Hadrons and Hadron interactions in QCD 2015 Yukawa Institute for Theoretical Physics, Kyoto Univ., 5th March, 2015

Hadron properties at finite density and spectroscopies of mesic nuclei

Hideko NAGAHIRO (Nara Women's University)

<u>H. Nagahiro</u>, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 [(p,d) theo.]
 Itahashi, Fujioka, Geissel, Hayano, Hirenzaki, Itoh, Jido, Metag, <u>Nagahiro</u>, Nanova, Nishi, Okochi, Outa, Suzuki, Tanaka, Weick, PTP128(12)601, [(p,d) exp. @GSI]

the state of the s

<u>H. Nagahiro</u>, S. Hirenzaki, E. Oset, A. Ramos, PLB709(12)87, [chiral unitary, (π,N)] D. Jido, <u>H. Nagahiro</u>, S. Hirenzaki, PRC85(12)032201(R) [χ sym vs. $m_{\eta'}$, (π,N)] <u>H.Nagahiro</u>, M.Takizawa, S. Hirenzaki, PRC74(06)045203 [NJL, (γ,p)] <u>H. Nagahiro</u>, S. Hirenzaki, PRL94(05)232503 [(γ,p)]

Introduction

- Interests of meson bound systems : mesic nuclei
 - exotic many body systems

- energy eigenstates with definite quantum numbers
 → selection by choosing an appropriate kinematics in the formation reaction
- important info. on in-medium hadron properties and QCD symmetries
 - » π atom ... deeply bound state / χ -sym. restoration
 - *η*-mesic nuclei ... strong coupling to N*(1535) resonance
 → *χ*-sym. for baryon resonance ?
 - » $\eta'(958)$ -mesic nuclei ... $U_A(1)$ anomaly effect in medium ?
 - *K***-atom & nuclei** ... deeply bound nuclear states ? exotic few body ?
 - **ω-mesic nuclei** ... mass shift in medium ?
 - » **D** or **D** nuclei ... heavy quark in nuclei ?

heavy $\eta'(958)$ mass

• $\eta'(958)$ meson ... close connection to the U_A(1) anomaly

- » many theoretical works
 - > in vacuum / at finite temperature / <u>at finite density</u>
 - » R. D. Pisarski, R. Wilczek, PRD29(84)338
 - » T. Kunihiro, T. Hatsuda, PLB206(88)385 / T. Kunihi
 - » V. Bernard, R.L.Jaffe and U.-G.Meissner, NPB308(1
 - » Y. Kohyama, K.Kubodera and M.Takizawa, PLB208
 - » K. Fukushima, K.Onishi, K.Ohta, PRC63(01)045203
 - » P. Costa et al., PLB560(03)171, PRC70(04)025204, e
- » poor experimental information at finite density
- <u>U_A(1) anomaly in medium from the viewpoint of "mes</u>
 » the η' properties, especially mass shift, at finite density
- Nambu-Jona-Lasinio model with the KMT interaction $\mathcal{L} = \bar{q}(i \ \partial - m)q + \frac{g_s}{2} \sum_a \left[(\bar{q}\lambda_a q)^2 + (i\bar{q}\lambda_a\gamma_5 q)^2 \right] + g_D \left[\det \bar{q}_i (1 - \gamma_5)q_j + h.c. \right]$

explicit breaking the $U_A(1)$ sym.

Kobayashi, Maskawa Prog. Theor. Phys. 44, 1422 (70), G. 't Hooft, Phys. Rev. D14, 3432 (76)

\checkmark in-medium η' mass reduction with NJL model

S.Sakai, D.Jido, PRC88(13)064906

 \rightarrow Phenomenologically poorly understood

is a start of the start of the

small scattering length?

 η' property in medium

 $Re(a_{\eta'p}) = 0 \pm 0.43 \text{ fm}, Im(a_{\eta'p}) = 0.37 \stackrel{+0.40}{_{-0.16}} \text{ fm}$ in free space

[E. Czerwinski et al., (COSY-11) PRL113(14)062004]

[estimated from FSI on $pp \rightarrow pp\eta'$ observed at COSY]

smaller absorption width in medium ? $\Gamma_{n'}(\rho_0; \langle |\vec{p}_{n'}| \rangle \sim 1 \text{GeV}/c) \sim 15 - 25 \text{ MeV}@\rho_0,$ CBELSA/TAPS [M.Nanova et al., PLB710(12)600] [estimated transparency ratio $\gamma A \rightarrow \eta' X$]

mass reduction in finite T/ρ ?

 $\Delta m \sim -150 \text{ MeV} @ \rho_0$ [NJL model w/ KMT interaction]

 $\Delta m \sim -200 \text{ MeV}$? in finite T [in Au+Au collisions at RHIC]

[experimentally observed enhanced production of soft pions Interpreted as mass reduction of η' in the hot medium [Csorgo et al., PRL105(10)182301]]

10

Our strategy for studying the η' properties

Possible η' bound states and their formation

- » with missing mass spectroscopy : (γ ,p), (π ,N), (p,d), ...
 - > H.N., S.Hirenzaki, PRL94 (05) 232503
 - > H.N., M.Takizawa, S.Hirenzaki, PRC74 (06)045203
 - > ... and references in title page !

 $\rightarrow \Gamma_{\eta'}$ in-medium strongly affects its observation possibilities

Experimental information [CBELSA/TAPS [M.Nanova *et al.*, PLB710(12)600] $\Gamma_{\eta'}(\rho_0; \langle |\vec{p}_{\eta'}| \rangle \sim 1 \text{GeV}/c) \sim 15 - 25 \text{ MeV}@\rho_0$

[estimated transparency ratio $\gamma A \rightarrow \eta' X$]

phenomenological approach [H.N., S. Hirenzaki, E. Oset, A, Ramos, PLB]

Based on : Coupled-channel calculation [Oset-Ramos, PLB704(11)334]

 $PB (\pi N, \eta N, K\Lambda, K\Sigma) + VB (K^*\Lambda, K^*\Sigma) + \eta_0 B$

<u>Phenomenological approach for $\eta' N$ interaction</u> Oset-Ramos, PLB704(11)334

Unitarized scattering amplitude by coupled-channel BS eq.

Interaction kernel V

(1) Weinberg-Tomozawa interaction : pseudoscalar-baryon (PB) channel $\pi N, \eta N, K\Lambda, K\Sigma + \eta' N$ by the $\eta - \eta'$ mixing their result : $|a_{\eta'N}| = 0.01$ fm $\Leftrightarrow |a_{\eta'N}| \sim 0.1 - 0.8$ fm [PLB'00]

(2) Vector meson-baryon (VB) channel ($K^*\Lambda, K^*\Sigma$) their result : $|a_{n'N}| = 0.03$ fm

(3) coupling of the singlet component of pseudoscalar to baryons

phenomenological estimation for $V_{\eta'}^{opt}$ <u>Optical potential</u> $V_{\eta'}$ [H.N., S. Hirenzaki, E. Oset, A. Ramos, PLB709(12)87]

We consider only the attractive case & energy-independent potential.

$\operatorname{Re} V_{n'}$	and Im	V_n	with	various	α	values
		-1				

in unit of MeV

α	$ a_{\eta'N} $ fm	$V^{1st}_{\eta'}(ho_0)$	$V_{\eta'}^{2nd}(\rho_0)$	$V_{\eta'}^{total}(ho_0)$
-0.193	0.1	-8.6 - 1.7i	-0.1 - 0.1i	-8.7 - 1.8i
-0.834	0.3	-26.3 - 2.1i	-0.6 - 0.9i	-26.8 - 3.0i
-1.79	0.5	-43.8 - 3.0i	-1.3 - 2.5i	-44.1 - 5.5i
-9.67	1.0	-87.7 - 6.9i	-4.1 - 10.4i	-91.8 - 17.2i

 $\operatorname{Re} V \gg \operatorname{Im} V$

phenomenological estimation for $V_{\eta'}^{opt}$

The reason why Re $V \gg \text{Im } V$ in coupled channel calculation

Kawarabayashi-Ohta, PTP66(81)1789 Borasoy, PRD61(00)014011

 \rightarrow gives attraction

WT interaction for η'

 \rightarrow width [small]

This interaction ...

- ✓ resembles that of the anomaly effect [S.Sakai, D.Jido, PRD88(13)064906]
- ✓ **dominate** the $\eta'N$ interaction
- \checkmark contributes mostly to the η' elastic channel & barely to the inelastic channel

ongoing work [→ later]

✓ energy-dependence of $V_{\eta'}$:

we discuss over <u>a wide energy range</u> (deep bound state $\leftrightarrow a_{\eta'N}$ at threshold)

✓ possible α value evaluated from, ex.) $\pi N \rightarrow \eta' N$ cross section

one-nucleon pick up : recoil-free production for light meson (but not for η')

- » (d,³He) reaction ...established method π atom formation (96, 98, 01)
 S.Hirenzaki, H.Toki, T.Yamazaki, PRC44(91)2472, K.Itahashi, *et al.*, PRC62(00)025202, ...
- (γ,p) reaction
 M.Kohno, H.Tanabe PLB231(89)219, E.Marco, W.Weise, PLB502(01)59
 H.Nagahiro, D.Jido, S.Hirenzaki, Nucl. Phys. A761 (2005) 92-119 etc..
- » (π,N) reaction
 Chrien *et al.*, PRL60(1988)2595 / Liu, Haider, PRC34(1986)1845
 H.Nagahiro, D.Jido, S.Hirenzaki, PRC80(2009)025205, ...
- » (p,d) reaction
 Nagahiro, Jido, Fujioka, Itahashi, Hirenzaki, PRC87(13)045201.
 Itahashi, Fujioka, Geissel, Hayano, Hirenzaki, Itoh, Jido, Metag, <u>Nagahiro</u>, Nanova, Nishi, Okochi, Outa, Suzuki, Tanaka, Weick, PTP128(12)601....

formation spectra : Green's function method

Green's function method

potential parameters <u>Energy independent optical potentials</u>

$$V(r) = (V_0 + iW_0) \frac{\rho(r)}{\rho_0}$$

cf.) NJL with KMT $\Delta m_{\eta'} \sim -150 \text{ MeV} @ \rho_0$

To see observation feasibility, we consider various combinations of ReV and ImV.

Numerical results : -(150, 20) MeV : ${}^{12}C(p,d){}^{11}C_{n'}$

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 14

Numerical results : -(150, 20) MeV : ${}^{12}C(p,d){}^{11}C_{n'}$ A white a whit

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 15

Numerical results : -(150, 20) MeV : ${}^{12}C(p,d){}^{11}C_{n'}$

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 16

Numerical results : -(150, 15) MeV : ${}^{12}C(p,d){}^{11}C_{n'}$ the state of the s

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 17

Numerical results : -(150, 10) MeV : ${}^{12}C(p,d){}^{11}C_{n'}$

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 18

Numerical results : -(150, 5) MeV : ${}^{12}C(p,d){}^{11}C_{n'}$

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 19

Numerical results : -(100, 20) MeV : ${}^{12}C(p,d){}^{11}C_{n'}$

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 20

Numerical results : -(100, 15) MeV : ${}^{12}C(p,d){}^{11}C_{n'}$

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 21

Numerical results : -(100, 10) MeV : ${}^{12}C(p,d){}^{11}C_{n'}$ the state of the s

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 22

Numerical results : $-(100, 5) \text{ MeV} : {}^{12}C(p,d){}^{11}C_{n'}$ the state of the s

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 23

Numerical results : $-(100, 5) \text{ MeV} : {}^{12}C(p,d){}^{11}C_{n'}$ the state of the s

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 24

Numerical results : -(50, 20) MeV : ${}^{12}C(p,d){}^{11}C_{\eta'}$

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 25

Numerical results : -(50, 15) MeV : ${}^{12}C(p,d){}^{11}C_{\eta'}$

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 26

Numerical results : -(50, 10) MeV : ${}^{12}C(p,d){}^{11}C_{\eta'}$

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 27

Numerical results : -(50, 5) MeV : ${}^{12}C(p,d){}^{11}C_{n'}$

H. Nagahiro, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 28

Revisiting $\eta' N$ scattering amplitude considering a **possible** $\eta' N$ bound state

A. Hinata, A. Kiyomura, M. Sakamoto, H.N., S. Hirenzaki, in progress (Nara Women's Univ.)

on-going theoretical works

We are now revisiting the $\eta' N$ scattering and η' -nucleus optical potential $V_{\eta'}$

✓ We have estimated $\operatorname{Re}(V_{\eta'})$ and $\operatorname{Im}(V_{\eta'})$ by using $T_{\eta'N \to \eta'N}$ [Oset-Ramos(2011)] at $\eta'N$ threshold value

✓ different model for vector-meson-baryon channel

[K. P. Khemchandani, A. Martinez Torres H. N. and A. Hosaka, PRD88(13)114016]

✓ considering "possibility to have $\eta' N$ bound state"

→ subtraction const. positive → negative value ($\Lambda \sim 1$ GeV) (Oset-Ramos, PLB) (Hinata *et al.*)

\checkmark trying to extract **possible** α value

 $\rightarrow \eta' N$ scattering length, $\pi N \rightarrow \eta' N$ production, η' transparency ratio, ... & also η' -mesic nuclei formation, ...

✓ different model for vector-meson-baryon channel

K. P. Khemchandani, A. Martinez Torres, H. N. and A. Hosaka, PRD88(13)114016

Unitarized scattering amplitude by coupled-channel BS eq.

Interaction kernel V

(1) Weinberg-Tomozawa interaction : pseudoscalar-baryon (PB) channel

(2) Vector meson-baryon (VB) channel

 $\rho N, \omega N, \phi N, K^* \Sigma, K^* \Lambda$

✓ different model for vector-meson-baryon channel

K. P. Khemchandani, A. Martinez Torres, H. N. and A. Hosaka, PRD88(13)114016

 $\pi N \rightarrow \pi N$ scattering amplitude ... good agreement at $\sqrt{s} \sim 1.9 \text{ GeV}$

Hinata, Kiyomura, Sakamoto (Nara WU.)

we add $\eta' N$ channel in V_{WT} through $\eta - \eta'$ mixing and $V_{\eta_0 B}$ (singlet- η Baryon interaction) as well

considering "possibility to have $\eta' N$ bound state"

34

 $G_{\eta'N}(\sqrt{s})$

 η^{\prime}

small scattering length

 πN scattering amplitudes

data : CNS, http://gwdac.phys.gwu.edu/

such a "narrow *N**" exists ??

... at least it does not couple to πN due to its singlet char.

 $\eta' N$ bound state $\Leftrightarrow \eta'$ -nucleus bound state ?

- ✓ $\pi N \rightarrow \eta' N$ is sensitive to $V_{\eta_0 B}$ interaction (α), where, however, the $\eta' N$ bound state cannot be reached (above the threshold)
- ✓ The $\eta' N$ bound state **does not appear** in the π or η production, because it couples to $\eta' N$ channel selectively due to its singlet character.
- ✓ The large $\pi N \rightarrow \eta' N$ production prefers the **attractive** $V_{\eta_0 B}$, while the small scattering length prefers **zero or repulsive** $V_{\eta_0 B}$.

✓ $\eta' N$ b.s. must play an **important role in** η' -nucleus optical potentials, which gives strong energy dependence.

 $\eta' N$ b.s. can be found as (deeply) η' -nucleus bound state ?

Partial restoration of Chiral sym and $U_A(1)$ anomaly effect in the viewpoint of mesic-nuclei

(possible) large mass reduction without large absorption

${ m Re}V \gg { m Im}V$

special feature of η' \checkmark attraction from contact interaction \checkmark smaller inelastic channel

possibilities to observe bound state peaks

ongoing theoretical works in NaraWU

- ✓ Considering $\eta' N$ bound state
- ✓ estimate possible α (strength of singlet meson-baryon int.)
 - \leftrightarrow transparency ratio of η'
 - $\leftrightarrow \pi N \rightarrow \eta' N$ cross section
 - $\leftrightarrow \eta' N$ scattering length and so on...