1

Λ-Λ Interaction from Relativistic Heavy Ion Collisions

<u>Kenji Morita</u> (YITP, Kyoto)

in Collaboration with Akira Ohnishi (YITP) Takenori Furumoto (Ichinoseki National Col.)

Ref.) Phys. Rev. C91, 024916 (2015)

2014 March 4

Outline

$\textbf{Goal}: \Lambda\Lambda \text{ interaction from HIC}$

- **1.** Introduction
- **2.** Effect of $\Lambda\Lambda$ interaction (w/ simplest source)
- 3. +Collective Expansion
 - **1.** Spherical source
 - 2. Bjorken and transverse expansion
- 4. Feed-down Contribution
- 5. Residual Correlation

6. Summary

Role of $\Lambda\Lambda$ **Interaction**

Possible Emergence of Hyperons in NS core

To understand EoS, Information on **Hyperon-Hyperon** Interaction is indispensable

H-dibaryon (uuddss)?

A-Λ bound state due to strong attraction?
Resonance?

RHIC Can Tell Us about $\Lambda\Lambda$ interaction

ΛΛ Correlation in HIC

Independent (Chaotic) emission (←Thermal Source)

Identical particle correlation from quantum statistics (HBT effect)

C(Q) : effective source size

 $\Lambda\Lambda$ Interaction : No Coulomb!

Affects C(Q) when effective range r_{eff} is comparable with R

Different results for repulsive and attractive interaction

Approach : Thermal Source + $V_{\Lambda\Lambda}$

Formula (Gong et al., '91)

 $C_2(Q,K) = \frac{\int d^4 x_1 d^4 x_2 S(x_1,K) S(x_2,K) |\Psi_{12}(Q,x_1-x_2-(t_2-t_1)K/m)|^2}{\int d^4 x_1 d^4 x_2 S(x_1,k_1) S(x_1,k_2)}$

Emission source func.

Thermal source model (Mimic hydro)

- Static Spherically Symmetric
- Spherically Symmetric + Hubble Flow
- Cylindrically Symmetric + Boostinvariance + Transverse flow

 $\Lambda\Lambda$ relative S-wave func.

仑

Various potentials (via 2 or 3 range Gaussian Fit)

<u>Meson exchange models</u> (Nijmegen model D, F, Soft Core89/97, ESC08)

<u>Phenomenological</u> (Ehime) <u>Quark model (</u>fss2)

<u>Fit to _{AA}⁶He(Nagara)</u>Filikhin-Gal (FG) Hiyama et al. (HKMYY)

Potential, Wave func., / Correlation

Correlation Function for the Static Source

2014 March 4

Illustration : Spherical Source

Attraction in C(Q) becomes stronger

Results from Boost-invariant Source

Effect of η_{f} is rather small : longitudinal expansion dominates C(Q)

Behavior at small Q is different from the static source !

HHIQCD2015@YITP

Combined effects from flow and $V_{\Lambda\Lambda}$

HHIQCD2015@YITP

$V_{\Lambda\Lambda}$ from Expanding Source Model

Feed-Down Contribution

Assume E is not included

DCA < 0.4cm from the primary vertex</p>

Feed-Down Effect

$C(Q) \to 1 + (0.67)^2 (C(Q) - 1)$

Sensitivity at low Q is reduced

Unphysically small size is preferred;

due to the long tail in C(Q) which cannot be included in the present framework

HHIQCD2015@YITP

Long Tail : Residual Correlation?

Solution Assuming a short-range correlation $C(Q) \rightarrow C(Q) + a_{res}e^{-r_{res}^2Q^2}$

Search for min χ^2 in (a_{res}, r_{res}) for each R

 $\chi^2/N_{dof} \sim 1$ for shown R range

Low Q behavior $\leftrightarrow X \rightarrow \Lambda \Lambda$ Interaction

An Example for Agreement

(O)

2014 March 4

HHIQCD2015@YITP

16/18

Constraints on a_o and r_{eff}

HHIQCD2015@YITP

Summary and Outlook

- \blacksquare RHIC has potential to determine $\Lambda\Lambda$ interaction
- Expansion effect modifies low Q behavior
- Ideal measurements (i.e., decay contribution is subtracted) will give strong constraints
- Feed-down effect reduces resolving power
- Long-tail in STAR data needs to be subtracted and its origin needs to be understood
 Scattering length 1/a₀ < -0.8 fm⁻¹

Backup

Analysis by STAR Coll.

arXiv:1408.4360

Model	a_0 (fm)	$r_{\rm eff}~({\rm fm})$	μ_1 (fm)	$V_1 ~({\rm MeV})$	$\mu_2 \text{ (fm)}$	V_2 (MeV)	Ref.
ND46	4.621	1.300	1.0	-144.89	0.45	127.87	[18] $r_c = 0.46 \text{ fm}$
ND48	14.394	1.633	1.0	-150.83	0.45	355.09	[18] $r_c = 0.48 \text{ fm}$
ND50	-10.629	2.042	1.0	-151.54	0.45	587.21	[18] $r_c = 0.50 \text{ fm}$
ND52	-3.483	2.592	1.0	-150.29	0.45	840.55	[18] $r_c = 0.52 \text{ fm}$
ND54	-1.893	3.389	1.0	-147.65	0.45	1114.72	[18] $r_c = 0.54 \text{ fm}$
ND56	-1.179	4.656	1.0	-144.26	0.45	1413.75	[18] $r_c = 0.56 \text{ fm}$
ND58	-0.764	6.863	1.0	-137.74	0.45	1666.78	[18] $r_c = 0.58 \text{ fm}$
NF42	3.659	0.975	0.6	-878.97	0.45	1048.58	[19] $r_c = 0.42 \text{ fm}$
NF44	23.956	1.258	0.6	-1066.98	0.45	1646.65	[19] $r_c = 0.44 \text{ fm}$
NF46	-3.960	1.721	0.6	-1327.26	0.45	2561.56	[19] $r_c = 0.46 \text{ fm}$
NF48	-1.511	2.549	0.6	-1647.40	0.45	3888.96	[19] $r_c = 0.48 \text{ fm}$
NF50	-0.772	4.271	0.6	-2007.35	0.45	5678.97	[19] $r_c = 0.50 \text{ fm}$
NF52	-0.406	8.828	0.6	-2276.73	0.45	7415.56	[19] $r_c = 0.52 \text{ fm}$
NSC89-1020	-0.250	7.200	1.0	-22.89	0.45	67.45	$[20] m_{\rm cut} = 1020 \text{ MeV}$
NSC89-920	-2.100	1.900	0.6	-1080.35	0.45	2039.54	$[20] m_{cut} = 920 \text{ MeV}$
NSC89-820	-1.110	3.200	0.6	-1904.41	0.45	4996.93	$[20] m_{cut} = 820 \text{ MeV}$
NSC97a	-0.329	12.370	1.0	-69.45	0.45	653.86	[21]
NSC97b	-0.397	10.360	1.0	-78.42	0.45	741.76	[21]
NSC97c	-0.476	9.130	1.0	-91.80	0.45	914.67	[21]
NSC97d	-0.401	1.150	0.4	-445.77	0.30	373.64	[21]
NSC97e	-0.501	9.840	1.0	-110.45	0.45	1309.55	[21]
NSC97f	-0.350	16.330	1.0	-106.53	0.45	1469.33	[21]
Ehime	-4.21	2.41	1.0	-146.6	0.45	720.9	[23]
fss2	-0.81	3.99	0.92	-103.9	0.41	658.2	[25]
ESC08	-0.97	3.86	0.80	-293.66	0.45	1429.27	[22]

TABLE I: $\Lambda\Lambda$ potentials. The scattering length (a_0) and effective range (r_{eff}) are fitted using a two-range gaussian potential, $V_{\Lambda\Lambda}(r) = V_1 \exp(-r^2/\mu_1^2) + V_2 \exp(-r^2/\mu_2^2).$

TABLE II: $\Lambda\Lambda$ potentials from Nagara event. The scattering length (a_0) and effective range (r_{eff}) are fitted using a three-range gaussian potential, $V_{\Lambda\Lambda}(r) = V_1 \exp(-r^2/\mu_1^2) + V_2 \exp(-r^2/\mu_2^2) + V_3 \exp(-r^2/\mu_3^2)$.

Model	a_0 (fm)	$r_{\rm eff}~({\rm fm})$	μ_1 (fm)	$V_1 ~({\rm MeV})$	$\mu_2 \text{ (fm)}$	V_2 (MeV)	μ_3 (fm)	$V_3~({\rm MeV})$ Ref.
HKMYY	-0.575	6.45	1.342	-10.96	0.777	-141.75	0.35	2136.6 [3]
FG	-0.77	6.59	1.342	-21.49	0.777	-250.13	0.35	9324.0 [2]

2014 March 4

HHIQCD2015@YITP

$$N = 1.006 \pm 0.001$$
$$\lambda = 0.18 \pm 0.05^{+0.12}_{-0.06}$$
$$a_0 = -1.10 \pm 0.37^{+0.68}_{-0.08}$$
$$r_{\rm eff} = 8.52 \pm 2.56^{+2.09}_{-0.74}$$
$$r_0 = 2.96 \pm 0.38^{+0.96}_{-0.02}$$
$$a_{\rm res} = -0.044 \pm 0.004^{+0.048}_{-0.009}$$
$$r_{\rm res} = 0.43 \pm 0.04^{+0.43}_{-0.03}$$
$$\chi^2/N_{\rm dof} = 0.56$$

.....

...........

2014 March 4

HHIQCD2015@YITP

23/18

Results from the Static Source

Larger variation among potentials than data error-bars

Size : determined from min. χ^2

Collectivity Deforms Source Function

$$C_{2}(Q,K) = \frac{\int d^{4}x_{1}d^{4}x_{2}S(x_{1},K)S(x_{2},K)|\Psi_{12}(Q,x_{1}-x_{2}-(t_{2}-t_{1})K/m)|^{2}}{\int d^{4}x_{1}d^{4}x_{2}S(x_{1},k_{1})S(x_{1},k_{2})}$$
Influence on the best-fit potentials?

$$C(Q) \text{ is fairly sensitive to interaction}$$

Scattering Length and Effective Range

