Charmed Tetraquarks from Lattice QCD

Yoichi Ikeda
(RIKEN, Nishina Center)

HAL QCD (Hadrons to Atomic nuclei from Lattice QCD)

Sinya Aoki, Takumi Iritani (YITP, Kyoto Univ.)
Takumi Doi, Tetsuo Hatsuda, Yoichi Ikeda, Vojtech Krejcirik (RIKEN)
Takashi Inoue (Nihon Univ.)
Noriyoshi Ishii, Keiko Murano (RCNP, Osaka Univ.)
Hidekatsu Nemura, Kenji Sasaki,
Masanori Yamada, Takaya Miyamoto (Univ. Tsukuba)
Faisal Etminan (Univ. Birjand)

Long-term workshop on "Hadrons and Hadron Interactions in QCD 2015 (HHIQCD2015)"
@YITP, 3 Mar. 2015.
Spectrum of charmonium(-like) system

Quark potential models well describe mass spectra below open charm threshold

- Barnes, Godfrey, Swanson, PRD 72 (2005).

“NEW” charmonium-like (X, Y, Z) states:
- not within quark model spectrum
- candidates of exotic hadrons

“Other” exotic candidates (expected from quark models):
- doubly charmed tetra-quark, but experimentally not observed so far

Our target: tetra-quark channels

“Tetraquark” Tcc (ccubardbar) is manifest 4-quark channel

“Charged” charmonium-like states (ccbar + π+/-) require at least 4 quarks
Tcc bound state

\[g \propto \gamma^\mu \frac{\lambda^a}{2} \approx \bar{c}\gamma^\mu \frac{\lambda^a}{2} \, cA^a \Rightarrow \text{color magnetic + color electric forces} \]

\[\text{magnetic interactions} \ll \text{electric interactions} \]

\[\Rightarrow \text{magnetic gluon coupling is suppressed by O}(1/m_c) \]

\[\checkmark \text{Heavy quark spin symmetry} \]

- **Color magnetic interaction** is enhanced in light-quark sector

\[V_{ij}^{\text{CMI}} \propto -\frac{(\vec{\lambda}(i) \cdot \vec{\lambda}(j))(\vec{\sigma}(i) \cdot \vec{\sigma}(j))}{M_i M_j} \]

- **Color-spin matrix elements**:

 \[\langle v_{ij} \rangle = -\langle(\vec{\lambda}(i) \cdot \vec{\lambda}(j))(\vec{\sigma}(i) \cdot \vec{\sigma}(j))\rangle \]

<table>
<thead>
<tr>
<th>(<v_{ij}>)</th>
<th>C=1</th>
<th>C=8</th>
<th>C=3</th>
<th>C=6^{\text{bar}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S=0</td>
<td>-16</td>
<td>2</td>
<td>-8</td>
<td>4</td>
</tr>
<tr>
<td>S=1</td>
<td>16/3</td>
<td>-2/3</td>
<td>8/3</td>
<td>-4/3</td>
</tr>
</tbody>
</table>

\[\Rightarrow I=0 \, [ud]-\text{diquark correlation (good diquark)} \Rightarrow \text{Tcc bound state?} \]
Charmonium-like $Z_c(3900)$

- **observed in $\pi^{\pm}/J/\Psi$ invariant mass (confirmed by CLOE-c)** *(Xiao et al., PLB727 (2013).)*
- $J^P = 1^+$ seems most probable *(BESIII Coll., PRL112 (2014).)*

★ **Structure of $Z_c(3900)$**

- Tetra-quark? *Maiani et al. (2013).*
- $D^{\text{bar}}D^*$ molecule? *Nieves et al. (2011) + many others*
- $c\bar{c} +$ meson cloud? *Voloshin (2008).*
- pole + meson cloud? *Wang et al. (2013).*
- cusp? *Chen et al. (2013), Swanson (2014).*

$D^{\text{bar}}D^* = 3872$ ★ $Z_c(3900)$

$\Delta = 640$

$\pi J/\Psi = 3232$

energy spectrum consistent with scattering

coupled-channel scattering from LQCD

Chen et al. (2013), Swanson (2014).
Contents

- Introduction
- HAL QCD method to define (coupled-channel) potentials
- Tcc in $I(J^P)=0,1(1^+)$ channels [DD* single-channel]
- Zc(3900) in $I(J^P)=1(1^+)$ [$\pi J/\Psi-\rho\eta c-D\overline{D}D^*$ coupled-channel]
- Summary

\[DD^* = 3872 \]
\[D\overline{D}D^* = 3872 \]
\[Zc(3900) \]
\[\pi J/\Psi = 3232 \]
\[\Delta = 640 \]
Two identical methods for scattering

- **Lüscher's finite size formula**
 Interaction energy --> phase shift

- **NBS wave function**

- **Energy-independent potential**

 \[k \cot \delta(k) = \frac{1}{a} - \frac{1}{2} r e k^2 + \ldots \]

 \[k \cot \delta(k) = \frac{1}{a} - \frac{1}{2} r e k^2 + \ldots \]

- **Guaranteed to be the same**

 Kurth et al., JHEP 1312 (2013) 015.

- **Scattering parameters**

 Aoki, Hatsuda, Ishii, PPTP123, 89 (2010).

- **Scattering parameters**

 \[k \cot \delta(k) = \frac{1}{a} - \frac{1}{2} r e k^2 + \ldots \]

 \[k \cot \delta(k) = \frac{1}{a} - \frac{1}{2} r e k^2 + \ldots \]
Two identical methods for scattering

- **Lüscher's finite size formula**
 Interaction energy \rightarrow phase shift
 \[k \cot \delta(k) = \frac{1}{a} - \frac{1}{2} r_k k^2 + \ldots \]

- **NBS wave function**

- **Energy-independent potential**

- **Guaranteed to be the same**
 Kurth et al., JHEP 1312 (2013) 015.

- **Scattering parameters**

- **LQCD potentials can be applied to...**
 properties of hadrons & nuclei, construction of EOS, etc.

\[V(r) = 45 \text{[MeV]} \rightarrow 0 \text{[MeV]} \]

- E ~ 0 MeV

- E ~ 45 MeV

Aoki, Hatsuda, Ishii, PPTP123, 89 (2010).
Resonance from LQCD

T-matrix in formal scattering theory (N/D method)

\[T^{-1}(\sqrt{s}) = V^{-1} + \frac{1}{2\pi} \int_{s}^{\infty} ds' \frac{\rho(s')}{s' - s} \]

Interaction part is not determined within scattering theory

\[\Rightarrow \text{interactions faithful to phase shift in QCD} \]

Analyticity of T-matrix is uniquely determined

Bound states (physical sheet, 1st)
- binding energy --> T-matrix pole position
- coupling --> residue of pole

Resonance/Virtual states (unphysical sheet, 2nd)
- Analytic continuation of T-matrix
- resonance energy --> T-matrix pole position
- coupling --> (complex) residue of pole?
“Potentials” in QCD

Hadron 4pt functions & **Nambu-Bethe-Salpeter (NBS)** wave function

\[
\psi^{ab}(\vec{r}, \tau) = \sum_{\vec{x}} \langle 0 | \phi_1^a(\vec{x} + \vec{r}, \tau) \phi_2^a(\vec{x}, \tau) \mathcal{J}^{b\dagger}(\tau = 0) | 0 \rangle \\
= \sum_n A_n^b \exp \left[-W_n \tau\right] \sqrt{Z_1^a} \sqrt{Z_2^a} \psi_n^a(\vec{r})
\]

- Helmholtz eq. of NBS wave func.

\[
(\nabla^2 + (\vec{k}^a)^2) \psi_W^a(\vec{r}) = 0 \quad (|\vec{r}| > R)
\]

\[
\psi_W^{(l)}(r) \sim \frac{e^{i\delta_l(k)}}{kr} \sin(kr + \delta_l(k) - l\pi/2)
\]

- NBS wave func. in QFT ~ wave func. in Q.M.

- Coupled-channel potential matrix (faithful to phase shifts)

\[
(\nabla^2 + (\vec{k}^a)^2) \psi_n^a(\vec{r}) = 2\mu^a \sum_b \int d\vec{r}' U^{ab}(\vec{r}, \vec{r}') \psi_n^b(\vec{r}')
\]

- Coupled-channel potentials are energy-independent (non-local in general)

HAL QCD method

✓ Definition of energy-independent coupled-channel potentials:

\[
\psi_n(\vec{r}) = \langle 0 | \phi_1^a(\vec{r} + \vec{x}) \phi_2^b(\vec{x}) | W_n; JP \rangle
\]

\[
(\nabla^2 + (\vec{k}^a)^2) \psi_n^a(\vec{r}) = 2\mu \sum_b \int d\vec{r}' U^{ab}(\vec{r}, \vec{r}') \psi_n^b(\vec{r}')
\]

✓ Since energy-independent potential can produce all scattering states, single-state saturations in simulations is not required

✓ Extract energy-independent potential from time-dependent Schrödinger-type eq.

\[
R^{ab}(\vec{r}, \tau) \equiv \psi^{ab}(\vec{r}, \tau) \frac{e^{(m_1^a + m_2^a)\tau}}{\sqrt{Z_1^a} \sqrt{Z_2^a}}
\]

\[
\delta = \frac{m_1^a - m_2^a}{m_1^a + m_2^a} \quad \Delta^{ae} = \frac{e^{(m_1^a + m_2^a)\tau}}{e^{(m_1^c + m_2^c)\tau}}
\]

\[
\left[-\partial_\tau + \nabla^2/2\mu^a + \partial_\tau^2/8\mu^a + O(\delta^2) \right] R^{ab}(\vec{r}, \tau) = \sum_c \int d\vec{r}' \Delta^{ae} U^{ac}(\vec{r}, \vec{r}') R^{cb}(\vec{r}', \tau)
\]

✓ Velocity expansion:

\[
U(\vec{r}, \vec{r}') = V(\vec{r}, \nabla) \delta(\vec{r} - \vec{r}')
\]

\[
V(\vec{r}, \nabla) = V_C(\vec{r}) + \vec{L} \cdot \vec{S} V_{LS}(\vec{r}) + O(\nabla^2)
\]

✓ Calculate observable: phase shift, binding energy, pole position, ...
Tcc in $I(J^P) = 0, 1(1^+)$

Asymptotic states: $DD^*(s$-wave)
Lattice QCD Setup

N_f=2+1 full QCD configurations generated by PACS-CS Coll.

- Iwasaki gauge & $O(a)$-improved Wilson quark actions
- $a=0.0907(13)\ \text{fm} \rightarrow L\sim 2.9\ \text{fm} \ (32^3 \times 64)$

Light meson mass [conf.1, conf.2, conf.3] (MeV)
- $M_{\pi}=699(1), 572(2), 411(2) \ [\text{PDG:135} \ (\pi^0)]$
- $M_K=787(1), 714(1), 635(2) \ [\text{PDG:498} \ (K^0)]$

Tsukuba-type Relativistic Heavy Quark (RHQ) action for charm quark

- **Charmed meson mass [conf.1, conf.2, conf.3] (MeV)**
 - $M_{\eta_c}=3024(1), 3005(1), 2988(2) \ [\text{PDG:2981}]$
 - $M_{J/\Psi}=3142(1), 3118(1), 3097(2) \ [\text{PDG:3097}]$
 - $M_D=1999(1), 1946(1), 1902(3) \ [\text{PDG:1865} \ (D^0)]$
 - $M_{D^*}=2159(4), 2099(6), 2048(12) \ [\text{PDG:2007} \ (D^{*0})]$
S-wave DD* in I=1: “bad” diquark

- Repulsive s-wave potentials of DD*
- Weak quark mass dependence
- It is unlikely to form bound state even at physical point

Y. Ikeda et al. (HAL QCD), PLB729, 85 (2014).
S-wave DD* in I=0: “good” diquark

- **Attractive** S-wave potentials
- Attraction increases, as m_q decreases
- Check whether bound T_{cc} exist or not \rightarrow phase shift analysis

Y. Ikeda et al. (HAL QCD), PLB729, 85 (2014).
S-wave phase shifts: T_{cc} in $I=0$

- Attraction is not sufficiently strong to generate bound state
- Rapid increase at threshold of DD* phase shift --> effect of virtual state?

solve Schrödinger equation --> phase shifts

Y. Ikeda et al. (HAL QCD), PLB729, 85 (2014).

➡ examine pole position
Pole search w/ LQCD potential at $m_\pi = 410$ MeV

Virtual pole on the DD* unphysical energy plane ➔ threshold cusp of the amplitude ➔ rapid increase of scattering phase shift
$Zc(3900)$ in $I^G(J^P)=1^+(1^+)$
Lattice QCD setup

- $N_f=2+1$ full QCD configurations (PACS-CS) w/ $L=2.9\text{fm}$

 - Tsukuba-type RHQ action for charm quark

S. Aoki et al., PTP109, 383 (2003)

Y. Namekawa et al., PRD84, 074505 (2011)

- Thresholds in $I^GJ^P=1^+1^+$ channel

<table>
<thead>
<tr>
<th>Light meson mass (MeV)</th>
<th>Charmed meson mass (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{\pi}=411(2)$ [PDG:135 (π^0)]</td>
<td>$M_{\pi}=411(2)$ [PDG:135 (π^0)]</td>
</tr>
<tr>
<td>$M_{\rho}=895(14)$ [PDG:775]</td>
<td>$M_{\rho}=895(14)$ [PDG:775]</td>
</tr>
</tbody>
</table>

$M_{\eta_c}=2988(2)$ [PDG:2981]	$M_{\eta_c}=2988(2)$ [PDG:2981]
$M_{J/\Psi}=3097(2)$ [PDG:3097]	$M_{J/\Psi}=3097(2)$ [PDG:3097]
$M_D=1902(3)$ [PDG:1865 (D^0)]	$M_D=1902(3)$ [PDG:1865 (D^0)]
$M_{D^*}=2048(12)$ [PDG:2007 (D^{*0})]	$M_{D^*}=2048(12)$ [PDG:2007 (D^{*0})]

- **Light meson mass (MeV)**
 - $M_{\pi}=411(2)$ [PDG:135 (π^0)]
 - $M_{\rho}=895(14)$ [PDG:775]

- **Charmed meson mass (MeV)**
 - $M_{\eta_c}=2988(2)$ [PDG:2981]
 - $M_{J/\Psi}=3097(2)$ [PDG:3097]
 - $M_D=1902(3)$ [PDG:1865 (D^0)]
 - $M_{D^*}=2048(12)$ [PDG:2007 (D^{*0})]

LQCD simulation

- $D^{\text{bar}}D^*=3951$
- $D^{\text{bar}}D^*=3872$
- $\rho\eta_c=3883$
- $\pi\Psi'=3821$
- $\pi\pi\eta_c=3256$
- $\pi J/\Psi=3508$
- $\pi J/\Psi=3232$

Physical thresholds

- $M_{\pi\Psi'} > M_{D^{\text{bar}}D^*}$ due to heavy pion mass
- $\rho\rightarrow\pi\pi$ decay not allowed in our setup

- S-wave $\pi J/\Psi - \rho\eta_c - D^{\text{bar}}D^*$ coupled-channel analysis is performed
Potential matrix \((\pi J/\psi - \rho\eta_c - D^\text{bar}D^*)\)

- All diagonal potentials are weak

\[V_{\pi J/\psi-\pi J/\psi} \]

\[V_{\rho\eta_c-\rho\eta_c} \]

\[V_{D^\text{bar}D^*-D^\text{bar}D^*} \]

\[\text{Weak} \rightarrow \text{no bound } D^\text{bar}D^* \]
Potential matrix \((\pi J/\Psi - \rho\eta_c - D^{\text{bar}}D^*)\)

- **Weak charm spin-flip potential**
- **Heavy quark spin symmetry**

(charm quark spin-flip amplitude is suppressed)
Potential matrix \((\pi J/\Psi - \rho \eta_c - D^{\text{bar}}D^*)\)

- Strong off-diagonal \(D^{\text{bar}}D^*\) potentials
- \(\checkmark\) strong charm-quark-exchange interactions
Potential matrix \((\pi J/\Psi - \rho\eta_c - D^{\text{bar}}D^*)\)

![Graphs and diagrams showing potential matrix entries for different particle interactions.](image)
Invariant mass spectra of $\pi J/\Psi$ & $D^{\text{bar}}D^*$

- $\pi J/\Psi$ invariant mass ($m_\pi=410\text{MeV}$)
- $D^{\text{bar}}D^*$ invariant mass ($m_\pi=410\text{MeV}$)

✓ enhancement near $D^{\text{bar}}D^*$ threshold due to large $\pi J/\Psi$-$D^{\text{bar}}D^*$ coupling

- peak in $\pi J/\Psi$ invariant mass
- enhancement (cusp?) in $D^{\text{bar}}D^*$ invariant mass
LQCD results & EXP. results

- **πJ/Ψ invariant mass (m_π=410MeV)**
 - ![Graph](image1)

- **D^0D^* invariant mass (m_π=410MeV)**
 - ![Graph](image2)

- **e^+e^- \rightarrow π(πJ/Ψ) @ 4.26GeV**
 - ![Graph](image3)

- **e^+e^- \rightarrow π^+/− (D^0D^*)^+/−**
 - ![Graph](image4)

✓ We observe similar line shapes of πJ/Ψ & D^0D^* inv. mass
Pole search ($\pi J/\Psi :2nd$, $\rho \eta_c :2nd$, $D^{\text{bar}}D^* :2nd$)

✓ Poles on the most adjacent complex energy plane for $Z_c(3900)$ are found
✓ How do these poles contribute to enhancement in T-matrix?
T-matrix of \(\pi J/\Psi \) & \(\bar{D}D^* \)

- calculate residues of T-matrix in each channel

\[
S(k) = 1 + 2iT(k)
\]

- \(\pi J/\Psi-\pi J/\Psi \) T-matrix (\(m_\pi = 410 \text{MeV} \))

- \(\bar{D}D^*-\bar{D}D^* \) T-matrix (\(m_\pi = 410 \text{MeV} \))

✓ sizable pole contributions (especially in \(\pi J/\Psi \) channel)

\(S(k) = 1 + 2iT(k) \)
Quark mass dependence

- $\pi J/\Psi$ invariant mass
- $D^{\text{bar}}D^*$ invariant mass

- enhancement near $D^{\text{bar}}D^*$ threshold due to large $\pi J/\Psi-D^{\text{bar}}D^*$ coupling
- No m_q dependence on qualitative behaviors of line shapes
Summary

Applications of HAL QCD method to tetra-quarks, Tcc & Zc(3900)

- **Tcc search on the lattice @ m_\pi = 410-700 MeV**
 - Tcc is not bound for m_\pi > 400 MeV (T_{bb} is already bound)
 - sizable correlation of diquarks is found
 - l=0 good diquark channel: attractive
 - l=1 bad diquark channel: repulsive

- **Zc(3900) in I^G(J^P)=1^+(1^+) channel on the lattice @ m_\pi = 410 MeV**
 - Large channel coupling between \pi J/\Psi and D^{bar}D^* is a key
 - Heavy quark spin symmetry is seen in c.c. potentials
 - Zc(3900) is neither simple D^{bar}D^* molecule nor J/\Psi + \pi-cloud
 - shadow poles on complex energy plane are found (w/ relatively large width)

- **Physical point simulation is the next step**