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Introduction

QCD phase diagram:

at T 6= 0 and µ = 0

from hadronic to quark-gluon plasma

standard observables:
pressure, entropy, fluctuations
confinement, chiral symmetry
light mesons, quarkonia
. . .

less standard observables:
transport
baryons
. . .
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Outline

across the deconfinement transition:

nucleons: medium effects and parity doubling

conductivity and charge diffusion

all results:

anisotropic Nf = 2 + 1 ensembles with Wilson-clover
fermions

part of FASTSUM collaboration
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nucleons across the deconfinement
transition

Benjamin Jäger, GA, Chris Allton, Simon Hands, Kristi Praki and

Jonivar Skullerud

arXiv:1502.03603 [hep-lat]
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Mesons/baryons in a medium

mesons in a medium very well studied

thermal broadening and mass shift in hadronic phase

deconfinement/melting in the QGP

quarkonia survival as thermometer

conductivity/dileptons from vector current

chiral symmetry restoration

relatively easy on the lattice

high-precision correlators

what about baryons?
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Baryons in a medium

lattice studies of baryons at finite temperature very limited

screening masses De Tar and Kogut 1987

... with a small chemical potential QCD-TARO: Pushkina, de

Forcrand, Kim, Nakamura, Stamatescu et al 2005

temporal correlators Datta, Gupta, Mathur et al 2013

not much more (afaik)

but what about

in-medium modification?

chiral symmetry?

parity doubling?

...
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Nucleons in a medium

simplest nucleon operator

ON (x, τ) = ǫabcua(x, τ)
[

uTb (x, τ)Cγ5dc(x, τ)
]

essential difference with mesons: role of parity

PON (x, τ) = γ4ON (−x, τ)

positive/negative parity operators

ON±
(x, τ) = P±ON (x, τ) P± =

1

2
(1± γ4)

euclidean correlators

G±(τ) =

∫

d3x
〈

ON±
(x, τ)ON±

(0, 0)
〉
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Mesons/baryons in a medium

meson versus baryon correlators

meson correlators symmetric around τ = 1/2T

baryon correlators not symmetric

contain both positive and negative parity channels

for G+(τ):

positive parity state propagates with τ

negative parity state propagates with 1/T − τ

minimum typically not at τ = 1/2T

G±(τ) =

∫

d3x
〈

ON±
(x, τ)ON±

(0, 0)
〉
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Baryons in a medium

example: nucleon ground state

G±(τ) = A±e
−m±τ + A∓e

−m∓(1/T−τ)

nucleon: m+ = mN = 0.939 GeV
m− = mN∗ = 1.535 GeV

no parity doubling: manifestation of chiral symmetry
breaking

parity doubling:

degeneracy between +/− parity channels

sufficient condition is unbroken chiral symmetry

G±(τ) = G∓(τ) = G±(1/T − τ)
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On the lattice

FASTSUM ensembles

Nf = 2 + 1 dynamical quark flavours, Wilson-clover

many temperatures, below and above Tc

anisotropic lattice, as/aτ = 3.5, many time slices

strange quark: physical value

two light flavours: somewhat heavy mπ = 384(4) MeV

Ns 24 32 24 24 32/24 32/24 32/24 24 32/24

Nτ 128 48 40 36 32 28 24 20 16

T/Tc 0.24 0.63 0.76 0.84 0.95 1.09 1.27 1.52 1.90

Ncfg 400 600 500 500 500 500 500 1000 1000

tuning and Nτ = 128 data from HadSpec collaboration
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Nucleons in a medium

various interpolation operators, here simplest one

ON (x, τ) = ǫabcua(x, τ)
[

uTb (x, τ)Cγ5dc(x, τ)
]

Gaussian smearing for multiple sources and sinks

same smearing parameters at all temperatures

questions:

in-medium effects below Tc

parity doubling

deconfinement transition, chiral symmetry
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Lattice correlators

euclidean correlator G+(τ)
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more symmetric as temperature increases
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Nucleons in a medium

separate positive and negative parity channels
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below Tc: m− > m+ m+ = mN ,m− = mN∗

much more T dependence in negative-parity channel
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Nucleons in a medium

exponential fits/effective masses below Tc

T/Tc aτmN aτmN∗ mN [GeV] mN∗ [GeV]

0.24 0.213(5) 0.33(5) 1.20(3) 1.9(3)
0.76 0.209(16) 0.28(3) 1.18(9) 1.6(2)
0.84 0.192(17) 0.28(2) 1.08(9) 1.6(1)
0.95 0.198(25) 0.22(4) 1.12(14) 1.3(2)

m± larger than in Nature (probably ∼ heavy pions)

mass splitting mN∗ −mN ∼ 700 MeV

nucleon ground state largely T independent

N∗ ground state significant temperature dependence

relevant for heavy-ion phenomenology?
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Nucleons in a medium

parity doubling

correlator ratio

R(τ) =
G+(τ)−G+(1/T − τ)

G+(τ) +G+(1/T − τ)

if

no parity doubling and m− ≫ m+: R(τ) = 1

parity doubling: R(τ) = 0

note

R(1/T − τ) = −R(τ) and R(1/2T ) = 0
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Parity doubling
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ratio close to 1 below Tc, decreasing uniformly

ratio close to 0 above Tc, parity doubling

technical note: smearing essential
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Quasi-order parameter

integrated ratio R =

∑

1

2
Nτ−1

n=1 R(τn)/σ
2(τn)

∑

1
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Nτ−1

n=1 1/σ2(τn)
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crossover behaviour, tied with deconfinement transition
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Quasi-order parameter

signal depends quantitatively on interpolating operator

different (more complicated) operator

more suppression of excited states
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but semi-quantitative agreement

parity doubling coincides with deconfinement
transition: tied to restoration of chiral symmetry
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Summary: nucleons in medium

N mostly temperature independent below Tc

significant T dependence in N∗ channel
reduction in mass

parity doubling above Tc

closely linked to deconfinement transition and chiral
symmetry restoration

outlook

baryons with strange quarks

role of smearing

use chiral fermions
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diffusion and conductivity

Alessandro Amato, Pietro Giudice, GA, Chris Allton, Simon Hands and

Jonivar Skullerud

arXiv:1307.6763 [hep-lat] (PRL), arXiv:1412.6411 [hep-lat] (JHEP)
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Transport coefficients

dynamics on long length and timescales:

effective theory: hydrodynamics

ideal hydrodynamics: equation of state

viscous hydro: transport coefficients

shear/bulk viscosity, conductivity, . . .

depend on underlying microscopic theory

typically:
large in weakly interacting theory
small in strongly coupled systems

perfect-fluid paradigm: η/s = 1/4π (holography)
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Transport coefficients

in the past

emphasis on viscosity

bound from holography η/s = 1/4π

scale invariance and bulk viscosity

recently

more interest in electrical conductivity

role in heavy-ion collisions

charge density fluctuations

strong magnetic fields

...
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Conductivity/diffusion

electrical conductivity σ

charge susceptibility χ

both σ and χ proportional to EM factor

Cem = e2
∑

f

q2f qf =
2

3
,−

1

3

diffusion coefficient D = σ/χ

Cem cancels

finite large Nc limit

weak coupling: D ∼ 1/g4T

strong coupling: D = 1/2πT (holography)

Kyoto, March 2015 – p. 23



Diffusion coefficient

new result: D across the deconfinement transition
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Conductivity/diffusion

linear response: Kubo relation

σ = lim
ω→0

1

6ω
ρii(ω,0)

where ρµν(x) = 〈[jµ(x), jν(0)]〉eq

is current-current spectral function, jµ is EM current

real-time correlator in equilibrium

on the lattice: euclidean correlator

related to spectral function

G(τ) =

∫

dωK(τ, ω)ρ(ω) K(τ, ω) =
cosh[ω(τ − 1/2T )]

sinh(ω/2T )

inversion/analytical continuation
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Conductivity from the lattice

use same ensembles

T/Tc = 0.24, 0.76, 0.84, 0.95, 1.09, 1.27, 1.52, 1.90

Nf = 2 + 1 dynamical quark flavours

conserved lattice current (no renormalisation required)

jemµ =
2e

3
juµ −

e

3
jdµ −

e

3
jsµ

strange and up/down quarks: mass effect in

correlators
spectral functions
flavour susceptibilities
conductivity
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Conserved current-current correlator

ratio with free massless lattice correlator
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Conserved current-current correlator

finite-size effects?
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no finite-size effects
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Spectral functions

from correlator to spectral function

G(τ) =

∫

dωK(τ, ω)ρ(ω) K(τ, ω) =
cosh[ω(τ − 1/2T )]

sinh(ω/2T )

inversion/analytical continuation

use Maximal Entropy Method (MEM)
Asakawa, Hatsuda & Nakahara 2001

with 1/ω instability fixed
GA, Allton, Foley, Hands & Kim 2007

many systematic checks (see below)

Kyoto, March 2015 – p. 28



Spectral functions
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peak below Tc corresponds to ρ, φ particle

divergence as ω → 0 corresponds to transport peak
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Spectral functions
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temperature and mass dependent
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Conductivity

conductivity C−1
emσ/T
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temperature and mass dependent

agreement with previous results above Tc
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Conductivity

conductivity C−1
emσ/T

agreement with previous results above Tc
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Susceptibilies

fluctuations of isospin, electrical charge, baryon
number, flavour
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Diffusion coefficient

combination of results: D = σ/χQ
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consistent with strongly coupled plasma
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Systematic checks

results stable against variations in MEM?

default model

euclidean time range

discretisation

...

some illustrations
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MEM stability

anisotropic lattice, as/aτ = 3.5

use all or 1 in 2 or 1 in 3
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MEM stability
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Summary

conductivity/diffusion:

computed across deconfinement transition

D minimum around Tc, D ∼ 1/2πT

consistent with strongly coupled plasma

quark mass dependence

nucleons:

N largely T independent below Tc

N∗ substantial T dependence

parity doubling above Tc
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