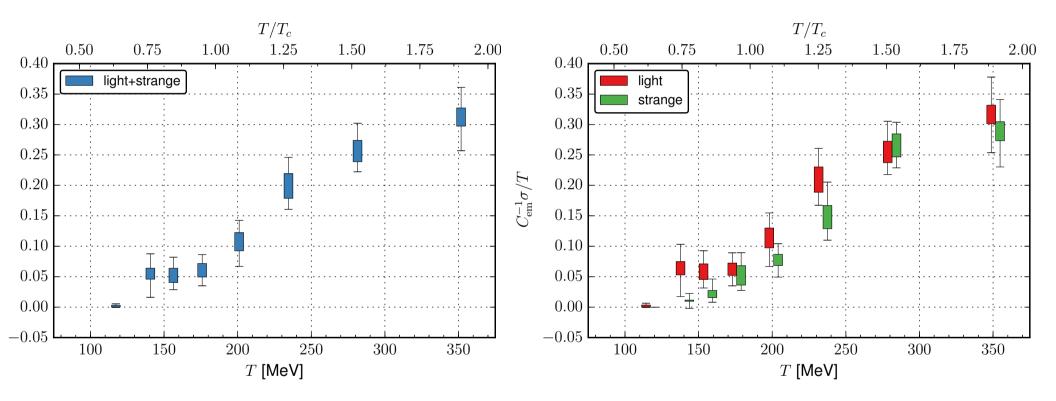
Spectral functions

• $\rho(\omega)/\omega T$



- intercept: conductivity
- temperature and mass dependent

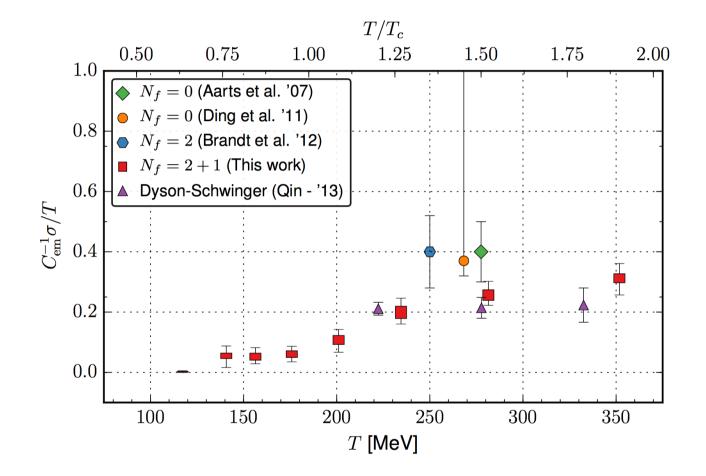
Conductivity



- temperature and mass dependent
- \bullet agreement with previous results above T_c

Conductivity

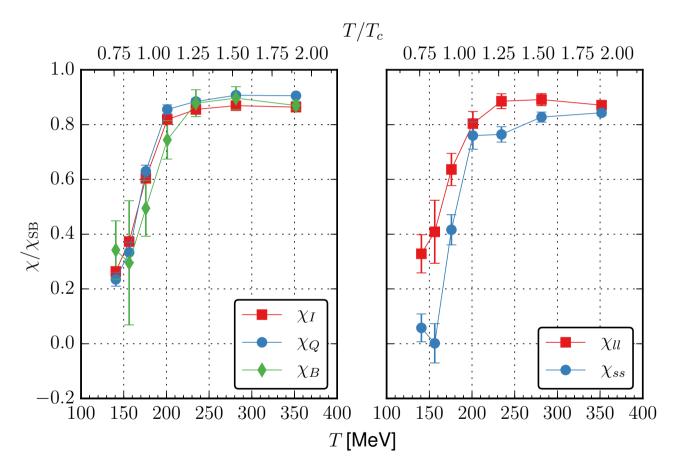
• conductivity $C_{\rm em}^{-1}\sigma/T$



 \bullet agreement with previous results above T_c

Susceptibilies

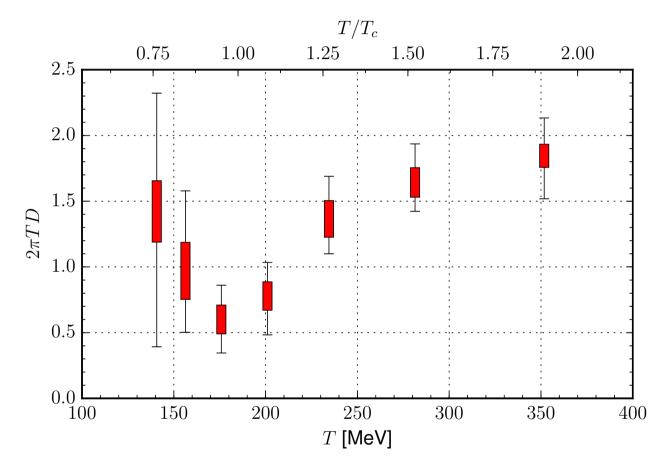
fluctuations of isospin, electrical charge, baryon number, flavour



agreement with previous (mostly staggered) results

some flavour dependence

Diffusion coefficient



consistent with strongly coupled plasma

Systematic checks

results stable against variations in MEM?

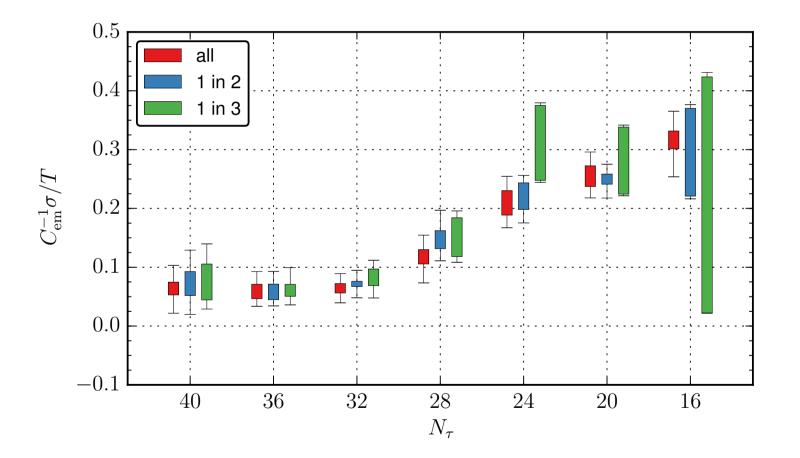
- default model
- euclidean time range
- discretisation
- **_** ...

some illustrations

MEM stability

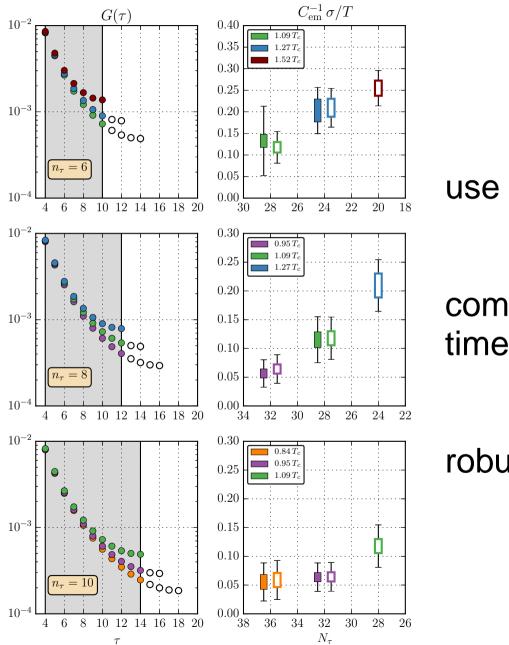
• anisotropic lattice, $a_s/a_{\tau} = 3.5$

use all or 1 in 2 or 1 in 3



stable at larger N_{τ} – anisotropy beneficial at smaller N_{τ}

MEM stability



use restricted time range

compare with maximal time range

robust signal

Summary

conductivity/diffusion:

- computed across deconfinement transition
- D minimum around T_c , $D \sim 1/2\pi T$
- consistent with strongly coupled plasma
- quark mass dependence

nucleons:

- N largely T independent below T_c
- N^* substantial T dependence
- parity doubling above T_c