Investigation of K^{bar}NN resonances with a coupled-channel Complex Scaling Method + Feshbach projection

<u>Akinobu Doté (KEK Theory Center, IPNS / J-PARC branch)</u> Takashi Inoue (Nihon university) Takayuki Myo (Osaka Institute of Technology)

- 1. Introduction
- Effective single-channel potential by "Feshbach method with coupledchannel Complex Scaling Method"
- Result of "K⁻pp" calculated with ccCSM+Feshbach method
- 4. Further investigation
 - Other quantum number case J^π=1⁻ … S_{NN}=1
 - K⁻pp with SIDDHARA data
- 5. Summary and future plan

"Hadrons and Hadron Interactions in QCD 2015 – Effective Theories and Lattice –" 03. Mar. '15 @ YITP, Kyoto univ., Kyoto, Japan

Prototype system = $K^- pp$

K^{bar}N two-body system

Proton

Low energy scattering data, 1s level shift of kaonic hydrogen atom

"Excited hyperon $A(1405) = K^2$ proton quasi-bound state"

Strongly attractive K^{bar}N potential

Prototype system = $K^{-}pp$

Doorway to dense matter[†]

- \rightarrow Chiral symmetry restoration in dense matter
- Interesting structure[†]
- Neutron star

† A. D., H. Horiuchi, Y. Akaishi and T. Yamazaki, PRC70, 044313 (2004)

Nuclear many-body system with K⁻

³HeK⁻, pppK⁻, ⁴HeK⁻, pppnK⁻, ..., ⁸BeK⁻,...

Kaonic nuclei

Prototype system = $K^{-}pp$

Theoretical studies of K-pp

	Dote-Hyodo- Weise	Barnea-Gal- Liverts	Akaishi- Yamazaki	lkeda- Kamano-Sato	Shevchenko- Gal-Mares
	PRC79, 014003 (2009)	PLB712, 132 (2012)	PRC76, 045201 (2007)	PTP124, 533 (2010)	PRC76, 044004 (2007)
B(K⁻pp)	20±3	16	47	9 ~ 16	50 ~ 70
Г	40 ~ 70	41	61	34 ~ 46	90 ~ 110
Method	Variational (Gauss)	Variational (H. H.)	Variational (Gauss)	Faddeev-AGS	Faddeev-AGS
Potential	Chiral (E-dep.)	Chiral (E-dep.)	Pheno.	Chiral (E-dep.)	Pheno.

Chiral pot. (E-dep.) → Small binding
 Phenomenological pot. (E-indep.) → Large binding

$\frac{B(K^{-}pp) < 100 \text{ MeV}}{K^{-}pp \text{ should be bound, but exist as}}$ a resonance between $K^{\text{bar}}NN$ and $\pi\Sigma N$ thresholds.

⇒ <u>coupled-channel</u> <u>Complex Scaling Method</u>

Prototype system = K⁻ pp Anti-kaon = Nambu-Goldstone boson

2. Effective single-channel potential by

"Feshbach projection with ccCSM"

Reduce the coupled-channel problem to a single channel problem

Complex Scaling Method for Resonance

Complex rotation of coordinate (Complex scaling)

 $U(\theta)$: $\mathbf{r} \to \mathbf{r} e^{i\theta}$, $\mathbf{k} \to \mathbf{k} e^{-i\theta}$

$$H_{\theta} \equiv U(\theta) H U^{-1}(\theta), \quad \left| \Phi_{\theta} \right\rangle \equiv U(\theta) \left| \Phi \right\rangle$$

<u>Diagonalize H₀ with Gaussian base,</u>

we can obtain resonant states, in the same way as bound states!

Continuum state appears on 2θ line.

[†] J. Aguilar and J. M. Combes, Commun. Math. Phys. 22 (1971),269.E. Balslev and J. M. Combes, Commun. Math. Phys. 22 (1971),280

Resonance pole is off from 2 ϑ line, and independent of ϑ . (ABC theorem[†])

Formalism of ccCSM + Feshbach method

Elimination of channels by Feshbash method

Schrödinger eq. in model space "P" and out of model space "Q"

 $\left(T_{P}+U_{P}^{Eff}\left(E\right)\right)\Phi_{P} = E\Phi_{P}$ Schrödinger eq. in P-space :

$$\begin{pmatrix} T_{P} + v_{P} & V_{PQ} \\ V_{QP} & T_{Q} + v_{Q} \end{pmatrix} \begin{pmatrix} \Phi_{P} \\ \Phi_{Q} \end{pmatrix} = E \begin{pmatrix} \Phi_{P} \\ \Phi_{Q} \end{pmatrix}$$

Effective potential for P-space

 $U_{P}^{Eff}\left(E\right) = v_{P} + V_{PO} G_{O}\left(E\right) V_{OP}$

Q-space Green function:

$$G_{Q}\left(E\right) = \frac{1}{E - H_{QQ}}$$

Extended Closure Relation in Complex Scaling Method

$$\int_{QQ} \left| \chi_{n}^{\theta} \right\rangle = \varepsilon_{n}^{\theta} \left| \chi_{n}^{\theta} \right\rangle$$

$$\int_{C} \sum_{R+B} \left| \chi_{n}^{\theta} \right\rangle \left\langle \chi_{n}^{\theta} \right| = 1$$

Diagonalize H^{θ}_{QQ} with Gaussian base,

 $\sum |\chi_n^{\theta}\rangle \langle \chi_n^{\theta}| \approx 1$ Well approximated

T. Myo, A. Ohnishi and K. Kato, PTP 99, 801 (1998) R. Suzuki, T. Myo and K. Kato, PTP 113, 1273 (2005)

Express the G_Q(E) with Gaussian base using ECR

$$G_{\varrho}^{\theta}(E) = \frac{1}{E - H_{QQ}^{\theta}} \approx \sum_{n} \left| \chi_{n}^{\theta} \right\rangle \frac{1}{E - \varepsilon_{n}^{\theta}} \left\langle \chi_{n}^{\theta} \right|$$

H

 H_{0}^{θ}

 $\left\{ \left| \chi_{n}^{\theta} \right\rangle \right\}$: expanded with Gaussian base.

$$V_{P}^{Eff}(E) = v_{P} + V_{PQ} \bigcup_{QP} U^{-1}(\theta) G_{Q}^{\theta}(E) U(\theta) \bigvee_{QP} G(E)$$

3. Result of K⁻pp calculated with

<u>ccCSM + Feshbach method</u>

<u>Apply ccCSM + Feshbach method to K⁻pp</u>

"*K*-pp" ... $K^{bar}NN - \pi \Sigma N - \pi \Lambda N (J^{\pi}=0, T=1/2)$

For the two-body system, $P = K^{bar}N$, $Q = \pi Y$

 $V\left(K^{bar}N - \pi Y; I = 0, 1\right)$ $V\left(\pi Y - \pi Y' ; I = 0, 1\right)$

Feshbach + ccCSM

 $U_{K^{bar}N(I=0,1)}^{Eff}(E)$

<u>Schrödinger eq. for K^{bar}NN channel :</u>

$$\left(T_{K^{bar}NN} + V_{NN} + \sum_{i=1,2} U_{K^{bar}N_{i}(I)}^{Eff}\left(E_{K^{bar}N}\right)\right) \Phi_{K^{bar}NN} = E \Phi_{K^{bar}NN}$$

Trial wave function

$$|"K^{-}pp"\rangle = \sum_{a} C_{a}^{(KNN,1)} \left\{ G_{a}^{(KNN,1)} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) + G_{a}^{(KNN,1)} \left(-\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) \right\} |S_{NN} = 0\rangle \left| \left[K [NN]_{1} \right]_{T=1/2} \right\rangle$$

$$+ \sum_{a} C_{a}^{(KNN,2)} \left\{ G_{a}^{(KNN,2)} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) - G_{a}^{(KNN,2)} \left(-\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)} \right) \right\} |S_{NN} = 0\rangle \left| \left[K [NN]_{0} \right]_{T=1/2} \right\rangle$$

$$Ch. 1: K^{bar}NN, NN:^{1}O$$

 <u>Basis function = Correlated Gaussian</u> ...including 3-types Jacobi-coordinates

$$G_{a}^{(KNN,i)}\left(\mathbf{x}_{1}^{(3)},\mathbf{x}_{2}^{(3)}\right) = N_{a}^{(KNN,i)} \exp\left[-\left(\mathbf{x}_{1}^{(3)},\mathbf{x}_{2}^{(3)}\right)A_{a}^{(KNN,i)}\left(\mathbf{x}_{1}^{(3)}\right)\right]$$

Chiral SU(3) potential with a Gaussian form

- Weinberg-Tomozawa term of effective chiral Lagrangian
- Gaussian form in r-space
- Semi-rela. / <u>Non-rela.</u>
- ➢ Based on Chiral SU(3) theory → Energy dependence

A non-relativistic potential (NRv2c)

$$V_{ij}^{(I=0,1)}(r) = -\frac{C_{ij}^{(I=0,1)}}{8f_{\pi}^{2}} \left(\omega_{i} + \omega_{j}\right) \sqrt{\frac{1}{m_{i}m_{j}}} g_{ij}(r)$$

 $g_{ij}(r) = \frac{1}{\pi^{3/2} d_{ij}^3} \exp\left[-\left(r/d_{ij}\right)^2\right] : Gaussian form$

 ω_i : meson energy

Constrained by K^{bar}N scattering length

 $a_{KN(I=0)} = -1.70 + i0.67 fm, a_{KN(I=1)} = 0.37 + i0.60 fm$

A. D. Martin, NPB179, 33(1979)

A resonance pole corresponding to Λ(1405) *at* (*M*, -Γ/2) ~ (1420, -20) *MeV B*_{KN} ~ 15MeV *A. D., T. Inoue, T. Myo, Nucl. Phys. A* 912, 66 (2013)

Double-pole structure is confirmed. Lower pole ~ (1395, -138) MeV at f_{π} =110 MeV

A. D., T. Myo, Nucl. Phys. A 930, 86 (2014)

Self-consistency for complex K^{bar}N energy

How to determine the two-body energy in the three-body system?

A. D., T. Hyodo, W. Weise, PRC79, 014003 (2009)

- 1. Kaon's binding energy: $B(K) \equiv -\left\{ \langle H \rangle \langle H_{NN} \rangle \right\}$
- H_{NN} : Hamiltonian of two nucleons

2. Define a K^{bar}N-bond energy in two ways

$$E_{KN} = M_N + \omega = \begin{cases} M_N + m_K - B(K) & : Fi \\ M_N + m_K - B(K)/2 & : Pa \end{cases}$$

: Field picture : Particle picture

<u>Result</u>

NN pot. : Av18 (Central) K^{bar}N pot. : NRv2c potential $(f_{\pi}=110MeV)$

Fix the $K^{\text{bar}N}$ energy at Λ^* ... self-consistent for Λ^* in free space

<u>Self-consistent results</u> <u>f_π=90~120MeV</u>

NN pot. : Av18 (Central) K^{bar}N pot. : NRv2c potential $(f_{\pi}=90 - 120MeV)$

K^{bar}N correlation density

NN pot. : Av18 (Central) K^{bar}N pot. : NRv2c potential f_{π} =110, Particle pict.

• K^{bar}NN with $J^{\pi} = 1^{-}$ state ... $S_{NN} = 1$

• K⁻pp with SIDDHARTA data

J-PARC E27 experiment

K-pp search by d (π^+ , K+) reaction at 1.69 GeV/c

Inclusive spectrum: Ichikawa et al., PTEP 101D03 (2014)

<u>How is $J^{\pi} = 1^{-}$ state ... $S_{NN} = 1?$ </u>

$$|"K^-pp"\rangle \approx |L_{KNN} = 0, NN : s - wave \rangle |S_{NN} = 0\rangle |[K[NN]_1]_{T=1/2}\rangle$$
 $J^{\pi}=0^{-}, T=1/2$

$$|"K^{-}d"\rangle \approx |L_{KNN} = 0, NN : s - wave \rangle |\mathbf{S}_{NN} = \mathbf{1} \rangle | [K[NN]_{\mathbf{0}}]_{T=1/2} \rangle$$

<u> "K + Deuteron"-like channel</u>

<u>"K d" studied simply with ...</u>

- NN potential: Av4' (³E, ³O) (fitted with 5-range Gaussian functions) ... Tensor force is incorporated into central potential.
- K^{bar}N potential: A phenomenological potential ... Energy independent

Y. Akaishi and T. Yamazaki, PRC 52 (2002) 044005

 $J^{\pi}=1^{-}, T=1/2$

Λ*-fixed ansatz

... $E(K^{bar}N)$ in effective $K^{bar}N$ potential is fixed to the Λ^* energy.

• $K^{bar}NN$ with $J^{\pi} = 1^{-}$ state ... $S_{NN} = 1$

• K⁻pp with SIDDHARTA data

<u>K-pp with SIDDHARTA data</u>

Precise measurement of 1s level shift of kaonic hydrogen

Strong constraint for the KbarN interaction!

 $\epsilon_{1s} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$ $\Gamma_{1s} = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV},$

M. Bazzi et al. (SIDDHARTA collaboration), NPA 881, 88 (2012)

K⁻p scattering length (with improved Deser-Truman formula) U. -G. Meissner, U. Raha and A. Rusetsky, Eur. Phys. J. C 35, 349 (2004)

$$\operatorname{Re}a(K^{-}p) = -0.65 \pm 0.10 \,\mathrm{fm},$$

 $\operatorname{Im} a(K^{-}p) = 0.81 \pm 0.15 \text{ fm}$

Y. Ikeda, T. Hyodo and W. Weise, NPA 881, 98 (2012)

<u>K-pp with SIDDHARTA data</u>

5. Summary and future plans

5. Summary and future plans

<u>A prototype of K^{bar} nuclei "K-pp" = Resonance state of K^{bar}NN-πYN coupled system</u>

<u>"coupled-channel Complex Scaling Method + Feshbach projection"</u>

- ... Represent the Q-space Green function with the Extended Complete Set well approximated by Gaussian base
- ⇒ Eliminate πY channels to reduce the problem to a K^{bar}NN single channel problem.

K-pp studied with ccCSM+Feshbch method

- Used a Chiral SU(3)-based potential (Gaussian form in r-space)
- Self-consistency for kaon's complex energy
- Correlation density in CSM shows effect of NN repulsive core and Λ* survival in K⁻pp resonance.
- $J^{\pi}=1^{-}$ state ("Deuteron+K-"-like channel) seems not to exist as a resonance state.
- When the SIDDARTA data for K⁻p scattering length is taken into account, the result of K⁻pp does not change so much.

<u>Future plans</u>

- Full-coupled channel calculation of K⁻pp
- Application to resonances of other hadronic systems

<u>K-pp (J^π=0-, T=1/2) --- NRv2c potential case</u>

(B, Γ/2) = (21~31, 9~16) MeV : "Field picture" (25~30, 15~32) MeV : "Particle pict."

Mean NN distance ~ 2.2 fm \rightarrow Normal density

Kaonie nuelei

シンクロトロ

ニュートリノビーム

Thank you very much!

Reference: A. D., T. Inoue, T. Myo, arXiv: 1411.0348, to be published in Prog. Theor. Exp. Phys. 大強度陽子加速器施設(J-PARC)