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Outline

@ project goals:
e comprehensive survey of QCD stationary states in finite volume
e hadron scattering phase shifts, decay widths, matrix elements
e focus: large 32° anisotropic lattices, m, ~ 240 MeV

@ extracting excited-state energies

@ single-hadron and multi-hadron operators
@ the stochastic LapH method

@ level identification issues

@ preliminary results for 20 channels I =1, S=0

@ correlator matrices of size 100 x 100
e large number of extended single-hadron operators
e attempt to include all needed 2-hadron operators

@ preliminary results for I = %, S=1,Ty,
@ [ =1 P-wave 77 scattering phase shifts and width of p
@ future work
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Building blocks for single-hadron operators

@ building blocks: covariantly-displaced LapH-smeared quark fields
@ stout links U;(x)
@ Laplacian-Heaviside (LapH) smeared quark fields

Gua®) = S (3) Yna(v), S =0 (o2 +4)
@ 3d gauge-covariant Laplacian A in terms of U
@ displaced quark fields:

qﬁa/ = DO)qﬁ(Aa) qﬁ U}ua V4 D(J)
@ displacement DY) is product of smeared links:

DO) (xvxl) = &il ()C) 2 ()C—Fdz) J3 (.X+d3) jp (x+dp)5x’7 Xtdp i
@ to good approximation, LapH smearing operator is
S=VV!

e columns of matrix V, are eigenvectors of A
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Extended operators for single hadrons

@ quark displacements build up orbital, radial structure

Meson configurations

- S R T

58 5D DDL TDU TDO

Baryon configurations

@ﬂﬁaﬂéﬂ”fﬂdf*

SS SD DDI DDL TDO
—AB
(I)aﬂ(pa t) = Z elp (X+ (dw+dﬁ))5 ab Qbﬁ X, t qﬁa
—ABC x _ _ _
(I)aﬁ'y(p7 t) = Zx e? Eabe qry (x7 t) qhﬁ (x7 t) q/aAa (x7 t)
@ group-theory projections onto irreps of lattice symmetry group
3 1)* B N\« —=ABC
Mi(1) = el T (1) Bi(1) = iy, Basy (1)

@ definite momentum p, irreps of little group of p
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Small—a expansion of probes

@ link variables in terms of continuum gluon field
x4
Up(x) = Pexp ig/ dn-An) ¢,
@ classical small—a expansion of dispxlaced quark field:
Uj(x) Ur(x +)a(x +] + k) = exp(aDy) exp(aDy) v ).
@ where D; = 0; + igA; is covariant derivative
@ must take smearing of fields into account

@ radiative corrections of expansion coefficients (hopefully small
due to smearing)
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JFG of continuum probe operators

@ isovector meson continuum probe operators
M jiin- = XT,uD; Dy, -+ - 00", X = Vv
@ where I'y = 1 and I'; = 7, (analogous table inserting 4, s, v47s)
| JP¢ | oy irrep | Basis operator \

0+ Al*;, M,
1 T M
1-= Tl_u Mo,
0"~ Al My + Mx + M3
1= Tl;r My — M3,
2t+- Eg_ My, — My
T,, | My +Ms
0+ Af, Moi1 + Moz + Moss
1 T, Mozz — Mozz
PARS ES Mo — Moz
T, Mooz + Moz
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JFG of continuum probe operators (continued)

@ isovector meson continuum probe operators
My j,... = Xdl—‘#DjID.2 e, Y= E’M

@ where I'y = 1 and I'; = 7, (analogous table inserting 4, s, v47s)

| JP¢ ] Of irrep | Basis operator

0~ A, M3 + M3y + M312 — M3pp — Moz — My

1+ T/ M1 + Mo + M3z

1= T} 2M 111 + Moy + M331 + Maio + M3

1= T, M + M3 — Mo — M3

27~ E; Moz + M3 — Myzy — M3
T, My — M331 + M313 — Moo

2=+ Ef M3 + Moz — 2M3p1 — 2M312 + M1 + M3
T, Ma1 — M3z — 2M 1 + 2M133 — M313 + Moo

3= A7, M3 + Moz + M3ip + Moz + M3y + M3
T, 2M 111 — Mapy — M33p — Moz — M313 — Mo — My33
75, M3z — Maip + M3 — Mioo + Mz — Moo
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Two-hadron operators

@ our approach: superposition of products of single-hadron
operators of definite momenta

Lal3, Lal30Sa 1135 Sp
Paras P Ao PalNaXaia TP Ny Npip

@ fixed total momentum p =p_, +p,, fixed Ay, i, Ap, ip
@ group-theory projections onto little group of p and isospin irreps
@ restrict attention to certain classes of momentum directions
@ on axis &x, &y, 47
o planar diagonal £x +y, +x +7, £y +7
@ cubic diagonal +x +y +7
@ crucial to know and fix all phases of single-hadron operators for
all momenta
e each class, choose reference direction p,.;
e each p, select one reference rotation R’ ; that transforms p,.; into p

ref

o efficient creating large numbers of two-hadron operators
@ generalizes to three, four, ... hadron operators

Excited States 8



Testing our two-meson operators

@ (left) K7 operator in Ty, I = ; channels
@ (center and right) comparison with localized =7 operators

(m)(r) = St wt(x,1),

s, e e T TR .
] 5
B o2f --‘ 4 B * .
- ‘-‘..
frec Keg__ o m= 02 -] *es i
"""" i ; _Itterssrscaned
0.15F =1 1
Kam,) -t
$TT T s 51015 20 O 50 IS 20
t

@ less contamination from higher states in our =7 operators
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Quark propagation

@ quark propagator is inverse K—' of Dirac matrix

e rows/columns involve lattice site, spin, color
@ very large Nt X Ny matrix for each flavor

Nlol - NwileNapinNcolur
e for 32° x 256 lattice, Nio; ~ 101 million

@ not feasible to compute (or store) all elements of K~!
@ solve linear systems Kx = y for source vectors y

@ translation invariance can drastically reduce number of source
vectors y needed

@ multi-hadron operators and isoscalar mesons require large
number of source vectors y
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Quark line diagrams

@ temporal correlations involving our two-hadron operators need
e slice-to-slice quark lines (from all spatial sites on a time slice to all
spatial sites on another time slice)
@ sink-to-sink quark lines

tr 2

@ isoscalar mesons also require sink-to-sink quark lines

m [Q C[

@ solution: the stochastic LapH method!
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Stochastic estimation of quark propagators

@ do not need exact inverse of Dirac matrix K[U]

@ use noise vectors 7 satisfying £(n;) = 0 and E(nin;") = d;

@ Z, noise is used {1,i,—1, —i}

@ solve K[U]x" = n(") for each of Nk noise vectors 1), then
obtain a Monte Carlo estimate of all elements of K—!

L )
Kl — N x0p0*

variance reduction using noise dilution
dilution introduces projectors

pla) p) — = §eplo), Zp(a) =1, pl@t — pla)

@ define 7’][a] _ P(a)n, X[d] — K—ln[a]

to obtain Monte Carlo estimate with drastically reduced variance
Z Z X( lal, (r)la)*
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Stochastic LapH method

@ introduce Zy noise in the LapH subspace
Pak(t), t = time, a = spin, k = eigenvector number

@ four dilution schemes:

P =g, a=0 (none)

P = 68 a=0,1,...,N—1 (full)

Pfj“) = 0j0akisy a=0,1,...,K—1 (interlace-K)
P = §ybuimoar a=0,1,...,K—1 (block-K)

@ apply dilutions to

e time indices (full for fixed src, interlace-16 for relative src)
e spin indices (full)
e LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)
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The effectiveness of stochastic LapH

@ comparing use of lattice noise vs noise in LapH subspace
@ Np is number of solutions to Kx =y

50_|||||||||||||||||||_
[ C(r=>5) triply-displaced-T nucleon ]
Oela ] - E
B30 . =
© 20 A =
C " .
10F 2 =
C u ]
O:|—|—|—|A-I—A-f++4-+—|—|—|—|—|—|—|—+=

0 0.2 0.4 0.6 0.8

—
ND
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Quark line estimates in stochastic LapH

@ each of our quark lines is the product of matrices
Q= D(i)SK*bMSD(k)T
@ displaced-smeared-diluted quark source and quark sink vectors:
ol (p) = pYvP® )
#"p) = DVSK 'y viP)p

@ estimate in stochastic LapH by (A, B flavor, «, v compound:
space, time, color, spin, displacement type)

QUB) ~ 5AB Z Z o () o ()"

@ occasionally use ys-Hermltlcny to switch source and sink
QUB) ~ 75AB z Z P (p") Bl (o)

defining o(p) = —vs110(p) and B(p) = vsya(p)

Excited States 15



Source-sink factorization in stochastic LapH

@ baryon correlator has form

Cj = el oroiof,

@ stochastic estimate with dilution

72 Z (/)*( (Ar)[da] <Ar>[d,4]*>
’Jk ijk Pi 0;

r dAdBdC
% ((pj(m)[dl,] Q;Br) [dg]*) (@,Em [dc] Q%Cr)[d(v]*)

@ define baryon source and sink

r)|dadpdc N l Ar)[da Br)|dp Cr)lde
r)|dadpdc N 1 r)|da Br)|dp Cr)lde
Bl()[ (](OA,OB.,Q() 1<//<) H( )[da] j( )t ]IE )ldc]

° correlator is dot product of source vector with sink vector

Ci™ o Z 37 Bl (B OB (A g g€

r dAdBdC
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Correlators and quark line diagrams

@ baryon correlator

1 r)|dadpdc - r)[dadpdc -
Cy~ IVRZ S el (B SO BIII (A B

I dadgdc

@ express diagrammatically

K> =k
¢ Q
S Q7
ty t
1 %
¢ L-Q
— |
1% Ry
Ip to

@ meson correlator

Sy,
S Bl
o
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More complicated correlators

@ two-meson to two-meson correlators (non isoscalar mesons)

C. Morningstar Excited States
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Quantum numbers in toroidal box

@ periodic boundary conditions in
cubic box L

e not all directions equivalent = L
using J¢ is wrong!! i

o=

@ label stationary states of QCD in a periodic box using irreps of

cubic space group even in continuum limit
e zero momentum states: little group O,
AlayAZgwEaaTlmTZw GlaaGZaaHtu a=g,u
e on-axis momenta: little group Ca,
A1,A2,B1,B2,E, Gi,Gy
e planar-diagonal momenta: little group C,
A1,A2,B1,By, G1,G
@ cubic-diagonal momenta: little group Cs,
AL Ay E, Fi1,F,G

@ include G parity in some meson sectors (superscript + or —)

Excited States
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Spin content of cubic box irreps

@ numbers of occurrences of A irreps in J subduced

J A A E T T
0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
30 10 1 1
4 1 0 1 1 1
5.0 0 1 2 1
6 1 1 1 1 2
7 0 1 1 2 2
J G G H J GG H
I 9
5 1L 0 0 7 1 0 2
3 11
30 0 1 o101 2
13
20 1 1 2 1 2 2
15
I 11 21 1 3

C. Morningstar Excited States
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Common hadrons

@ irreps of commonly-known hadrons at rest

Hadron lIrrep Hadron Irrep Hadron lrrep
7r A7 K A n,1 Af,
p Ty, w, Ty, K* Ty,
ap AT, fo AT, h Ty,
by Tf; K, Ty, n! T,
N, X Gig AE G, AQ H,
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Ensembles and run parameters

@ plan to use three Monte Carlo ensembles
o (32%240): 412 configs 32° x 256, m. ~ 240 MeV, m.L ~ 4.4
o (24°240): 584 configs 24° x 128, m, ~ 240 MeV, m,L ~ 3.3
o (24%390): 551 configs 24° x 128, m. ~ 390 MeV, m L ~ 5.7

anisotropic improved gluon action, clover quarks (stout links)
QCD coupling 8 = 1.5 such that a, ~ 0.12 fm, a, ~ 0.035 fm
strange quark mass m; = —0.0743 nearly physical (using kaon)
work in m, = my limit so SU(2) isospin exact

generated using RHMC, configs separated by 20 trajectories

stout-link smearing in operators ¢ = 0.10 and ng = 10

LapH smearing cutoff o2 = 0.33 such that
e N, = 112 for 24° lattices
e N, = 264 for 32° lattices

@ source times:

o 4 widely-separated 1, values on 24°
@ 81, values used on 32° lattice
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Use of XSEDE resources

@ use of XSEDE resources crucial

@ Monte Carlo generation of gauge-field configurations:
~ 200 million core hours

@ quark propagators: ~ 100 million core hours
@ hadrons + correlators: ~ 40 million core hours

@ storage: ~ 300 TB

> St

Kraken at NICS Stampede at TACC
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Status report

@ correlator software last_laph completed summer 2013

e testing of all flavor channels for single and two-mesons completed
fall 2013

e testing of all flavor channels for single baryon and meson-baryons
completed summer 2014

small-a expansions of all operators completed
first focus on the resonance-rich p-channel: 1 =1, S =0, T,

results from 63 x 63 matrix of correlators (32°|240) ensemble

e 10 single-hadron (quark-antiquark) operators
e “mm” operators

e “nm” operators, “p7” operators

e “KK” operators

@ inclusion of all possible 2-meson operators

@ 3-meson operators currently neglected

@ still finalizing analysis code sigmond

@ next focus: the 20 bosonic channels with7 =1, S=0
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Operator accounting

@ numbers of operators for / = 1, S =0, P = (0,0,0) on 323 lattice

(322]240) Af; Al A;g A3, Ef Ef T,*g T T;g T
SH 9 7 13 13 9 9 14 23 15 16
“ro” i0 17 8 11 8 17 23 30 17 27
“nr” 6 15 10 7 11 18 31 20 21 23
“on” 6 15 9 7 12 19 37 11 23 23
“KK” 0 5 3 5 3 &6 9 12 5 10

Total 31 59 43 43 43 69 114 96 81 99

(322240) A, AL, A, A, Ef E; T, T, T, T,

SH i0 8 11 10 12 9 21 15 19 16
“m” 3 7 7 3 8§ 11 22 12 12 15
“‘nm” 26 15 10 12 24 21 25 33 28 30
“om” 26 15 10 12 27 22 26 38 30 32
“KK” 11 3 4 2 11 5 12 5 12 6

Total 76 48 42 39 82 68 106 103 101 99
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Operator accounting

@ numbers of operators for / = 1, S =0, P = (0,0,0) on 24 lattice

(242|390) Aﬁg Al A;g A3, Ef Ef Tf; T, T;g ;.

SH 9 7 13 13 9 9 14 23 15 16
“ma” 6 12 2 6 8 9 15 17 10 12
“nr’” 2 10 8 4 8 11 21 14 14 13
‘o’ 2 10 8 4 8 11 23 3 14 13
“KK” 0 4 1 4 1 4 8§ 10 4 6

Total 19 43 32 31 34 44 81 67 57 60

(242|390) A, AL A, A, Ef E; T, T, T, T,
SH 10 8 11 10 12 9 20 15 19 16
“rr” 1 5 6 2 3 7 18 8 10 9
“nr” 19 9 4 6 13 12 11 18 15 14
“or” 18 9 4 6 14 12 11 19 15 15
“KK” 7 2 2 2 6 4 9 4 8 4
Total 55 33 27 26 48 44 69 64 67 58
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Excited states from correlation matrices

@ in finite volume, energies are discrete (neglect wrap-around)
N=32"Z" e B 2" = (0] 0; In)

not practical to do fits using above form
define new correlation matrix C(¢) using a single rotation

C(t) = Ut Clm) ™"/ €(1) Cro) ™2 U

@ columns of U are eigenvectors of C(r) /2 C(p) C(r)~"/?
@ choose 1y and 7 large enough so 5(1) diagonal for r > 7p
@ effective energies 1 Pa
() = g [ =Sl
At Coall + Ar)

tend to N lowest-lying stationary state energies in a channel

2-exponential fits to C..(7) yield energies E,, and overlaps Zj<">
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o effective energies m°(z) for levels 0 to 24
@ energies obtained from two-exponential fits
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=1, S$=0, T, energy extraction, continued

o effective energies m°f(¢) for levels 25 to 49
@ energies obtained from two-exponential fits
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Level identification

@ level identification inferred from Z overlaps with probe operators

@ analogous to experiment: infer resonances from scattering cross
sections
@ keep in mind:
e probe operators O; act on vacuum, create a “probe state” |®;),
Z’s are overlaps of probe state with each eigenstate
|@)) = 040), 2" = (@n)
e have limited control of “probe states” produced by probe operators
@ ideal to be p, single =, and so on
@ use of small—a expansions to characterize probe operators
@ use of smeared quark, gluon fields
@ field renormalizations
@ mixing is prevalent
e identify by dominant probe state(s) whenever possible
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Level identification

@ overlaps for various operators

iz

TIA; SS1TTA, SS1 0A
T(140) T(140)

2

KA,SS1K°A,SS10A
K(497) K°(497)

2f

TTA; SSO A, SSO PD
T(140) T(140)

izt

nE SS1mA,LSD1 OA

2t

KA, SS0K"A, SS0 PD

12f

@E SS1TA, SS10A

«(782) T(140) K(497) K°(497) B ©(1020) T(140)
2
a Hk oo
g % g T %

1z
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A, SSO A, SSO CD
T(140) T(140)
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Identifying quark-antiquark resonances

@ resonances: finite-volume “precursor states”
@ probes: optimized single-hadron operators
e analyze matrix of just single-hadron operators 0,.[5”] (12 x 12)
e perform single-rotation as before to build probe operators
OQS”] _ Z v{(m)*O[SII]

@ obtain Z’ factors of these probe operators

z!(n) —

m

(0] 0% |m)

15

%0
Level

0.40f
0.3
030

o 02

N o.20f
0.5
0.0
0.0
000

3040 0
Level

0

Level
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Staircase of energy levels

o stationary state energies I = 1, S = 0, T}, channel on (32* x 256)
anisotropic lattice

Tlup
o | ]
4 allat
||'l|ll|
II_.I.....|.|IIII|I'III
|
x3 II|-I
£
Sz 1
i EEl single-hadron dominated
1 B two-hadron dominated
[ significant mixing

Levels
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Summary and comparison with experiment

@ right: energies of gg-dominant states as ratios over my for
(32%|240) ensemble (resonance precursor states)
@ left: experiment

Experiment
-
—
_—
— ==
|
p(T70)  p(1450) p(1570) py (1690)p(1700) p(1900) py(1990)p(2150)

Lattice 7}/ I

I lattice ¢g state
I experimental mass
experimental width
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Issues

@ address presence of 3 and 4 meson states
@ in other channels, address scalar particles in spectrum

@ scalar probe states need vacuum subtractions
o hopefully can neglect due to OZI suppression

@ infinite-volume resonance parameters from finite-volume
energies
e Luscher method too cumbersome, restrictive in applicability
e need for new hadron effective field theory techniques

Excited States

35



Bosonic/ =1, S=0, A;, channel

@ finite-volume stationary-state energies: “staircase” plot
@ 323 x 256 lattice for m, ~ 240 MeV

@ use of single- and two-meson operators only

@ blue: levels of max ovelaps with SH optimized operators

Alum 1

0.5k

0.4F ™ M

[ ]
I'|’
0.2F I

0.1F

a,Energy
o
W
|
=
]
-
=]

0.0

Levels
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Bosonic/ =1, S =0, E channel

@ finite-volume stationary-state energies: “staircase” plot
@ 323 x 256 lattice for m, ~ 240 MeV

@ use of single- and two-meson operators only

@ blue: levels of max ovelaps with SH optimized operators

Eup 1

0.5k

u|
L
0.4f IIIII ]

a,Energy
o
W

0.2F

0.1F

0.0

Levels
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Bosonic/ =1, § =0, T}, channel

@ finite-volume stationary-state energies: “staircase” plot
@ 323 x 256 lattice for m, ~ 240 MeV
@ use of single- and two-meson operators only
@ blue: levels of max ovelaps with SH optimized operators

0.5F

0.4F

a,Energy
o
W

0.2

0.1F

Tlgm1

0.0

Levels
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Bosonic/ =1, S =0, T,, channel

@ finite-volume stationary-state energies: “staircase” plot
@ 323 x 256 lattice for m, ~ 240 MeV

@ use of single- and two-meson operators only

@ blue: levels of max ovelaps with SH optimized operators

Tlum1
0.5p
0.4r II1
I"'.I -------- L]
af=n=
8 gaglegeteene 'I" !
5 i guel=®
g 03 l...-lll
. .IIlI'
I.

0.2}

0.1p

0.0

Levels
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Bosonic/ =5, S =1, T}, channel

1
27
@ kaon channel: effective energies () for levels 0 to 8
@ results for 32° x 256 lattice for m,, ~ 240 MeV

@ two-exponential fits
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Bosonic I = 1, S = 1, Ty, channel

o effective energies m°(¢) for levels 9 to 17
@ results for 32° x 256 lattice for m, ~ 240 MeV
@ two-exponential fits
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Bosonic/ =1, S =

1, Ty, channel

o effective energies m°f(¢) for levels 18 to 23
@ dashed lines show energies from single exponential fits
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Bosonic I = 1, S = 1, Ty, channel

@ finite-volume stationary-state energies: “staircase” plot
@ 323 x 256 lattice for m, ~ 240 MeV

@ use of single- and two-meson operators only

@ blue: levels of max ovelaps with SH optimized operators
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0.4f II!
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Scattering phase shifts from finite-volume energies

@ correlator of two-particle operator oin finite volume

.t SEOE -

@ Bethe-Salpeter kernel
)y = >+ G >0
+ ¢ + e

@ C°(P) has branch cuts where two-particle thresholds begin
@ momentum quantization in finite volume: cuts — series of poles
@ C’ poles: two-particle energy spectrum of finite volume theory
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Phase shift from finite-volume energies (con't)

@ finite-volume momentum sum is infinite-volume integral plus
correction F

-
|
|

+

@ define the foIIowmg quantities: A, A’, invariant scattering

amplitude iM
@ - @ + G
iK

@@+ W
+ (WS &)+
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Phase shifts from finite-volume energies (con’t)

@ subtracted correlator Cy,,(P) = CE(P) — C>°(P) given by

CuPr= (W) +

+ (ine T (iad ) () + e
C w \(F

@ sum geometric series
Cap(P) =A F(1 —iMF)™!
@ poles of Cy(P) are poles of C-(P) from det(1 — iMF) =0
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Phase shifts from finite-volume energies (con’t)

@ work in spatial Z*> volume with periodic b.c.

@ total momentum P = (27 /L)d, where d vector of integers

@ masses m; and m;, of particle 1 and 2

@ calculate lab-frame energy E of two-particle interacting state in

lattice QCD
@ boost to center-of-mass frame by defining:
E
Eew = VE*—P =—,
Y Eur’
1 (m2 o mz)z
q(z:m ZE(%m - §<m% + m%) + 14Egm2 )
oo Do (), om)Y,
(2m)? EZy

@ FE related to S matrix (and phase shifts) by
det[1 + F7 (S — 1)] = 0,

where F matrix defined next slide
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Phase shifts from finite-volume energies (con’t)

@ F matrix in JLS basis states given by
( LAl ) . p
F;;;Z/I;JS’[;’; JmyLSa — ;6a'a55’5{51’16m11;7115L’L

—i—Wé‘f;%’,";)LmL (J'my|L'mys, Smg) (Lmy, Sms|Jmy) ¢,
@ total angular mom J,J’, orbital mom L, L, intrinsic spin S, &’
@ a,d’ channel labels
@ p, = 1 distinguishable particles, p, = 1 identical

2i

Wi, = o Zm(5.7.0%) [ €9 ¥ (D30 in, ()

@ Rummukainen-Gottlieb-Lischer (RGL) shifted zeta functions 2,
defined next slide
e F:7) diagonal in channel space, mixes different J, J’/

@ recall S diagonal in angular momentum, but off-diagonal in
channel space
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RGL shifted zeta functions

@ compute Z;, using

ylm (Z) AP
Zin(s,y,u%) = Z @—)° A=)
nez?

+oyme (ZuD(u\/K) — A_l/z)

il Lo\ 372 )
+Al+’?/2 /d[ (7) eAtu2 Z emn-Sylm(W) e*‘ﬂ'zwz/(tA)
J0O

nezd
@ where i
z=n—v""[1+(y—1)s72ns]s,
w=n—(1—~)s s ns, Vim(x) = [x]' ¥} (X)
x

D(x) = e [ dre” (Dawson function)
0
@ choose A ~ 1 for convergence of the summation
@ integral done Gauss-Legendre quadrature, Dawson with Rybicki
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P-wave [ = 1 o scattering

@ for P-wave phase shift §, (E.n) for 77 I = 1 scattering

@ define B Zyn(s, 7y, 12)
Wim = YRS
d A cot Oy
( ,0,0) TIJ; Re Wo,0
(0,0,1) AT Re wo,0 + \Z[Re w20
E+ Re wWo,0 — Re W20
(0,1,1) A;L RGW00+ RCW20 \[IHlel \/ ReW22,
BT RCW0077R3W20+\/jReW22,
B;“ Rewoo+ Rewz0+flmw21 v/ 7o RCW22
(1,1,1)  Af Re wo o +2\/;Im wao
EJr Re wo,0 — \/%Im w22
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Finite-volume n7 I = 1 energies

e rr-state energies for various d*
@ dashed lines are non-interacting energies, shaded region above
inelastic thresholds

d? =1 d> =2
E3
S = Ee . = =
3 S -
K 3 K3 E
=
AT ET A B B,
d> =3 d? =4
el
3
3
T T
N
& = : £y 2 *
Al+ E\ Al+ E\
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Pion dispersion relation

@ boost to cm frame requires aspect ratio on anisotropic lattice
@ aspect ratio ¢ from pion dispersion

s , 1 (2ma,\* ,
(a,E)” = (a,m) —5—? 7 d

@ slope below equals (7/(16£))?, where & = a,/a,

0.03
0.025
0.020

%,0.015
0.010
0.005
0.00
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I = 1 =7 scattering phase shift and width of the p

@ preliminary results 323 x 256, m, ~240 MeV
@ additional collaborator: Ben Hoerz (Dublin)

25
. -0
2 _
200/ == ¢ =1 °
. g =2 ]
. d =3 T+ ‘ I
150 & -4 ++ [ ° +
] ° Tlt + +
TS 100 &4
o N Bl+
50| x
L ]
0 g2
‘ ————— Breit-Wigner g =5.04+£0.48 m, =0.1284+£0.0010 x> /dof=2.1474 ‘
08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

at Ecm

. r/2 2
o fit tan(él):m/_E+A and p:ﬁ(mz_élmi)yz
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Conclusion

goal: comprehensive survey of energy spectrum of QCD
stationary states in a finite volume

stochastic LapH method works very well

o allows evaluation of all needed quark-line diagrams
@ source-sink factorization facilitates large number of operators
e last_laph software completed for evaluating correlators

analysis software sigmond urgently being developed

analysis of 20 channels 7 = 1, S = 0 for (24°390) and (323|240)
ensembles nearing completion

can evaluate and analyze correlator matrices of unprecedented
size 100 x 100 due to XSEDE resources

study various scattering phase shifts also planned

infinite-volume resonance parameters from finite-volume
energies —> need new effective field theory techniques
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