Experimental spectroscopy of pionic atoms and eta'-mesic nuclei

Kenta Itahashi

Contents

- piAF project (RIBF-54) at RIBF
 Physics
 Pilot run 2010 and achievements
 Main run 2014
 Challenges for piA with unstable nuclei
- EtaPrime (GSI-S437) at GSI/FAIR

Physics and strategy

Pilot run 2014

Future perspectives

Precision measurement of deeply bound pionic Sn atoms in RIBF Kenta Itahashi Advanced Meson Science Laboratory, RIKEN

for piAF collaboration

DeukSoon Ahn, Georg P. A. Berg, Masanori Dozono, Hiroyuki Fujioka, Naoki Fukuda, Nobuhisa Fukunishi, Hans Geissel, Emma Haettner, Ryugo S. Hayano, Satoru Hirenzaki, Hiroshi Horii, Natsumi Ikeno, Naoto Inabe, Kenta Itahashi*, Masahiko Iwasaki, Daisuke Kameda, Nobuyuki Kobayashi, Toshiyuki Kubo, Hiroaki Matsubara, Shin'ichiro Michimasa, Kenjiro Miki, Go Mishima, Daichi Murai, Hiroyuki Miya, Hideko Nagahiro, Megumi Niikura, Takahiro Nishi**, Shumpei Noji, Shinsuke Ota, Haruhiko Outa, Naruhiko Sakamoto, Hiroshi Suzuki, Ken Suzuki, Motonobu Takaki, Hiroyuki Takeda, Yoshiki K. Tanaka, Tomohiro Uesaka, Yuni N. Watanabe, Helmut Weick, Hiroki Yamakami, Koichi Yoshida.

* spokesperson, ** co-spokesperson

RIKEN Nishina Center, RIKEN

Department of Physics, University of Notre Dame Department of Physics, Kyoto University GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Department of Physics, The University of Tokyo Department of Physics, Nara Women's University National Institute of Radiological Sciences Center of Nuclear Study, The University of Tokyo Research Center for Nuclear Physics, Osaka University National Superconducting Cyclotron Laboratory, Michigan State University Stefan-Meyer-Institut für subatomare Physik, Österreichische Akademie der Wissenschaften

IRC

 $\left(\right)$

Pionic Atoms and piA interaction

Kenta Itahashi, RIKEN N. Ikeno et al., PTP126(2011)483.

Chiral symmetry at finite density

Jido, Hatsuda, Kunihiro, Phys.Lett.B670:109-113,2008. Kolomeitsev, Kaiser, Weise, Phys. Rev. Lett. 90(2003)092501

M. Gell-Mann et al., PR175(1968)2195.

Gell-Mann-Oakes-Renner relation

$$f_{\pi}^2 m_{\pi}^2 = -2m_q \left< \bar{q}q \right>$$

 f_{π} : pion decay constant

Y. Tomozawa, NuovoCimA46(1966)707. S. Weinberg, PRL17(1966)616.

Tomozawa-Weinberg relation $b_1=-rac{m_\pi}{8\pi f_\pi^2}$

 b_1 : isovector πN scattering length

spectroscopy of pionic atoms

Spectroscopy of pionic atoms

(d,³He) nuclear reaction to directly produce deeply bound pionic atom i.e. hidden states in X-ray spectroscopy

Missing mass spectroscopy to measure excitation spectrum by Q-value measurement

We are aiming at 300 keV (FWHM) resolution. (prev. 400 keV)

Momentum Transfer

10

Present b₁ precision

PRL92(04)072302.

Kenta Itahashi, RIKEN

states data combined with light spherical pionic atom data.

free value

Юн

-0.09

Present b₁ precision

In-medium b_1 is calculated based on deeply bound pionic states data combined with light spherical pionic atom data.

Kenta Itahashi, RIKEN

 115 Sn 0.441 ± 0.087 119 Sn 0.326 ± 0.080 123Sn 0.341 ± 0.072

 Γ_{1s}

B_{1s} 115 Sn 3.906 ± 0.024 119 Sn 3.820 ± 0.018 123 Sn 3.744 ± 0.018

K. Suzuki et al., PRL92(04)072302.

12

Experimental resolution / systematic errors

in-situ Calibration ____p(d,³He)pi⁰

using CH2 pasted Sn target

Resolution ~ 400 keV (beam p spread, target thickness)

Systematic errors in absolute energy scale (calibration, incident energy, dx/dp...)

We want to improve precision.

Pionic Atom Factory Project in RIBF

PRL92(04)072302.

NNDC,BNL

Pionic Atom Factory Project in RIBF

NNDC,BNL

Precision Spectroscopy at RI Beam Factory

16

Precision Spectroscopy at RI Beam Factory

Precision Spectroscopy at RI Beam Factory

Dispersion matching

Ion Optics

T.Nishi

HIQCD2015 Precision spectroscopy at RI Beam Factory

RIBF-54 Objectives

- 2010 Pilot run (~3 days)
 Establish experimental methods

 (calibration, optics, detectors etc.)
 Take a short production run w. Sn target for overall test
- 2014 Main run (~10 days)

Achieve world highest resolution < 400 keV First observation of 1s + 2s pionic Sn states

 \rightarrow better precision + better sys. error for B and Γ First data for pionic even N Sn atom

Pionic Atom Factory Project in RIBF

z	112I	113I	114I	115I	116I	117I	118I	119I	120I	121I	1221	123I	124I	125I	126I	127I	128I
	111Te	112Te	113Te	114Te	115Te	116Te	117Te	118Te	119Te	120Te	121Te	122Te	123Te	124Te	125Te	126Te	127Te
51	110Sb	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb	118Sb	119Sb	120Sb	121Sb	122Sb	123Sb	124Sb	125Sb	126Sb
	109Sn	110Sn	111Sn	112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	119Sn	120Sn	121Sn	122Sn	123Sn	124Sn	125Sn
49	108In	109In	110In	111In	112In	113In	114In	115In	116	117In	118In	119In	120In	.21In	122In	123In	124In
	107Cd	108Cd	109Cd	110Cd	111Cd	112Cd	113Cd	114Cd	115Cd	11604	117Ca	118Cd	119Cc	120Cd	121Cd	122Cd	123Cd
47	106Ag	107Ag	108Ag	109Ag	110Ag	111Ag	112Ag	113Ag	114Ag	115Ag	116. g	117Ag	118/g	119Ag	120Ag	121Ag	122Ag
	105Pd	106Pd	107Pd	108Pd	109Pd	110Pd	111Pd	112Pd	113Pd	114Pd	115Pd	11614	117 Pd	118Pd	119Pd	120Pd	121Pd
45	104Rh	105Rh	106Rh	107Rh	108Rh	109Rh	110Rh	111Rh	112Rh	113Rh	Firs	st E	хре	erim	nen	t _{19Rh}	120Rh
	59		61		63		65		67		69		71		73		N

NNDC,BNL

Prepared targets

Theoretical Spectrum for ¹²²Sn(d,³He)

N. Ikeno, Eur. Phys. J. A47 (2011) 161

Experimental setup

Experimental setup

Particle identification

Focal Plane ³He Spectrum in 2010

(acceptance roughly corrected)

15 hours

data accumulatio with 10¹²/s beam for pilot exp.

N. Ikeno, Eur.Phys.J.A47 (2011) 161

Kenta Itahashi, RIKEN

RIBF-54

Focal Plane ³He Spectrum in 2010

(acceptance roughly corrected)

15 hours

data accumulatio with 10¹²/s beam for pilot exp.

N. Ikeno, Eur.Phys.J.A47 (2011) 161

Kenta Itahashi, RIKEN

RIBF-54

Focal Plane ³He Spectrum in 2010

(acceptance roughly corrected)

I5 hours

data accumulatio with 10¹²/s beam for pilot exp.

N. Ikeno, Eur.Phys.J.A47 (2011) 161

Kenta Itahashi, RIKEN

RIBF-54

Achievements in pilot run 2010 and goals for main run 2014

Achievements in 2010

All system works & surprisingly <u>good statistics</u> in a short time <u>First observation</u> of pionic ¹²¹Sn

First observation of angular dependence of piA formation

(however w. insufficient calibration/correction data...)

Goals for 2014

Achieve better resolution

Take calibration / acceptance / aberration correction data

Attempt to systematic study

Improvements in 2014

incident beam $(dp/p, I_d)$, beam optics, detectors, DAQ,/online...

Online spectrum from 2014

2014

¹²²Sn(d,³He)

Acceptance not corrected Higher order aberration roughly corrected

³He energy Smaller

Focal Plane Position [mm]

³He energy Larger

RIBF-54

Online spectrum from 2014

Acceptance not corrected Higher order aberration roughly corrected

2014

Online spectrum from 2014

Online spectrum from 2014

Measured focal spectrum with angles

³He energy Smaller

Focal Position [mm]

RIBF-54

Measured focal spectrum with angles

¹²²Sn(d,³He) ^{2s,2p...} _{2p} ^{1s}

We clearly observe the angular dependence (= momentum transfer dependence) of pionic atom production cross section in (d,³He) reaction

³He energy Smaller

Focal Position [mm]

RIBF-54

HHIQCD2015

Theory vs Experiment (2014)

First observation with an even neutron number nucleus

Summary for piAF

- World highest resolution
- Extremely good statistics for ¹²¹Sn-pi
- First data for pionic even N atom
- Analysis is ongoing now (by T. Nishi)
- Publish 2010 results in short

Let me touch on a new subject before etaprime.

Feasibility study has started for

Deeply-Bound Pionic Atoms with Unstable Nuclei

Y.N. Watanabe

Deeply-Bound Pionic Atoms with Unstable Nuclei

neutron rich nucleus

HHIQCD2015

neutron skinPion bound at $ρ < 0.6 ρ_0$ $ρ_0$: normal nuclear densityDensity dependenceof <qq>

Momentum Transfer

46

60 MeV ³He range is 1.8 mm in Silicon Kenta Itahashi, RIKEN

Conceptual design at RIBF as a first step

Experimental Setup

³He recoil angle
³He kinetic energy
vertex point

gle ΔE , Full Energy by Si + nergy Trajectory by MWDC Incident beam < 10⁶/s Kenta Itahashi, RIKEN

49

Q Value Resolution

Cause	∆Q (FWHM) [keV]			
Energy Resolution of Si at $T_{He} \sim 60 \text{ MeV}$ $\sigma_{Si} = 0.1 \%$	~ 350			
Energy Straggling of ³ He in TPC	~ 350			
Vertex Reconstruction With Incident Beam σ_{TPC} = 500 µm	~ 130			
Total	~ 500			

cf. 400 keV for normal kinematics

Detector Development

Silicon in deuterium test + pure deuterium GEM-TPC (w. CNS) development.

prototype MWDC in construction

First test run with stable nuclei in HIMAC

Y.N.Watanabe and S. Ogawa

Detector Design

40 cm

- Wire feedthrough, hexagonal wire geometry
- Raw material is Al

• Side walls are flange

Detector Design

 $\boldsymbol{\cdot}$ Inside the drift chamber, SSD and $\boldsymbol{\alpha}$ source were installed

Summary for pionic unstable atoms

- Started feasibility study for pionic atoms with unstable nuclei
- Chance to approach chiral condensate at different density
- Testing with pure hydrogen active target MWDC now
- Possible alternative setups are also in consideration

Spectroscopy of η' mesic nuclei

UNILAC SIS18

Y. Ayyad, J. Benlliure, K.-T. Brinkmann, S. Friedrich, H. Fujioka**, H. Geissel, J. Gellanki,
C. Guo, E. Gutz, E. Haettner, M. N. Harakeh, R. S. Hayano, Y. Higashi, S. Hirenzaki,
C. Hornung, Y. Igarashi, N. Ikeno, K. Itahashi*, M. Iwasaki, D. Jido, N. Kalantar-Nayestanaki,
R. Kanungo, R. Knoebel, N. Kurz, V. Metag, I. Mukha, T. Nagae, H. Nagahiro, M. Nanova,
T. Nishi,H. J. Ong, S. Pietri, A. Prochazka, C. Rappold, M. P. Reiter, J. L. R. Sánchez,
C. Scheidenberger, H. Simon, B. Sitar, P. Strmen, B. Sun, K. Suzuki, I. Szarka, M. Takechi,
<u>Y. K. Tanaka</u>, I. Tanihata, S. Terashima, Y. N. Watanabe, H. Weick, E. Widmann, J. Winfield,
X. Xu, H. Yamakami, J. Zhao

for Super-FRS collaboration

*spokesperson, ** co-spokesperson

Osaka University, Universidade de Santiago de Compostela, Universitaet Giessen, Kyoto University, GSI, University of Groningen, Beihang University, The University of Tokyo, Nara Women's University, KEK, RIKEN, Tokyo Metropolitan University, Saint Mary's University, Technische Universitaet Darmstadt, Comenius University Bratislava, Stefan Meyer Institut, Niigata University

> Nagahiro, Jido, Fujioka, KI, Hirenzaki, PRC87(13)045201. KI, Fujioka et al., PTP 128 (12) 601.

Large η' mass can be explained

U_A(I) symmetry breaking term of effective Lagrangian

Jido, Nagahiro, Hirenzaki, PRC85(2012)032201(R) Jido *et al.*, NPA 914 (2013) 354 Kobayashi, Maskawa, PTP44(70)1422
't Hooft, PRD14(76)3432.
T. Kunihiro, Phys. Lett. B219(89)363.
Klimt, Lutz, Vogl, Weise, NPA516(90)429.

Kenta Itahashi, RIKEN

next talk

η' Mesic Nuclei in (p,d) Reaction

 η' transfer reaction + Missing mass measurement

$T_p = 2.50 \text{ GeV} \rightarrow q \sim 400 \text{ MeV/c}$

KI, Fujioka et al., PTP 128 (12) 601.

Spectrum in Inclusive Measurement at GSI

Summary

- Spectroscopy of meson bound states for pi and η^\prime in missing mass spectroscopy
- piAF is in a harvest season after long straggling and will soon start a precision systematic measurement
- Spectroscopy of piA in unstable nuclei is in progress
- η' is interesting in relation to $U_A(I)$ anomaly
- Just finished first physics run for inclusive (p,d)
- Preparation for exclusive measurement is in progress

