Axial symmetry at finite temperature and Dirac operator eigenmodes

Guido Cossu

High Energy Accelerator Organization (KEK) Joint Institute for Computational Fundamental Science (JICFuS)

YITP HHIQCD2015, Kyoto March 5th 2015

JLQCD collaborators

63

四海道 東海道

Shoji Hashimoto Jun-ichi Noaki Takashi Kaneko

KEK

Hidenori Fukaya Akio Tomiya

Osaka Un.

Low temperature – symmetries

$SU(2)_L \times SU(2)_R \times U(1)_V \times U(1)_A$

Chiral condensate

Instantons

Dirac operator eigenmodes

Near zero modes density $\Sigma=\pi\rho(0)$

Zero modes $\int \partial_{\mu} J_{\mu_5} \propto Q$

High temperature – symmetries

$SU(2)_L \times SU(2)_R \times U(1)_V \times U(1)_A$

Current knowledge

Restoration of chiral symmetry at T_c

Restoration at $T \to \infty$

High temperature – symmetries

$SU(2)_L \times SU(2)_R \times U(1)_V \times U(1)_A$

 $T \gtrsim T_c$?

No condensate

Axial symmetry?

Recent literature - I

G. Cossu et al. (2013) for JLQCD Disconnected meson diagrams **vanish** at temperatures above T_c

Related: Gap in the Dirac spectrum

Aoki, Fukaya, Taniguchi (2012) Analytic calculation (Overlap) Dirac spectrum $\rho(\lambda) \sim c\lambda^3$ Implies **U(1)_A anomaly invisible**

Meson spatial correlators

Recent literature - II

G. Cossu et al. (2013) for JLQCD Disconnected meson diagrams **vanish** at temperatures above T_c

Related: Gap in the Dirac spectrum

Aoki, Fukaya, Taniguchi (2012) Analytic calculation (Overlap) Dirac spectrum $\rho(\lambda) \sim c\lambda^3$ Implies **U(1)_A anomaly invisible**

Recent literature - III

Bazavov et al. (2012-13) Domain wall, several volumes Dirac spectrum, susceptibilities NOT restored

Ohno et al., Sharma et al. (2012-15) Overlap on HISQ configurations Dirac spectrum NOT restored

Brandt et al. (2013) Wilson improved fermions Screening masses NOT restored Our previous study Exact chiral symmetry (Overlap) topology fixed Only 16³x8 volume Mass dependence No continuum limit

Chiral symmetry on the lattice

$$\{D,\gamma_5\}=0$$

Nielsen-Ninomiya no-go theorem: chiral symmetry implies unwanted doublers

The Ginsparg-Wilson relation (1982) $\{D,\gamma_5\}=aD\gamma_5D$

Generalized Domain Wall

$$D^{4}(m) = \frac{1+m}{2} + \frac{1-m}{2}\gamma_{5}\mathrm{sgn}(H)$$

Play with the sign function

Möbius Kernel

 $H_M = \gamma_5 \frac{b D_W}{2 + c D_W}$

Function approximation Transfer matrix in 5D

- Hyperbolic tangent
- Rational approximation

Reduced residual mass b=2 c=1 Scaled Shamir, m_{res} ~ 10⁻⁴

Status of simulations

Webpage: http://suchix.kek.jp/guido_cossu/

- Collected data
- 2 lattice volumes
- 3 masses
- 5 temperatures
- Topology changes
- $N_t=8$, $N_t=12$ (finer lattice)

Phase transition

Today: **T ~ 184, 200 MeV (red arrows)**

Phase transition at ~180 MeV

2 volumes Mass dependence

N_t=12 running now. Analysis almost done

Delta $\Delta = \chi_{\pi} - \chi_{\delta}$ $\chi_X = \int \langle X(0)X(x) \rangle$

Theoretically clean: zero if axial symmetry is restored

Veeery delicate measurement Talk: breakdown of the signal sources (physics/artifacts)

First: integrating correlators is **bad**, so **Stochastic** measurements of Dirac traces **Eigenmode** decomposition

$$\Delta = \int \frac{2m^2\rho(\lambda,m)}{(\lambda^2 + m^2)^2}$$

Source of the signal

Peaks dominate the signal

76%

Fluctuations of **3 orders of magnitude**

Δ - Topology correlation

Mild correlation

Tension with spectral sum expectations

Two sources

- GW violations
- $F\tilde{F}$ estimate

Q=0 near zero modes

Temperature dependence

Broad picture arising at this stage:

- Just above the phase transition zero modes dominate
- Then they are strongly suppressed and the signal goes down

Let's increase volume – m=0.01

Let's increase volume – m=0.005

Zero mode contribution suppressed ~1/V As expected from spectral sum

Bulk contribution increases

Continuum limit

Nt from 8 to 12

No big news, violations reduced

T ~ 200 MeV

Volume&mass dependence

$$\chi_t = \lim_{V \to \infty} \frac{\langle Q^2 \rangle}{V} = \text{const.} \to \frac{N_0}{V} \to 0$$
Zero modes contribution vanishes

Conclusion: signal from the bulk part, near zero modes

Let's cut all configurations with Q>0 (naïve cut)

Signal constant with the mass

Is everything all right? – I

From the Ginsparg-Wilson relation we can measure the amount of violation for each mode, g_{nn}

$$\{\hat{\gamma}_5, H_0\} = \Delta_{\text{viol}} \quad \hat{\gamma}_5 = \gamma_5 - H_m$$
$$\langle \psi_n | \gamma_5 | \psi_n \rangle = \frac{\lambda_n^2 + m}{\lambda_n (1+m)} + g_{nn}$$
$$m_{\text{res}} \sim \frac{\sum_n \frac{(1+m)}{(1-m)^2 \lambda_m^n} g_{nn}^m}{\sum_n \frac{1}{(\lambda_m^n)^2}}$$

Is everything all right? – II

Is everything all right? – III

GV

Exact result for susceptibility

$$\chi_{\pi} - \chi_{\delta} = \frac{1}{V(1 - m^2)^2} \sum \frac{2m^2(1 - \lambda_n^2)^2}{\lambda_n^4} + \frac{1}{V(1 - m)^2} \sum \left[\frac{h_{nn}}{\lambda_n} - 4\frac{g_{nn}}{\lambda_n}\right]$$

$$\forall \text{ violation terms}$$

$$\hat{\gamma}_5, H_0\} = \Delta_{\text{viol}}$$

Is everything all right? – IV

$$\chi_{\pi} - \chi_{\delta} = \frac{1}{V(1-m^2)^2} \sum \frac{2m^2(1-\lambda_n^2)^2}{\lambda_n^4} + \frac{1}{V(1-m)^2} \sum \left[\frac{h_{nn}}{\lambda_n} - 4\frac{g_{nn}}{\lambda_n}\right]$$

4.07	0.001	32	8	24	18	25	0.967 ± 0.006	0.90837 ± 0.02868
4.10	0.001	16	8	24	124	84	0.690 ± 0.030	1.05913 ± 0.05022
4.10	0.005	32	8	24	94	28	0.463 ± 0.031	0.94124 ± 0.00959
4.10	0.001	32	8	24	43	36	0.928 ± 0.022	0.88578 ± 0.02801
4.18	0.01	32	12	16	54	17	0.080 ± 0.005	0.98895 ± 0.00402
4.22	0.01	32	12	16	50	38	0.056 ± 0.007	1.01573 ± 0.01243
4.23	0.01	32	12	16	55	27	0.036 ± 0.005	0.99317 ± 0.00963
4.23	0.005	32	12	16	55	22	0.143 ± 0.022	0.97322 ± 0.01076
4.24	0.01	32	12	16	249	38	0.045 ± 0.003	0.99284 ± 0.00774
4.24	0.005	32	12	16	69	33	0.115 ± 0.022	0.99036 ± 0.00675

Reweight it! (DWF to Overlap)

Before

76%

After

85%

Temperature and mass dependence

Quark mass dependence

Instanton gas – hints?

Results not yet conclusive (analysis running right now)

If the large volume signal is not coming from lattice artifacts

Near zero modes are responsible for breaking U(1)

What are they? **Poisson distributed?**

Fun with 3D – put your glasses on

Fun with 3D – put your glasses on

Fun with 3D – put your glasses on

Localized modes

$$\langle PR \rangle = (V \sum (\psi^{\dagger}(x)\psi(x))^2)^{-1}$$

Summary – one more slide...

DWF volume & mass dependence suggests that near zero modes are the source of U(1) breaking

Lattice artifacts can spoil the signal

DWF lowest modes look like an instanton weakly interacting gas

Exact chiral symmetry results differ from DWF

Are we finished?

The talk is over the work is not! (but almost there)

Some collected data yet to analyze

- Reweighting
- Continuum limit
- Chiral limit

Lattice artifacts? Gas of instanton pairs, dyons? Correlation with Polyakov loop? U(1) restoration above critical temperature is still an open question.

Axial symmetry at finite temperature and Dirac operator eigenmodes

Guido Cossu

High Energy Accelerator Organization (KEK) Joint Institute for Computational Fundamental Science (JICFuS)

YITP HHIQCD2015, Kyoto March 5th 2015

Backup slides

GW violations

Many configurations violate GW

DW – OV eigenvalue mismatch

Susceptibility scales with volume

Let's increase volume

Zero mode contribution ~1/V - Bulk contribution increases

