Influence of threshold effects induced by heavy flavor meson rescattering

Xiao-Hai Liu

Tokyo Institute of Technology

For Hadrons & Hadron Interactions in QCD 2015 (HHIQCD2015) YITP, Kyoto, 2015.03.03

Outline

> Motivation

- Coupled-channel effects and threshold enhancement phenomena
- ✓ Dipion transitions $e^+e^-→ J/ψππ$, ψ'ππ , $h_cππ$
 - **Zb production, hunting for some XYZ particles**
- ✓ Anomalous threshold singularity

≻Summary

Motivation

- ✓ Observations of XYZ particles;
- Discrepancy between conventional quenched quark model predictions and experimental data;
- Coupled-channel effects will largely affect the mass and decay properties of heavy quarkonia;

Coupled-channel effects

- ✓ E. Eichten et al, PRD17,3090(1978), PRD73,104014(2006);
- ✓ M.R. Pennington, D.J. Wilson, PRD76,077502(2008);
- ✓ T. Barnes, E.S. Swanson, PRC77,055206(2008);
- ✓ B.Q. Li, C.Meng, K.T. Chao, PRD80,014012(2009);
- ✓ F.K. Guo et al; PRD83,034013(2011);
- ✓ Z.Y. Zhou, Z. Xiao, arXiv:1309.1949;

Unconventional states in heavy quarkonium region

arXiv:1411.7738

Status of searches for new states

arXiv:1411.5957

Table 11. Status of searches for the new states in *B* decays, for several final states f, updated with respect to Drenska *et al.*⁷⁸ Final states where each exotic state was observed (S: "seen") or excluded (**NS**: "not seen") are indicated; F is reserved to final states which have been searched and not seen, but are forbidden by quantum numbers not known at the time of the analysis. A final state is marked as **NP** ("not performed") if the analysis has not been performed in a given mass range and with **MF** ("missing fit") if the spectra are published but a fit to a given state has not been performed. Finally "—" indicates that the known quantum numbers or available energy forbid the decay; and "hard" that an analysis is experimentally too challenging. As explained in Sec. 3.6, we consider a state Y(3915) decaying into $J/\psi \omega$, seen both in *B* decays and in $\gamma \gamma$ fusion, and a state X(3940) seen in double charmonium production and decaying into $D\bar{D}^*$. "Vectors" indicates the 1⁻⁻ states discovered via ISR not explicitly mentioned in the table.

$B ightarrow \mathcal{X}K, \mathcal{X} ightarrow f$																	
State	J^{PC}	$\psi\pi\pi$	$\psi\omega$	$\psi\gamma$	$\psi\phi$	$\psi\eta$	$\psi'\pi\pi$	$\psi'\omega$	$\psi'\gamma$	$\chi_c \gamma$	$p\bar{p}$	$\Lambda_c \overline{\Lambda}_c$	$D\bar{D}$	$D\bar{D}^*$	$D^*\bar{D}^*$	$D_{s}^{(*)}\bar{D}_{s}^{(*)}$	$\gamma\gamma$
X(3872)	1++	S	S	S		F			S	F	\mathbf{NS}	_		S			F
Y(3915)	0^{++}	\mathbf{MF}	\mathbf{S}	\mathbf{NS}					\mathbf{MF}		\mathbf{MF}		\mathbf{MF}	\mathbf{NS}		NP	\mathbf{NP}
Z(3930)	2^{++}	\mathbf{MF}	\mathbf{MF}	\mathbf{NS}					\mathbf{MF}		\mathbf{MF}		\mathbf{MF}	\mathbf{MF}		NP	NP
Y(4140)	J^{P+}	\mathbf{MF}	\mathbf{MF}	NP	s		NP		\mathbf{NP}		\mathbf{MF}	_	\mathbf{MF}	NP	NP	NP	\mathbf{NP}
X(4160)	0^{P+}	\mathbf{MF}	\mathbf{MF}	\mathbf{NP}	\mathbf{MF}		NP		\mathbf{NP}		\mathbf{MF}	_	\mathbf{MF}	NP	NP	NP	\mathbf{NP}
X(4350)	J^{P+}	\mathbf{MF}	\mathbf{MF}	NP	\mathbf{MF}		NP	NP	\mathbf{NP}		\mathbf{MF}		\mathbf{NP}	\mathbf{NP}	NP	NP	\mathbf{NP}
Y(4260)	1	\mathbf{NS}				\mathbf{MF}	NP			\mathbf{NP}	\mathbf{MF}		\mathbf{NP}	NP	NP	NP	
vectors	1	\mathbf{MF}				\mathbf{MF}	NP			NP	\mathbf{MF}		NP	NP	NP	NP	
Y(4660)	1	NP				\mathbf{MF}	NP			\mathbf{NP}	\mathbf{MF}	\mathbf{MF}	NP	NP	NP	NP	

Table 12. Status of searches for the new states in ISR production for several final states f, updated with respect to Drenska *et al.*⁷⁸ In this table we consider the Y(4630) decaying into $\Lambda_c \overline{\Lambda}_c$ and the Y(4660) decaying into $\psi' \pi \pi$ to be the same state. The meaning of the symbols is explained in the caption of Table 11.

$e^+e^- \rightarrow \gamma$	$\gamma_{ISR} \mathcal{X},$	$\mathcal{X} o f$												
State	J^{PC}	$\psi\pi\pi$	$\psi'\pi\pi$	$h_c \pi \pi$	$\psi\eta$	$\chi_c \gamma$	$\chi_c \omega$	$p\bar{p}$	$\Lambda\overline{\Lambda}$	$\Lambda_c \overline{\Lambda}_c$	$D\bar{D}$	$D\bar{D}^*$	$D^* \bar{D}^*$	$D_{s}^{(*)}\bar{D}_{s}^{(*)}$
Y(4008)	1	S	\mathbf{MF}	MF	\mathbf{MF}	\mathbf{MF}		\mathbf{MF}	\mathbf{MF}	_	\mathbf{MF}	\mathbf{MF}	MF	\mathbf{MF}
V(4220)	1	\mathbf{MF}	\mathbf{MF}	S	\mathbf{MF}	\mathbf{MF}	S	\mathbf{ME}	\mathbf{MF}		\mathbf{MF}	\mathbf{MF}	\mathbf{MF}	MF
Y(4260)	1	S	\mathbf{NS}	\mathbf{NS}	NS	NS	\mathbf{NS}	\mathbf{NS}	MF		NS	\mathbf{NS}	NS	NS
Y(4290)	1	MF	\mathbf{NS}	\mathbf{S}	\mathbf{NS}	\mathbf{NS}	\mathbf{NS}	\mathbf{MF}	\mathbf{MF}		\mathbf{MF}	MF	\mathbf{MF}	\mathbf{MF}
Y(4360)	1	\mathbf{NS}	S	MF	MF	\mathbf{MF}	MF	MF	MF		\mathbf{MF}	\mathbf{MF}	\mathbf{MF}	\mathbf{MF}
Y(4660)	1	\mathbf{NS}	s	NP	MF	\mathbf{MF}	\mathbf{MF}	\mathbf{MF}	\mathbf{MF}	S	\mathbf{MF}	\mathbf{MF}	\mathbf{MF}	\mathbf{MF}

CLEO 2006

3850606-001

- **Theoretical explanation**
- ✓Hybrid S.L. Zhu;Close&Page;Kou &Pene
- ✓ Tetraquark Ebert et al; Maiani et al
- ✓ Baryonium of Λ_c anti- Λ_c C.F. Qiao
- ✓ χ_{c0} ρ, χ_{c1} ω molecule, sizeable coupling with χ_{c0} ω Liu et al; Yuan et al; Dai et al
- ✓ Interference of other charmonium Chen et al
- ✓ D₁D, D₀D* molecular state Close et al; Kalashnikova et al;
 G.J. Ding

Coupled-channel effects with P-wave states involved

- ✓ Combinations of S- and P-wave charmed mesons are very close to some conventional higher charmonia(ψ(4160), ψ(4415)) and Y(4260), Y(4360), Z(4430));
- The coupling with the parity-odd charmonia could be S-wave, supposed to be strong;

	D ₀ D*	D ₁ ′D	D ₁ ′D*	D ₁ D	D ₁ D*	D ₂ D	D ₂ D*	D _{s0} D _s *	D _{s1} D _s
Threshold [MeV]	4325	4292	4434	4286	4428	4327	4470	4430	4424

Connections between coupled channel effects and XYZ?

Model based on HHChPT

Doublets with light degrees of freedom $j\uparrow P = 1/2^{-}, 1/2^{+}, 3/2^{+}$

$$H_{a} = \frac{1+\cancel{p}}{2} [\mathcal{D}_{a\mu}^{*} \gamma^{\mu} - \mathcal{D}_{a} \gamma_{5}],$$

$$S_{a} = \frac{1+\cancel{p}}{2} [\mathcal{D}_{1a}^{\prime \mu} \gamma_{\mu} \gamma_{5} - \mathcal{D}_{0a}^{*}],$$

$$T_{a}^{\mu} = \frac{1+\cancel{p}}{2} \left\{ \mathcal{D}_{2a}^{\mu\nu} \gamma_{\nu} - \sqrt{\frac{3}{2}} \mathcal{D}_{1a\nu} \gamma_{5} \left[g^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} - v^{\mu}) \right] \right\},$$

HQSS allowed coupling (LDOF will also be conserved)

	нн ѕн		тн	
ψ(nS)	P-wave	S-wave	D-wave	
ψ(nD)	P-wave	D-wave	S-wave	

Leading Order Effective Lagrangian

According to HHChPT power counting

an

$$\begin{aligned} \mathcal{L}_{1} &= \frac{gr}{\sqrt{2}} < J^{\mu\nu} \bar{H}_{a}^{\dagger} \gamma_{\nu} \bar{T}_{a\mu} - J^{\mu\nu} \bar{T}_{a\mu}^{\dagger} \gamma_{\nu} \bar{H}_{a} > \\ &+ ig_{H} < J^{\mu\nu} \bar{H}_{a}^{\dagger} \gamma_{\mu} \overleftrightarrow{\partial}_{\nu} \bar{H}_{a} > \\ &+ g_{S} < J \bar{S}_{a}^{\dagger} \bar{H}_{a} + J \bar{H}_{a}^{\dagger} \bar{S}_{a} > \\ &+ C_{S} < J \bar{H}_{b}^{\dagger} \gamma_{\mu} \gamma_{5} \bar{H}_{a} \mathcal{A}_{ba}^{\mu} > \\ &+ iC_{P} < J^{\mu} \bar{H}_{b}^{\dagger} \sigma_{\mu\nu} \gamma_{5} \bar{H}_{a} \mathcal{A}_{ba}^{\nu} > + h.c., \\ \mathcal{L}_{2} &= i \frac{h'}{\Lambda_{\chi}} < \bar{H}_{a} T_{b}^{\mu} \gamma^{\nu} \gamma_{5} (D_{\mu} \mathcal{A}_{\nu} + D_{\nu} \mathcal{A}_{\mu})_{ba} > \\ &+ ih < \bar{H}_{a} S_{b} \gamma_{\mu} \gamma_{5} \mathcal{A}_{ba}^{\mu} > + ig < H_{b} \gamma_{\mu} \gamma_{5} \mathcal{A}_{ba}^{\mu} \bar{H}_{a} > . \end{aligned}$$

$$J = \frac{1 + \cancel{2}}{2} [\psi (nS)^{\mu} \gamma_{\mu}] \frac{1 - \cancel{2}}{2}, J^{\mu} = \frac{1 + \cancel{2}}{2} [h_{c} (nP)^{\mu} \gamma_{5}] \frac{1 - \cancel{2}}{2} \\ J^{\mu\nu} = \frac{1 + \cancel{2}}{2} \Big\{ \psi (nD)_{\alpha} \Big[\frac{1}{2} \sqrt{\frac{3}{5}} [(\gamma^{\mu} - v^{\mu}) g^{\alpha\nu} + (\gamma^{\nu} - v^{\nu}) g^{\alpha\mu}] - \sqrt{\frac{1}{15}} (g^{\mu\nu} - v^{\mu} v^{\nu}) \gamma^{\alpha} \Big] \Big\} \frac{1 - \cancel{2}}{2} \end{aligned}$$

Dipion Transitions

$\psi(4160)$ as the input $\psi(nD)$:

- ✓ Widely accepted as a conventional 2^3D_1 charmonia
- ✓ Couple to TH via S-wave, respect HQSS
- ✓ Close to Y(4260)

```
M=4153±3 MeV, \Gamma =103±8 MeV PDG averaged
M=4191.7±6.5 MeV, \Gamma =71.8±12.3 MeV BES, PLB660,315(2008)
M=4193±7 MeV, \Gamma =79±14 MeV X.H. Mo et al, PRD82,077501(2010)
```

```
\Gamma_{ee}=0.83±0.07 KeV, not small
```

$\psi(nD)$ HH (B): THHI) $\{D_1 D [D^*]\},\$ II) $\{D_1 D^* [D^*]\},\$ III) $\{D_2 D^* [D]\},\$ IV) $\{D_2D^* [D^*]\},\$ In the heavy quark limit $\mathcal{M}^{I}: \mathcal{M}^{II}: \mathcal{M}^{III}: \mathcal{M}^{IV} = 1: \frac{1}{2}: -\frac{1}{5}: \frac{3}{10}.$

Triangle singularity (TS) may occur under special kinematic configurations

THH Loop

 e^+

Triangle Singularity

Largely isospin violation in $\eta(1405/1475) \rightarrow 3\pi$ Br~10%, [BESIII, PRL108,182001 (2012)]

Wu,Liu,Zhao&Zou, PRL108,081803(2012)

References:

Landshoff and Treiman, Phys.Rev. 127,649(1962) Landshoff and Treiman, Nuovo Cimento 19,1249(1961) Eden et al., <<The Analytic S-Matrix>>, 1966

.

$e^+e^- \rightarrow J/\psi\pi\pi$ via $\psi(4160)$ and THH loops

$e^+e^- \rightarrow \psi' \pi \pi$ via $\psi(4160)$ and THH loops

 $e^+e^- \rightarrow h_c \pi \pi$ via $\psi(4160)$ and THH loops

C.Z. Yuan, arXiv:1312.6399

Belle, PRL111,242001(2013)

Comparison with Molecule Ansatz

- ✓ Similar points: kinematics, singularities of rescattering loops
- ✓ Different points:
- Incorporates the D₁D, D₁D*, D₂D* combinations in a single Lagrangian with the relative phase and coupling strength fixed in the heavy quark limit;
- No matter whether the molecular state exist or not, it seems to be natural to suppose the coupled channel effects should exist physically

Y(4260) as molecular state:

- ✓ D₁D, D₀D* molecular state, F. Close et al, PRL102,242003(2009),
 PRD81,074033(2010); Kalashnikova and Nefediev, PRD77,054025(2008);
- ✓ Potential model, G.J. Ding PRD79,014001(2009)
- ✓ Connection with Zc(3900), Wang, Zhao and Hanhart, PRL111,132003(2013); X.H. Liu and G.Li, PRD88,014013(2013)

HHH Loop and SHH Loop

Zb Production

Cusps at BB* and B*B* thresholds

Production of Zb(10610) and Zb(10650)

Hunting For Partners of Y4160 & Y4274

22

✓ Singularity in the complex space

Landau Equation

$$I_{3} = \prod_{i=1}^{3} \int_{0}^{1} d a_{k} \frac{\delta(1 - \sum_{k} a_{k})}{D - i\epsilon}$$
$$D = \sum_{i,j} a_{i}a_{j}Y_{ij}, \quad Y_{ij} = \frac{1}{2} \left[m_{i}^{2} + m_{j}^{2} - (q_{i-1} - q_{j-1})^{2} \right]$$

Necessary conditions

$$D = 0,$$

 $either a_j = 0 \text{ or } \frac{\partial D}{\partial a_j} = 0.$
Leading singularity
 $\frac{\partial D}{\partial a_j} = 0.$

The position of the singularity is obtained by solving $\det Y_{ij} = 0$

Normal threshold
$$s_{2n} = (m_1 + m_3)^2$$

Anomalous threshold

$$s_2^{\pm} = (m_1 + m_3)^2 + \frac{1}{2m_2^2} [2m_2m_3(m_1^2 + m_2^2 - s_3) - 4m_2^2m_1m_3 \pm \lambda^{1/2}(s_1, m_2^2, m_3^2)\lambda^{1/2}(s_3, m_1^2, m_2^2)]$$

Single dispersion relation

$$\Gamma(s_1, s_2, s_3) = \frac{1}{\pi} \int_{(m_1 + m_3)^2}^{\infty} \frac{ds'_2}{s'_2 - s_2 - i\epsilon} \sigma_2(s_1, s'_2, s_3)$$

$$\begin{aligned} \sigma_2 &= \sigma_+ - \sigma_- \\ \sigma_{\pm}(s_1, s_2, s_3) &= \frac{1}{16\pi\lambda^{1/2}(s_1, s_2, s_3)} \log[-s_2(s_1 + s_3 - s_2 + m_1^2 + m_3^2 - 2m_2^2) \\ &- (s_1 - s_3)(m_1^2 - m_3^2) \pm \lambda^{1/2}(s_1, s_2, s_3)\lambda^{1/2}(s_2, m_1^2, m_3^2)] \end{aligned}$$

Brach points of the log function is at s_2^{\pm} Work in the kinematical region $s_1 \leq (m_2 + m_3)^2, s_3 \leq (m_2 - m_1)^2$

to Cutkosky rule

$$\Delta(s_1, s_2, s_3) = \frac{1}{16\lambda^{1/2}(s_1, s_2, s_3)}$$

When $s_1 = (m_2 + m_3)^2$

$$s_2^{\pm} = (m_1 + m_3)^2 + \frac{m_3}{m_2} [(m_2 - m_1)^2 - s_3]$$

How to amplify the discrepancy between normal and anomalous threshold?

If the discrepancy is larger, it could be used to distinguish the cusp effects and molecular states.

$D_s(2860) \rightarrow DK^*[\pi] \rightarrow DK\pi$

Summary

- The lineshape behavior of the cross sections and distributions for the dipion transitions are studied. Couplechannel effects may largely affect the threshold behavior, especially that induced by the couplings between D-wave charmonia and TH charmed mesons, taking into account these leading order S-wave couplings will respect HQSS.
- Some interesting cusps are obtained, which may have some underlying connections with the XYZ states observed around the TH and HH thresholds.
- > Kinematics plays a crucial role in generating the cusps.
- Anomalous threshold singularity would be used to discriminate coupled-channel effects and genuine resonances.

Thanks!