RHIC Beam Energy Scan

Hiroshi Masui / University of Tsukuba

Hadrons and Hadron Interactions in QCD 2015, Symposium: QCD phase diagram and heavy ion collisions, Kyoto, Mar/4/2015

Outline

• Introduction

- RHIC Beam Energy Scan (BES) phase-I
- PHENIX & STAR experiments
- Review selected results from year 2010 & 2011
- Future upgrade for BES phase-II
- Summary

RHIC Beam Energy Scan (BES)

- Cross-over transition at $\mu_B=0$
- from 1st principle Lattice QCD calculations
- If phase transition is 1st order at high baryon density, the end point is QCD critical point
- Beam energy scan → reach high baryon density
- Goals of BES at RHIC:
 - Search for turn-off QGP signals
 - Search for signals of 1st order phase transition
 - Search for signals of QCD critical point

RHIC heavy ion collisions

Relativistic Heavy Ion Collider

photo from https://www.flickr.com/photos/brookhavenlab/sets/72157613690851651/

PHEN

~3.8 km circumference

1000

RHIC

- Maximum 200 GeV (500 GeV) in A+B (p+p) collisions in center of mass energy
- Wide variety of beams; p, d, He, Cu, Au, U
- Two running experiments: PHENIX, STAR

PHENIX & STAR experiments

- PHENIX: the Pioneering High Energy Nuclear Interaction eXperiment
 - Rare probes by electrons & photons with fast triggers
- STAR: Solenoidal Tracker At RHIC
- Hadrons with large acceptance

PHENIX & STAR experiments

- Detector upgrades made two experiments similar
 - in terms of observables
- sPHENIX upgrade is considered around 2017

Where are we in QCD phase diagram ?

- RHIC BES phase-I covers up to ~ 400 MeV in μ_B
- Chemical freeze-out temperature & baryon chemical potential from particle ratio
- ► Kinetic freeze-out temperature from p_T spectra
- Can we observe onset (turn-off) of QGP at high μ_B ?

Search for turn-off QGP signals

Jet quenching

PHENIX: PRL88, 022301 (2002)

$$R_{AA} = \frac{dN^{AA}/dp_T d\eta}{\langle N_{coll} \rangle dN^{p+p}/dp_T d\eta}$$

$$N_{coll} : \text{Number of binary collisions}$$

$$R_{AA} = 1$$
if A+A is superposition of p+p
Initial hard scattering - Binary collision scaling
$$\int_{0}^{0} \frac{1}{1} \frac{2}{2} \frac{3}{3} \frac{4}{4} \frac{5}{5}$$

- Suppression of hadron yields at high p_T
- Energy loss of partons in the medium
- Very opaque medium in terms of color charge
- What happens in lower energies ?

R_{AA} at low energies

PHENIX: PRL109, 152301 (2012)

- Exhibit suppression down to 39 GeV
- $\pi^0 R_{AA}$ is suppressed in most central 0-10% at $\sqrt{s_{NN}} = 39 \text{ GeV}$
 - Results in Cu+Cu 22.5 GeV show enhancement in $p_T = 4$ GeV/c
- R_{AA} > 1 below 39 GeV

Quark (parton) coalescence

- Hadron productions by quark coalescence picture
- Specific scaling pattern for meson and baryon v₂

Elliptic flow v₂

STAR: PRC88, 014902 (2013)

- Number of constituent quark (NCQ) scaling partonic d.o.f
- Hold separately for particles and anti-particles
- Need more statistics in high m_T-m₀ at lower energies

v₂; particles vs anti-particles

 Relative difference of v₂ between particles and anti-particles increase in lower beam energies

- NCQ scaling breaks down between particles and antiparticles
- Qualitative agreement with several models
- ► No quantitative explanations on the difference of v₂

Di-electron mass spectra

- Chiral symmetry restoration, thermal radiation
 - STAR measured di-electron spectra in √s_{NN} = 19.6 - 200 GeV
 - Excess in M_{ee} < 1.1 GeV/c² (LMR) observed at all energies
 - In-medium modification of ρ spectral function describe LMR enhancement
 - No energy dependence of LMR excess
- Need more statistics below 20 GeV

Search for signals of 1st order phase transition

Equation of state → flow systematics

P. F. Kolb et al, PRC62, 054909 (2000)

 1st order phase transition affects the build up of spatial & momentum anisotropy

Look at flow systematics

H. Masui / Univ. of Tsukuba

- Early prediction shows the minimum around ~ 5 GeV
- Non-monotonic behavior, trend is similar with early prediction
- Recent more realistic hybrid calculation can't reproduce the data

Azimuthal sensitive HBT

H. Masui / Univ. of Tsukuba

by M. Lisa

HBT radii

PHENIX: arXiv:1410.2559 [nucl-ex]

- Non-monotonic behavior on (R_{out})²-(R_{side})², R_{side}/R_{long}
- $(R_{out})^2$ - $(R_{side})^2$ ~ emission duration, R_{side}/R_{long} ~ proxy of sound speed

20/31

Search for signals of QCD critical point

Fluctuation of conserved charges

- At critical point (with infinite volume)
 - susceptibilities and correlation length diverge
 - but both quantities cannot measure directly in the experiments

Observables

- Moment (or cumulant) of conserved quantities: e.g. net-baryons, netcharge, net-strangeness
- Product of moments (ratio of cumulants) ↔ ratio of susceptibilities

$$\kappa_2 = \left\langle (\delta N)^2 \right\rangle \sim \xi^2, \\ \kappa_3 = \left\langle (\delta N)^3 \right\rangle \sim \xi^{4.5}, \\ \kappa_4 = \left\langle (\delta N)^4 \right\rangle - 3 \left\langle (\delta N) \right\rangle^2 \sim \xi^7$$
$$S\sigma = \frac{\kappa_3}{\kappa_2} \sim \frac{\chi_3}{\chi_2}, \\ K\sigma^2 = \frac{\kappa_4}{\kappa_2} \sim \frac{\chi_4}{\chi_2}$$

* *M. A. Stephanov,* **PRL102**, 032301 (2009)

- directly related to the susceptibility ratios (Lattice QCD)
- higher moments (cumulants) have higher sensitivities to correlation length*
- Signal = non-monotonic energy dependence of moment products (cumulant ratios) for conserved charges vs $\sqrt{s_{NN}}$

Non-gaussian fluctuations

- 3rd moment = skewness
 - ▶ asymmetry
- 4th moment = kurtosis
 - peakedness
- Both moments = 0 for gaussian distribution
- Critical point search \rightarrow non-gaussian fluctuations

Net-proton & net-charge fluctuations

- Largest deviation around 19.6 GeV for net-proton
- But only ~20% deviation from poisson baseline
- Need more precise measurements below 20 GeV

Upgrade plans for BES phase-II

RHIC luminosity improvements

- Electron cooling will be available for BES-II
- Electron cooling: by a factor of 3-10 increase in 5-20 GeV
- Electron cooling + long bunches: by a factor of 2-5

sPHENIX upgrade for BES-II

- Focus on hard probes
- Possible configurations in year 2019
 - Option 1: EMCAL+VTX
 - Option 2
 - Option 1+ Additional silicon trackers
 - Option 3: Option 1+ TPC

STAR upgrade for BES-II

• Event Plane Detector, $1.8 < |\eta| < 5$

- Trigger, event plane, centrality
 - suppress backgrounds on flow measurements, independent centrality determination
- inner TPC upgrade
 - + increase TPC acceptance from 1 to 1.5 in η
 - Improve dE/dx resolution → better PID

BES-II white papers

https://drupal.star.bnl.gov/STAR/system/files/BES_WPII_ver6.9_Cover.pdf

<u>http://www.phenix.bnl.gov/phenix/WWW/publish/</u> dave/sPHENIX/BES_II_whitepaper.pdf Beam Energy Scan II (2018–2019)

PHENIX Collaboration White Paper

Version 1: March 1, 2014

Projections for BES-II; fluctuations or der cum

Summary

- Success of RHIC Beam Energy Scan phase-I
 - Several observables show a hint of possible turn-off signature of QGP
 - Turn-off/onset of QGP ? \rightarrow BES phase II, future FAIR, J-PARC heavy ion programs
 - Non-monotonic behavior of directed flow and HBT radii
 - 1st order phase transition $? \rightarrow$ Quantitative and systematic model comparisons
 - Possible non-monotonic behavior of conserved charge fluctuations
 - QCD critical point $? \rightarrow$ Precision measurements & Lattice QCD calculations
- We need precision measurements below 20 GeV
 - BES phase-II
 - Significant improvements on statistical precisions by RHIC luminosity & sPHENIX/STAR detector upgrades
 - BES-II white papers
 - sPHENIX: <u>http://www.phenix.bnl.gov/phenix/WWW/publish/dave/sPHENIX/</u> <u>BES_II_whitepaper.pdf</u>
 - STAR: <u>https://drupal.star.bnl.gov/STAR/system/files/BES_WPII_ver6.9_Cover.pdf</u>

The 25th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions Kobe Fashion Mart, Rokko Island, Kobe, Japan

Sep. 27 (Sun) – Oct. 3 (Sat), 2015

[Registration will start from April 27, 2015]

Back up

NCQ scaling of v₂ for anti-particles

STAR: PRC88, 014902 (2013)

Charge separation w.r.t. event plane

STAR: **PRL103**, 251601 (2009), **PRL113**, 052302 (2014), ALICE: **PRL110**, 012301 (2013)

- Chiral magnetic effect + Local parity violation
 - Signal ~ 0 in $\sqrt{s_{NN}} = 7.7 19.6 \text{ GeV}$
 - Need better estimate of κ & precision measurements below 20 GeV

CME signal

STAR: **PRL103**, 251601 (2009), **PRL113**, 052302 (2014), ALICE: **PRL110**, 012301 (2013)

- $\gamma \equiv \langle \cos (\phi_1 + \phi_2 2\Psi_{\rm RP}) \rangle = \kappa v_2 F H,$ $\delta \equiv \langle \cos (\phi_1 - \phi_2) \rangle = F + H,$ H: CME contribution,
 - $F{:}$ background contribution, $\kappa{:}$ parameter
 - Decompose measured correlation to CME (*H*) and background (*F*) contributions
 - based on A. Bzdak et al, Lect. Notes Phys. 871, 503 (2013)
- assume γ is linearly proportional to v_2

Directed flow, model calculations

V. P. Konchakovski et al, PRC90, 014903 (2014)

J. Steinheimer et al, PRC89, 054923 (2014)

- PHSD (or HSD) vs hydro with hadronic, crossover EOS
- Hybrid (UrQMD IS + Hydro + UrQMD hadronic phase) vs hydro only with different freeze-out

Beam time request for BES-II

PHENIX

Table 4.2: An outline of the PHENIX run request for the BES II program. The running time is integrated to cover a single year of RHIC running that spans 22 cryo-weeks, or 19 weeks of physics running depending on ramp-up and switching times. Higher priority is given to the data sets listed first. The number of events refers to good events within the baseline sPHENIX configuration requiring $|z_{vertex}| < 10$ cm including the PHENIX and RHIC duty factor. Also included are event estimates with a wider $|z_{vertex}| < 30$ cm and $|z_{vertex}| < 1$ m cut that could be applied if a TPC is installed.

Species	$\sqrt{s_{NN}}$	μ_B	Run Time	Events(M)	Events(M)	Events(M)	
opecies	(GeV)	(MeV)	(Days)	$ z_{vtx} < 10$ cm	$ z_{vtx} < 30$ cm	$ z_{vtx} < 1 \mathrm{m}$	
Au+Au	11.5	315	45	15	45	112.5	
	13.0	281	23	17	50	125	
	9.0	376	41	6	17	42.5	
	19.6	205	4	33	100	2500	
	200	20	10	1200	3600	9000	
p+p	200		10	$1.2 \ pb^{-1}$	$3.6 \ pb^{-1}$	$9 \ pb^{-1}$	

 Table 3. Beam Energy Scan Phase-II proposal for 22 weeks of RHIC running in each of the years

 2018 and 2019.

STAR

Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6
μ_B (MeV) in 0-5% Central Collisions	420	370	315	260	205
BES-I (Million Events)	4	_	12	20	36
BES-I Event Rate (Million Events/Day)	0.25	0.6	1.7	2.4	4.5
BES-I Int. Luminosity $(1 \times 10^{25} / \text{cm}^2 \text{ s})$	0.13	0.5	1.5	2.1	4.0
e-Cooling Luminosity Improvement Factor	4	4	4	8	15(4)
BES Phase-II (Million Events)	100	160	230	300	400
Required Beam Time (Weeks)	14	9.5	5.0	2.5	4.0+

• Focused on $\sqrt{s_{NN}} < 20 \text{ GeV}$

- One year (2019) request from PHENIX
- Two year (2018, 2019) request from STAR

BES-II projections

1.25

