Excited states and scattering phase shifts from lattice QCD

Colin Morningstar

Carnegie Mellon University

Hadrons and Hadron Interactions in QCD

Kyoto, Japan

March 3, 2015

Outline

- project goals:
 - comprehensive survey of QCD stationary states in finite volume
 - hadron scattering phase shifts, decay widths, matrix elements
 - focus: large 32^3 anisotropic lattices, $m_\pi \sim 240$ MeV
- extracting excited-state energies
- single-hadron and multi-hadron operators
- the stochastic LapH method
- level identification issues
- preliminary results for 20 channels I = 1, S = 0
 - correlator matrices of size 100×100
 - large number of extended single-hadron operators
 - attempt to include all needed 2-hadron operators
- preliminary results for $I = \frac{1}{2}, S = 1, T_{1u}$
- I=1 *P*-wave $\pi\pi$ scattering phase shifts and width of ρ
- future work

Dramatis Personae

current grad students:

Andrew Hanlon Pitt

former CMU postdocs:

Justin Foley Software, NVIDIA

Jimmy Juge Faculty, Stockton, CA

past CMU grad students:

Brendan Fahy 2014 Postdoc KEK Japan

You-Cyuan Jhang 2013 Silicon Valley

David Lenkner 2013 Data Science Auto., PGH

Ricky Wong 2011 Postdoc Germany

John Bulava 2009 Faculty, Dublin

Adam Lichtl 2006 SpaceX, LA

thanks to NSF Teragrid/XSEDE:

- Athena+Kraken at NICS
- Ranger+Stampede at TACC

Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_i(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

$$\widetilde{\psi}_{a\alpha}(x) = \mathcal{S}_{ab}(x, y) \; \psi_{b\alpha}(y), \qquad \mathcal{S} = \Theta\left(\sigma_s^2 + \widetilde{\Delta}\right)$$

- ullet 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$q_{a\alpha j}^{A}=D^{(j)}\widetilde{\psi}_{a\alpha}^{(A)}, \qquad \overline{q}_{a\alpha j}^{A}=\widetilde{\overline{\psi}}_{a\alpha}^{(A)}\gamma_{4}D^{(j)\dagger}$$

• displacement $D^{(j)}$ is product of smeared links:

$$D^{(j)}(x,x') = \widetilde{U}_{j_1}(x) \ \widetilde{U}_{j_2}(x+d_2) \ \widetilde{U}_{j_3}(x+d_3) \dots \widetilde{U}_{j_p}(x+d_p) \delta_{x', x+d_{p+1}}$$

• to good approximation, LapH smearing operator is

$$S = V_s V_s^{\dagger}$$

• columns of matrix V_s are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

quark displacements build up orbital, radial structure

Meson configurations

Baryon configurations

group-theory projections onto irreps of lattice symmetry group

$$\overline{M}_l(t) = c_{lphaeta}^{(l)*} \overline{\Phi}_{lphaeta}^{AB}(t)$$
 $\overline{B}_l(t) = c_{lphaeta\gamma}^{(l)*} \overline{\Phi}_{lphaeta\gamma}^{ABC}(t)$

definite momentum p, irreps of little group of p

Small-a expansion of probes

link variables in terms of continuum gluon field

$$U_{\mu}(x) = \mathcal{P} \exp \left\{ ig \int_{x}^{x+\hat{\mu}} d\eta \cdot A(\eta) \right\},$$

classical small—a expansion of displaced quark field:

$$U_j(x)U_k(x+\widehat{j})\psi_{\alpha}(x+\widehat{j}+\widehat{k}) = \exp(a\mathcal{D}_j) \exp(a\mathcal{D}_k) \psi_{\alpha}(x).$$

- where $\mathcal{D}_i = \partial_i + igA_i$ is covariant derivative
- must take smearing of fields into account
- radiative corrections of expansion coefficients (hopefully small due to smearing)

J^{PG} of continuum probe operators

isovector meson continuum probe operators

$$M_{\mu j_1 j_2 \dots} = \chi^d \Gamma_\mu \mathcal{D}_{j_1} \mathcal{D}_{j_2} \dots \psi^u, \qquad \chi = \overline{\psi} \gamma_4$$

• where $\Gamma_0 = 1$ and $\Gamma_k = \gamma_k$ (analogous table inserting $\gamma_4, \gamma_5, \gamma_4 \gamma_5$)

J^{PG}	O_h^G irrep	Basis operator
0++	A_{1g}^+	M_0
1-+	T_{1u}^+	M_1
1	T_{1u}^{-}	M_{01}
0+-	A_{1g}^-	$M_{11} + M_{22} + M_{33}$
1+-	T_{1g}^-	$M_{23}-M_{32}$
2+-	$E_g^{\stackrel{\circ}{=}}$	$M_{11} - M_{22}$
	T_{2g}^{-}	$M_{23} + M_{32}$
0++	$T_{2g}^- \\ A_{1g}^+$	$M_{011} + M_{022} + M_{033}$
1+-	T_{1g}^-	$M_{023}-M_{032}$
2++	E_g^+	$M_{011} - M_{022}$
	T_{2g}^+	$M_{023} + M_{032}$

J^{PG} of continuum probe operators (continued)

isovector meson continuum probe operators

$$M_{\mu j_1 j_2 \dots} = \chi^d \Gamma_\mu \mathcal{D}_{j_1} \mathcal{D}_{j_2} \dots \psi^u, \qquad \chi = \overline{\psi} \gamma_4$$

• where $\Gamma_0 = 1$ and $\Gamma_k = \gamma_k$ (analogous table inserting $\gamma_4, \gamma_5, \gamma_4 \gamma_5$)

J^{PG}	O_h^G irrep	Basis operator
0	$A_{1\mu}^-$	$M_{123} + M_{231} + M_{312} - M_{321} - M_{213} - M_{132}$
1-+	T_{1u}^+	$M_{111} + M_{122} + M_{133}$
1-+	T_{1u}^+	$2M_{111} + M_{221} + M_{331} + M_{212} + M_{313}$
1	T_{1u}^-	$M_{221} + M_{331} - M_{212} - M_{313}$
2	E_u^-	$M_{123} + M_{213} - M_{231} - M_{132}$
	T_{2u}^-	$M_{221} - M_{331} + M_{313} - M_{212}$
2-+	$E_u^+ \\ T_{2u}^+$	$M_{123} + M_{213} - 2M_{321} - 2M_{312} + M_{231} + M_{132}$
	T_{2u}^+	$M_{221} - M_{331} - 2M_{122} + 2M_{133} - M_{313} + M_{212}$
3-+	A_{2u}^+	$M_{123} + M_{231} + M_{312} + M_{213} + M_{321} + M_{132}$
	$\begin{array}{c}A_{2u}^+\\T_{1u}^+\end{array}$	$2M_{111} - M_{221} - M_{331} - M_{212} - M_{313} - M_{122} - M_{133}$
	T_{2u}^+	$M_{331} - M_{212} + M_{313} - M_{122} + M_{133} - M_{221}$

Two-hadron operators

 our approach: superposition of products of single-hadron operators of definite momenta

$$c^{I_{3a}I_{3b}}_{\pmb{p}_a\lambda_a;\;\pmb{p}_b\lambda_b}\;B^{I_aI_{3a}S_a}_{\pmb{p}_a\Lambda_a\lambda_ai_a}\;B^{I_bI_{3b}S_b}_{\pmb{p}_b\Lambda_b\lambda_bi_b}$$

- fixed total momentum $\mathbf{p} = \mathbf{p}_a + \mathbf{p}_b$, fixed $\Lambda_a, i_a, \Lambda_b, i_b$
- group-theory projections onto little group of p and isospin irreps
- restrict attention to certain classes of momentum directions
 - on axis $\pm \hat{x}$, $\pm \hat{y}$, $\pm \hat{z}$
 - planar diagonal $\pm \hat{x} \pm \hat{y}$, $\pm \hat{x} \pm \hat{z}$, $\pm \hat{y} \pm \hat{z}$
 - cubic diagonal $\pm \hat{x} \pm \hat{y} \pm \hat{z}$
- crucial to know and fix all phases of single-hadron operators for all momenta
 - each class, choose reference direction pref
 - each p, select one reference rotation R_{ref}^p that transforms p_{ref} into p
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Testing our two-meson operators

- (left) $K\pi$ operator in $T_{1u}I = \frac{1}{2}$ channels
- (center and right) comparison with localized $\pi\pi$ operators

$$\begin{array}{rcl} (\pi\pi)^{A_{1g}^+}(t) & = & \sum_{\boldsymbol{x}} \pi^+(\boldsymbol{x},t) \ \pi^+(\boldsymbol{x},t), \\ (\pi\pi)^{T_{1u}^+}(t) & = \sum_{\boldsymbol{x},k=1,2,3} \left\{ \pi^+(\boldsymbol{x},t) \ \Delta_k \pi^0(\boldsymbol{x},t) - \pi^0(\boldsymbol{x},t) \ \Delta_k \pi^+(\boldsymbol{x},t) \right\} \end{array}$$

• less contamination from higher states in our $\pi\pi$ operators

Quark propagation

- quark propagator is inverse K^{-1} of Dirac matrix
 - rows/columns involve lattice site, spin, color
 - very large $N_{\rm tot} \times N_{\rm tot}$ matrix for each flavor

$$N_{\text{tot}} = N_{\text{site}} N_{\text{spin}} N_{\text{color}}$$

- for $32^3 \times 256$ lattice, $N_{\rm tot} \sim 101$ million
- not feasible to compute (or store) all elements of K^{-1}
- solve linear systems Kx = y for source vectors y
- translation invariance can drastically reduce number of source vectors y needed
- multi-hadron operators and isoscalar mesons require large number of source vectors y

Quark line diagrams

- temporal correlations involving our two-hadron operators need
 - slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
 - sink-to-sink quark lines

• isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!

Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix K[U]
- use noise vectors η satisfying $E(\eta_i) = 0$ and $E(\eta_i \eta_i^*) = \delta_{ij}$
- \mathbb{Z}_4 noise is used $\{1, i, -1, -i\}$
- solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

- variance reduction using noise dilution
- dilution introduces projectors

$$P^{(a)}P^{(b)} = \delta^{ab}P^{(a)}, \qquad \sum_{a}P^{(a)} = 1, \qquad P^{(a)\dagger} = P^{(a)}$$
 $\eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]}$

define

$$\eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{a} X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

Stochastic LapH method

• introduce Z_N noise in the LapH subspace

$$\rho_{\alpha k}(t)$$
, $t = \text{time}, \ \alpha = \text{spin}, \ k = \text{eigenvector number}$

four dilution schemes:

$$\begin{array}{ll} P_{ij}^{(a)} = \delta_{ij} & a = 0 & \text{(none)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{ai} & a = 0, 1, \dots, N-1 & \text{(full)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,Ki/N} & a = 0, 1, \dots, K-1 & \text{(interlace-}K)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,i \bmod k} & a = 0, 1, \dots, K-1 & \text{(block-}K)} \end{array}$$

- apply dilutions to
 - time indices (full for fixed src, interlace-16 for relative src)
 - spin indices (full)
 - LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)

The effectiveness of stochastic LapH

- comparing use of lattice noise vs noise in LapH subspace
- N_D is number of solutions to Kx = y

Quark line estimates in stochastic LapH

each of our quark lines is the product of matrices

$$Q = D^{(j)} \mathcal{S} K^{-1} \gamma_4 \mathcal{S} D^{(k)\dagger}$$

displaced-smeared-diluted quark source and quark sink vectors:

$$\varrho^{[b]}(\rho) = D^{(j)} V_s P^{(b)} \rho
\varphi^{[b]}(\rho) = D^{(j)} \mathcal{S} K^{-1} \gamma_4 V_s P^{(b)} \rho$$

 estimate in stochastic LapH by (A, B flavor, u, v compound: space, time, color, spin, displacement type)

$$Q_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_b \varphi_u^{[b]}(\rho^r) \ \varrho_v^{[b]}(\rho^r)^*$$

• occasionally use γ_5 -Hermiticity to switch source and sink

$$Q_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_b \overline{\varrho}_u^{[b]}(\rho^r) \, \overline{\varphi}_v^{[b]}(\rho^r)^*$$

defining
$$\overline{\varrho}(\rho) = -\gamma_5 \gamma_4 \varrho(\rho)$$
 and $\overline{\varphi}(\rho) = \gamma_5 \gamma_4 \varphi(\rho)$

C. Morningstar

Source-sink factorization in stochastic LapH

baryon correlator has form

$$C_{l\bar{l}} = c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \mathcal{Q}_{l\bar{i}}^A \mathcal{Q}_{j\bar{j}}^B \mathcal{Q}_{k\bar{k}}^C$$

stochastic estimate with dilution

$$C_{\bar{l}l} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} c_{ijk}^{(l)} c_{\bar{i}j\bar{k}}^{(\bar{l})*} \left(\varphi_i^{(Ar)[d_A]} \varrho_{\bar{l}}^{(Ar)[d_A]*} \right)$$

$$\times \left(\varphi_j^{(Br)[d_B]} \varrho_{\bar{j}}^{(Br)[d_B]*} \right) \left(\varphi_k^{(Cr)[d_C]} \varrho_{\bar{k}}^{(Cr)[d_C]*} \right)$$

define baryon source and sink

$$\mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varphi^{A},\varphi^{B},\varphi^{C}) = c_{ijk}^{(l)} \varphi_{i}^{(Ar)[d_{A}]} \varphi_{j}^{(Br)[d_{B}]} \varphi_{k}^{(Cr)[d_{C}]}$$

$$\mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varrho^{A},\varrho^{B},\varrho^{C}) = c_{ijk}^{(l)} \varrho_{i}^{(Ar)[d_{A}]} \varrho_{j}^{(Br)[d_{B}]} \varrho_{k}^{(Cr)[d_{C}]}$$

correlator is dot product of source vector with sink vector

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^*$$

C. Morningstar Excited States 16

Correlators and quark line diagrams

baryon correlator

$$C_{\bar{l}\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^*$$

express diagrammatically

meson correlator

$$-l \overbrace{\overset{\overline{\varphi}}{\varphi} \overset{\overline{\varphi}}{\underset{l}{\longrightarrow}} \overset{\overline{\varphi}}{\underset{l}{\longrightarrow}} \overset{*}{l}} + l \underbrace{\overset{\underline{\varphi}}{\underset{l}{\longrightarrow}}} \overset{\varphi}{\underset{l}{\longrightarrow}} \overset$$

C. Morningstar

More complicated correlators

• two-meson to two-meson correlators (non isoscalar mesons)

Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group Oh

$$A_{1a}, A_{2ga}, E_a, T_{1a}, T_{2a}, G_{1a}, G_{2a}, H_a, a = g, u$$

• on-axis momenta: little group $C_{4\nu}$

$$A_1, A_2, B_1, B_2, E, G_1, G_2$$

planar-diagonal momenta: little group C_{2v}

$$A_1, A_2, B_1, B_2, G_1, G_2$$

• cubic-diagonal momenta: little group C_{3v}

$$A_1, A_2, E, F_1, F_2, G$$

include *G* parity in some meson sectors (superscript + or −)

Spin content of cubic box irreps

• numbers of occurrences of Λ irreps in J subduced

		\boldsymbol{J}	A_1	A_2	\boldsymbol{E}	T_1	T_2		
		0	1	0	0	0	0	_	
		1	0	0	0	1	0		
		2	0	0	1	0	1		
		3	0	1	0	1	1		
		4	1	0	1	1	1		
		5	0	0	1	2	1		
		6	1	1	1	1	2		
		7	0	1	1	2	2		
J	G_1	(\vec{J}_2	H			G_1	G_2	H
$\frac{1}{2}$	1		0	0		9 2	1	0	2
$\frac{3}{2}$	0		0	1			1	1	2
$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{7}{2}$	0		1	1		$\frac{11}{2}$ $\frac{13}{2}$ $\frac{15}{2}$	1	2	2
$\frac{7}{2}$	1		1	1		$\frac{15}{2}$	1	1	3

Common hadrons

• irreps of commonly-known hadrons at rest

Hadron	Irrep	Hadron	Irrep	Hadron	Irrep
π	A_{1u}^-	K	A_{1u}	η,η'	A_{1u}^+
ho	T_{1u}^+	ω,ϕ	T_{1u}^-	<i>K</i> *	T_{1u}
a_0	A_{1g}^+	f_0	A_{1g}^+	h_1	T_{1g}^-
b_1	T_{1g}^+	K_1	T_{1g}	π_1	T_{1u}^-
N, Σ	G_{1g}	Λ,Ξ	G_{1g}	Δ,Ω	H_g

Ensembles and run parameters

- plan to use three Monte Carlo ensembles
 - $(32^3|240)$: 412 configs $32^3 \times 256$, $m_{\pi} \approx 240$ MeV, $m_{\pi}L \sim 4.4$
 - $(24^3|240)$: 584 configs $24^3 \times 128$, $m_{\pi} \approx 240$ MeV, $m_{\pi}L \sim 3.3$
 - $(24^3|390)$: 551 configs $24^3 \times 128$, $m_{\pi} \approx 390$ MeV, $m_{\pi}L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta = 1.5$ such that $a_s \sim 0.12$ fm, $a_t \sim 0.035$ fm
- strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- work in $m_u = m_d$ limit so SU(2) isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi = 0.10$ and $n_{\xi} = 10$
- LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - $N_v = 112$ for 24^3 lattices
 - $N_v = 264$ for 32^3 lattices
- source times:
 - 4 widely-separated t₀ values on 24³
 - 8 t₀ values used on 32³ lattice

Use of XSEDE resources

- use of XSEDE resources crucial
- Monte Carlo generation of gauge-field configurations:
 200 million core hours
- quark propagators: ~ 100 million core hours
- hadrons + correlators: ~ 40 million core hours
- storage: ~ 300 TB

Kraken at NICS

Stampede at TACC

Status report

- correlator software last_laph completed summer 2013
 - testing of all flavor channels for single and two-mesons completed fall 2013
 - testing of all flavor channels for single baryon and meson-baryons completed summer 2014
- small-a expansions of all operators completed
- first focus on the resonance-rich ρ -channel: $I=1, S=0, T_{1\mu}^+$
- results from 63×63 matrix of correlators $(32^3|240)$ ensemble
 - 10 single-hadron (quark-antiquark) operators
 - " $\pi\pi$ " operators
 - " $\eta\pi$ " operators, " $\phi\pi$ " operators
 - " \overline{K} " operators
- inclusion of all possible 2-meson operators
- 3-meson operators currently neglected
- still finalizing analysis code sigmond
- next focus: the 20 bosonic channels with I = 1, S = 0

Operator accounting

• numbers of operators for I = 1, S = 0, P = (0,0,0) on 32^3 lattice

$(32^2 240)$	A_{1g}^+	A_{1u}^+	A_{2g}^+	A_{2u}^+	E_g^+	E_u^+	T_{1g}^+	T_{1u}^+	T_{2g}^+	$\frac{T_{2u}^{+}}{16}$
SH	9	7	13	13	9	9	14	23	15	16
" $\pi\pi$ "	10	17	8	11	8	17	23	30	17	27
" $\eta\pi$ "	6	15	10	7	11	18	31	20	21	23
" $\phi\pi$ "	6	15	9	7	12	19	37	11	23	23
" $K\overline{K}$ "	0	5	3	5	3	6	9	12	5	10
Total	31	59	43	43	43	69	114	96	81	99
$(32^2 240)$	<u></u> —	A_{1u}^-	<u></u> _	<u></u> —	\mathbf{r}^{-}	r	T^-	- m-	-	-
(- -)	²¹ 1g	² 1u	¹ 12g	¹ 12u	\boldsymbol{L}_{g}	E_u^-	I_{1g}	T_{1u}^-	T_{2g}	T_{2u}
SH	$\frac{A_{1g}^{-}}{10}$	8	$\frac{A_{2g}^{-}}{11}$	$\frac{A_{2u}^{-}}{10}$	E _g ⁻	9	7 _{1g} 21	1 _{1u} 15	19	16
			11 7		12 8		21 22		19 12	
SH	10	8	11	10	12	9	21	15	19	16
SH "ππ"	10 3	8 7	11 7	10 3	12 8	9 11	21 22	15 12	19 12	16 15
SH "ππ" "ηπ"	10 3 26	8 7 15	11 7 10	10 3 12	12 8 24	9 11 21	21 22 25	15 12 33	19 12 28	16 15 30

Operator accounting

• numbers of operators for I = 1, S = 0, P = (0,0,0) on 24^3 lattice

$(24^2 390)$	A_{1g}^+	A_{1u}^+	A_{2g}^+	A_{2u}^+	E_g^+	E_u^+	T_{1g}^+	T_{1u}^+	T_{2g}^+	T_{2u}^+
SH	9	7	13	13	9	9	14	23	15	16
" $\pi\pi$ "	6	12	2	6	8	9	15	17	10	12
" $\eta\pi$ "	2	10	8	4	8	11	21	14	14	13
" $\phi\pi$ "	2	10	8	4	8	11	23	3	14	13
" $K\overline{K}$ "	0	4	1	4	1	4	8	10	4	6
Total	19	43	32	31	34	44	81	67	57	60
$(24^2 390)$	A_{1g}^-	A_{1u}^-	A_{2g}^-	A_{2u}^-	E_g^-	E_u^-	T_{1g}^-	T_{1u}^-	T_{2g}^-	T_{2u}^-
(24 ² 390) SH	A ⁻ _{1g}	A _{1u} 8	A ⁻ _{2g}	A _{2u} 10	E _g ⁻	<i>E</i> _{<i>u</i>} 9	T _{1g} 20	T _{1u} 15	T _{2g} 19	T _{2u} 16
/	A _{1g} 10 1	8 5	A _{2g} 11 6				7 ⁻ _{1g} 20 18		T _{2g} 19 10	
SH	10	8	11	10	12	9	20	15	19	16
SH "ππ"	10 1	8 5	11 6	10 2	12 3	9 7	20 18	15 8	19 10	16 9
SH "ππ" "ηπ"	10 1 19	8 5 9	11 6 4	10 2 6	12 3 13	9 7 12	20 18 11	15 8 18	19 10 15	16 9 14

Excited states from correlation matrices

in finite volume, energies are discrete (neglect wrap-around)

$$C_{ij}(t) = \sum_{n} Z_{i}^{(n)} Z_{j}^{(n)*} e^{-E_{n}t}, \qquad Z_{j}^{(n)} = \langle 0 | O_{j} | n \rangle$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

$$\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$$

- columns of U are eigenvectors of $C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2}$
- choose τ_0 and τ_D large enough so $\widetilde{C}(t)$ diagonal for $t > \tau_D$
- $egin{align*} ullet & ext{ effective energies} \ & \widetilde{m}_{lpha}^{ ext{eff}}(t) = rac{1}{\Delta t} \ln \left(rac{\widetilde{C}_{lphalpha}(t)}{\widetilde{C}_{lphalpha}(t+\Delta t)}
 ight) \end{aligned}$

tend to N lowest-lying stationary state energies in a channel

ullet 2-exponential fits to $\widetilde{C}_{lphalpha}(t)$ yield energies E_lpha and overlaps $Z_j^{(n)}$

$I = 1, S = 0, T_{1u}^+$ channel

- effective energies $\widetilde{m}^{\rm eff}(t)$ for levels 0 to 24
- energies obtained from two-exponential fits

$I=1,\ S=0,\ T_{1u}^+$ energy extraction, continued

- effective energies $\widetilde{m}^{\rm eff}(t)$ for levels 25 to 49
- energies obtained from two-exponential fits

Level identification

- level identification inferred from Z overlaps with probe operators
- analogous to experiment: infer resonances from scattering cross sections
- keep in mind:
 - probe operators \overline{O}_i act on vacuum, create a "probe state" $|\Phi_i\rangle$, Z's are overlaps of probe state with each eigenstate

$$|\Phi_j
angle \equiv \overline{O}_i |0
angle, \qquad \quad Z_i^{(n)} = \langle \Phi_j |n
angle$$

- $|\Phi_j\rangle\equiv\overline{O}_i|0\rangle, \qquad Z_j^{(n)}=\langle\Phi_j|n\rangle$ have limited control of "probe states" produced by probe operators
 - ideal to be ρ , single $\pi\pi$, and so on
 - use of small—a expansions to characterize probe operators
 - use of smeared quark, gluon fields
 - field renormalizations
- mixing is prevalent
- identify by dominant probe state(s) whenever possible

Level identification

overlaps for various operators

Identifying quark-antiquark resonances

- resonances: finite-volume "precursor states"
- probes: optimized single-hadron operators
 - analyze matrix of just single-hadron operators $O_i^{[SH]}$ (12 × 12)
 - perform single-rotation as before to build probe operators $O_m^{I[SH]} = \sum_i v_i^{\prime(m)*} O_i^{[SH]}$
- obtain Z' factors of these probe operators

Staircase of energy levels

• stationary state energies I = 1, S = 0, T_{1u}^+ channel on $(32^3 \times 256)$ anisotropic lattice

Summary and comparison with experiment

- right: energies of $\overline{q}q$ -dominant states as ratios over m_K for $(32^3|240)$ ensemble (resonance precursor states)
- left: experiment

Issues

- address presence of 3 and 4 meson states
- in other channels, address scalar particles in spectrum
 - scalar probe states need vacuum subtractions
 - hopefully can neglect due to OZI suppression
- infinite-volume resonance parameters from finite-volume energies
 - Luscher method too cumbersome, restrictive in applicability
 - need for new hadron effective field theory techniques

Bosonic $I = 1, S = 0, A_{1u}^-$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

Bosonic $I = 1, S = 0, E_u^+$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

Bosonic $I=1,\ S=0,\ T_{1g}^-$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

Bosonic $I = 1, S = 0, T_{1u}^-$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

- kaon channel: effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 0 to 8
- results for $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- two-exponential fits

- effective energies $\widetilde{m}^{\rm eff}(t)$ for levels 9 to 17
- results for $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- two-exponential fits

- effective energies $\widetilde{m}^{\rm eff}(t)$ for levels 18 to 23
- dashed lines show energies from single exponential fits

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

kaon T1u 32

Scattering phase shifts from finite-volume energies

• correlator of two-particle operator σ in finite volume

Bethe-Salpeter kernel

- $C^{\infty}(P)$ has branch cuts where two-particle thresholds begin
- momentum quantization in finite volume: cuts → series of poles
- CL poles: two-particle energy spectrum of finite volume theory

Phase shift from finite-volume energies (con't)

 \bullet finite-volume momentum sum is infinite-volume integral plus correction ${\cal F}$

• define the following quantities: A, A', invariant scattering amplitude $i\mathcal{M}$

Phase shifts from finite-volume energies (con't)

• subtracted correlator $C_{\text{sub}}(P) = C^{L}(P) - C^{\infty}(P)$ given by

sum geometric series

$$C_{\text{sub}}(P) = A \mathcal{F}(1 - i\mathcal{M}\mathcal{F})^{-1} A'.$$

ullet poles of $C_{
m sub}(P)$ are poles of $C^L(P)$ from $\det(1-i\mathcal{MF})=0$

Phase shifts from finite-volume energies (con't)

- work in spatial L³ volume with periodic b.c.
- total momentum $P = (2\pi/L)d$, where d vector of integers
- masses m_1 and m_2 of particle 1 and 2
- calculate lab-frame energy E of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$\begin{split} E_{\rm cm} &= \sqrt{E^2 - \textbf{\textit{P}}^2}, \qquad \gamma = \frac{E}{E_{\rm cm}}, \\ \textbf{\textit{q}}_{\rm cm}^2 &= \frac{1}{4} E_{\rm cm}^2 - \frac{1}{2} (m_1^2 + m_2^2) + \frac{(m_1^2 - m_2^2)^2}{4 E_{\rm cm}^2}, \\ u^2 &= \frac{L^2 \textbf{\textit{q}}_{\rm cm}^2}{(2\pi)^2}, \qquad \textbf{\textit{s}} = \left(1 + \frac{(m_1^2 - m_2^2)}{E_{\rm cm}^2}\right) \textbf{\textit{d}} \end{split}$$

• E related to S matrix (and phase shifts) by

$$\det[1 + F^{(s,\gamma,u)}(S-1)] = 0,$$

where F matrix defined next slide

C. Morningstar

Phase shifts from finite-volume energies (con't)

F matrix in JLS basis states given by

$$\begin{split} F_{J'm_{J'}L'S'a';\;Jm_{J}LSa}^{(s,\gamma,u)} &= \frac{\rho_{a}}{2} \delta_{a'a} \delta_{S'S} \bigg\{ \delta_{J'J} \delta_{m_{J'}m_{J}} \delta_{L'L} \\ &+ W_{L'm_{L'};\;Lm_{L}}^{(s,\gamma,u)} \langle J'm_{J'} | L'm_{L'}, Sm_{S} \rangle \langle Lm_{L}, Sm_{S} | Jm_{J} \rangle \bigg\}, \end{split}$$

- total angular mom J, J', orbital mom L, L', intrinsic spin S, S'
- a, a' channel labels
- $\rho_a = 1$ distinguishable particles, $\rho_a = \frac{1}{2}$ identical

$$W_{L'm_{L'};\;Lm_L}^{(s,\gamma,u)} = \frac{2i}{\pi\gamma u^{l+1}}\mathcal{Z}_{lm}(s,\gamma,u^2) \int d^2\Omega \; Y_{L'm_{L'}}^*(\Omega) Y_{lm}^*(\Omega) Y_{Lm_L}(\Omega)$$

- Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions Z_{lm} defined next slide
- $F^{(s,\gamma,u)}$ diagonal in channel space, mixes different J,J'
- recall *S* diagonal in angular momentum, but off-diagonal in channel space

RGL shifted zeta functions

• compute \mathcal{Z}_{lm} using

$$\mathcal{Z}_{lm}(\mathbf{s}, \gamma, u^{2}) = \sum_{\mathbf{n} \in \mathbb{Z}^{3}} \frac{\mathcal{Y}_{lm}(\mathbf{z})}{(\mathbf{z}^{2} - u^{2})} e^{-\Lambda(\mathbf{z}^{2} - u^{2})}$$

$$+ \delta_{l0} \gamma \pi e^{\Lambda u^{2}} \left(2uD(u\sqrt{\Lambda}) - \Lambda^{-1/2} \right)$$

$$+ \frac{i^{l} \gamma}{\Lambda^{l+1/2}} \int_{0}^{1} dt \left(\frac{\pi}{t} \right)^{l+3/2} e^{\Lambda t u^{2}} \sum_{\substack{\mathbf{n} \in \mathbb{Z}^{3} \\ \mathbf{x} \neq 0}} e^{\pi i \mathbf{n} \cdot \mathbf{s}} \mathcal{Y}_{lm}(\mathbf{w}) e^{-\pi^{2} \mathbf{w}^{2}/(t\Lambda)}$$

where

$$z = \mathbf{n} - \gamma^{-1} \left[\frac{1}{2} + (\gamma - 1)s^{-2}\mathbf{n} \cdot \mathbf{s} \right] \mathbf{s},$$

$$\mathbf{w} = \mathbf{n} - (1 - \gamma)s^{-2}\mathbf{s} \cdot \mathbf{n}\mathbf{s}, \qquad \mathcal{Y}_{lm}(\mathbf{x}) = |\mathbf{x}|^l Y_{lm}(\widehat{\mathbf{x}})$$

$$D(x) = e^{-x^2} \int_0^x dt \ e^{t^2} \qquad \text{(Dawson function)}$$

- choose $\Lambda \approx 1$ for convergence of the summation
- integral done Gauss-Legendre quadrature, Dawson with Rybicki

P-wave I=1 $\pi\pi$ scattering

- for *P*-wave phase shift $\delta_1(E_{\rm cm})$ for $\pi\pi~I=1$ scattering
- define

$$w_{lm} = \frac{\mathcal{Z}_{lm}(\mathbf{s}, \gamma, u^2)}{\gamma \pi^{3/2} u^{l+1}}$$

<u>d</u>	Λ	$\cot\delta_1$
(0,0,0)	T^+	Re <i>w</i> _{0.0}
(0,0,0) (0,0,1)	A_1^{1u}	Re $w_{0,0} + \frac{2}{\sqrt{5}}$ Re $w_{2,0}$
	E^+	Re $w_{0,0} - \frac{1}{\sqrt{5}}$ Re $w_{2,0}$
(0,1,1)	A_1^+	Re $w_{0,0} + \frac{1}{2\sqrt{5}}$ Re $w_{2,0} - \sqrt{\frac{6}{5}}$ Im $w_{2,1} - \sqrt{\frac{3}{10}}$ Re $w_{2,2}$,
	B_{1}^{+}	Re $w_{0,0} - \frac{1}{\sqrt{5}}$ Re $w_{2,0} + \sqrt{\frac{6}{5}}$ Re $w_{2,2}$,
	B_{2}^{+}	Re $w_{0,0} + \frac{1}{2\sqrt{5}}$ Re $w_{2,0} + \sqrt{\frac{6}{5}}$ Im $w_{2,1} - \sqrt{\frac{3}{10}}$ Re $w_{2,2}$
(1,1,1)	A_1^+	Re $w_{0,0} + 2\sqrt{\frac{6}{5}}$ Im $w_{2,2}$
	E^+	Re $w_{0,0} - \sqrt{\frac{6}{5}}$ Im $w_{2,2}$

Finite-volume $\pi\pi$ I=1 energies

- $\pi\pi$ -state energies for various d^2
- dashed lines are non-interacting energies, shaded region above inelastic thresholds

Pion dispersion relation

- boost to cm frame requires aspect ratio on anisotropic lattice
- aspect ratio ξ from pion dispersion

$$(a_t E)^2 = (a_t m)^2 + \frac{1}{\xi^2} \left(\frac{2\pi a_s}{L}\right)^2 \textbf{\textit{d}}^2$$
 • slope below equals $(\pi/(16\xi))^2$, where $\xi = a_s/a_t$

$I=1~\pi\pi$ scattering phase shift and width of the ρ

- preliminary results $32^3 \times 256$, $m_{\pi} \approx 240$ MeV
- additional collaborator: Ben Hoerz (Dublin)

$$\bullet \ \ \text{fit} \quad \ \tan(\delta_1) = \frac{\Gamma/2}{m_r - E} + A \quad \ \ \text{and} \quad \ \Gamma = \frac{g^2}{48\pi m_r^2} \ (m_r^2 - 4m_\pi^2)^{3/2}$$

References

S. Basak et al., *Group-theoretical construction of extended baryon operators in lattice QCD*, Phys. Rev. D **72**, 094506 (2005).

S. Basak et al., *Lattice QCD determination of patterns of excited baryon states*, Phys. Rev. D **76**, 074504 (2007).

C. Morningstar et al., *Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD*, Phys. Rev. D **83**, 114505 (2011).

C. Morningstar et al., *Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD*, Phys. Rev. D **88**, 014511 (2013).

Conclusion

- goal: comprehensive survey of energy spectrum of QCD stationary states in a finite volume
- stochastic LapH method works very well
 - allows evaluation of all needed quark-line diagrams
 - source-sink factorization facilitates large number of operators
 - last_laph software completed for evaluating correlators
- analysis software sigmond urgently being developed
- analysis of 20 channels I = 1, S = 0 for $(24^3|390)$ and $(32^3|240)$ ensembles nearing completion
- can evaluate and analyze correlator matrices of unprecedented size 100×100 due to XSEDE resources
- study various scattering phase shifts also planned
- infinite-volume resonance parameters from finite-volume energies → need new effective field theory techniques