Neutrino-induced meson productions

Satoshi Nakamura

Osaka University, Japan

Collaborators : H. Kamano (RCNP, Osaka Univ.), T. Sato (Osaka Univ.)

Contents

- **\star** Introduction vN scattering in resonance region
- ★ Dynamical coupled-channels (DCC) model

Analysis of γN , $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$ data

baryon resonance properties extracted

Extension to $\nu N \rightarrow l X$ ($X = \pi N, \pi \pi N, \eta N, K\Lambda, K\Sigma$)

★ Results for $vN \rightarrow l X$

Introduction

Neutrino-nucleus scattering for *v***-oscillation experiments**

Next-generation exp. \rightarrow leptonic \mathcal{O} , mass hierarchy

 ν -nucleus scattering needs to be understood more precisely

All *v*-oscillation experiments measure *v*-flux through *v*-nucleus interaction

Neutrino-nucleus scattering for *v***-oscillation experiments**

Next-generation exp. \rightarrow leptonic \mathcal{O} , mass hierarchy

Wide kinematical region with different characteristic

➔ Combination of different expertise is necessary

Neutrino-nucleus scattering for *v***-oscillation experiments**

Next-generation exp. \rightarrow leptonic $\mathcal{O}P$, mass hierarchy

Collaboration at J-PARC Branch of KEK Theory Center

http://j-parc-th.kek.jp/html/English/e-index.html

Neutrino interaction data in resonance region

- Data to fix nucleon axial current (g_{ANA})
- Discrepancy between BNL & ANL data
- Recent reanalysis of original data
 - \rightarrow discrepancy resolved (!?)

PRD 90, 112017 (2014)

- Final state interaction (FSI) changes charge, momentum, number of π
- Cross section shape is worse described with FSI
- MINERvA data (arXiv:1406.6415) favor FSI $\langle E_v \rangle = 4.0 \text{ GeV}$

More data are coming \rightarrow better understanding of neutrino-nucleus interaction

Resonance region (single nucleon)

Multi-channel reaction

- 2π production is comparable to 1π
- η , K productions (v case: background of proton decay exp.)

GOAL : Develop *vN*-interaction model in resonance region

Problems in previous models

- (multi-channel) Unitarity is missing
- Important 2 π production model is missing

Our strategy to overcome the problems...

We develop a Unitary coupled-channels model

★ Dynamical coupled-channels (DCC) model for γN , $\pi N \rightarrow \pi N$, $\pi \pi N$, ηN , $K\Lambda$, $K\Sigma$

★ Extension to $vN \rightarrow l X$ ($X = \pi N, \pi \pi N, \eta N, K\Lambda, K\Sigma$)

Dynamical Coupled-Channels model for meson productions

Matsuyama et al., Phys. Rep. **439**, 193 (2007) Kamano et al., PRC 88, 035209 (2013)

Coupled-channel Lippmann-Schwinger equation

$$T_{ab} = V_{ab} + \sum_{c} V_{ac} G_{c} T_{cb}$$

$$\{a, b, c\} = \pi N, \ \eta N, \ \pi \pi N, \ \pi \Delta, \sigma N, \rho N, \ K\Lambda, \ K\Sigma$$

Coupled-channel unitarity is fully taken into account

In addition, γN , $W^{\pm}N$, ZN channels are included perturbatively

Matsuyama et al., Phys. Rep. **439**, 193 (2007) Kamano et al., PRC 88, 035209 (2013)

Coupled-channel Lippmann-Schwinger equation

$$T_{ab} = V_{ab} + \sum_{c} V_{ac} G_{c} T_{cb}$$

Matsuyama et al., Phys. Rep. **439**, 193 (2007) Kamano et al., PRC 88, 035209 (2013)

Coupled-channel Lippmann-Schwinger equation

$$T_{ab} = V_{ab} + \sum_{c} V_{ac} G_{c} T_{cb}$$

essential for three-body unitarity

Matsuyama et al., Phys. Rep. **439**, 193 (2007) Kamano et al., PRC 88, 035209 (2013)

Coupled-channel Lippmann-Schwinger equation

$$T_{ab} = V_{ab} + \sum_{c} V_{ac} G_{c} T_{cb}$$

Gc =

for stable channels

for unstable channels

DCC analysis of meson production data

Kamano, Nakamura, Lee, Sato, PRC 88 (2013)

Fully combined analysis of γN , $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$ data $d\sigma / d\Omega$ and polarization observables (W \leq 2.1 GeV)

~ 20,000 data points are fitted

by adjusting parameters (N* mass, N* → MB couplings, cutoffs)

Partial wave amplitudes of π N scattering

$\gamma p \rightarrow \pi^0 p$

$d\sigma/d\Omega$ for W < 2.1 GeV

Vector current (Q²=0) for 1π Production is well-tested by data

Predicted $\pi N \rightarrow \pi \pi N$ total cross sections with our DCC model


```
"N" resonances (I=1/2)
```

Kamano, Nakamura, Lee, Sato, PRC 88 (2013)

"Δ" resonances (I=3/2)

Kamano, Nakamura, Lee, Sato, PRC 88 (2013)

Extension to full kinematical region $Q^2 \neq 0$

→ Model for vector & axial currents is necessary

Vector current

 $Q^2=0$ $\gamma p \rightarrow MB$ $\gamma n \rightarrow \pi N \rightarrow \text{isospin separation}$ necessary for calculating *v*-interaction

Q²≠0 (electromagnetic form factors for *N*-*N** transitions) obtainable from (*e*,*e*' π), (*e*,*e*' *X*) data analysis

We've done first analysis of all these reactions \rightarrow VNN*(Q²) fixed \rightarrow neutrino reactions

Axial current

*Q*²=0

Interference among resonances and background can be made under control within DCC model

Caveat : phenomenological axial currents are added to maintain PCAC relation

$$q \cdot A_{AN \to \pi N} \sim i f_{\pi} T_{\pi N \to \pi N}$$

to be improved in future

Axial current

 $Q^2 \neq 0$ $F_A(Q^2)$: axial form factors

non-resonant mechanisms

$$F_A(Q^2) = \left(\frac{1}{1+Q^2/M_A^2}\right)^2$$
 $M_A = 1.02 \text{ GeV}$

resonant mechanisms $F_A(Q^2) = (1 + aQ^2) \exp(-bQ^2) \left(\frac{1}{1 + O^2 / M_A^2}\right)^2$ Sato et al. PRC 67 (2003)

More neutrino data are necessary to fix axial form factors for ANN^*

Neutrino cross sections will be predicted with this axial current for this presentation

Analysis of electron scattering data

Analysis of electron-proton scattering data

Purpose : Determine Q^2 – dependence of vector coupling of p- N^* : $VpN^*(Q^2)$

Data : * 1π electroproduction

Database

- $p(e,e'\pi^0)p$
- $p(e,e'\pi^+)n$
- both

region where inclusive $\sigma_T \& \sigma_L$ are fitted

Analysis result (single π)

 Q^2 =0.40 (GeV/c)²

 $\sigma_T + \varepsilon \sigma_L$ for W=1.1-1.68 GeV

 $p(e,e'\pi^0)p$

 $p(e,e'\pi^+)n$

Analysis result (inclusive)

Data: JLab E00-002 (preliminary)

- Reasonable fit to data for application to neutrino interactions
- Important 2π contributions for high W region

Analysis of electron-'neutron' scattering data

Purpose : Vector coupling of neutron- N^* and its Q^2 -dependence : $VnN^*(Q^2)$ (I=1/2) I=3/2 part has been fixed by proton target data

- Data : * 1π photoproduction (Q^2 =0)
 - * Empirical inclusive inelastic structure functions σ_T , σ_L ($Q^2 \neq 0$)
 - ← Christy and Bosted, PRC 77 (2010), 81 (2010)

Done

DCC vector currents has been tested by data for whole kinematical region relevant to neutrino interactions of $E_v \le 2$ GeV

Neutrino Results

Caveat

- Results presented here are still preliminary
- Careful examination needs to be made to obtain a final result

Cross section for $v_{\mu} N \rightarrow \mu X$

- $\pi N \& \pi \pi N$ are main channels in few-GeV region
- DCC model gives predictions for all final states
- ηN , KY cross sections are $10^{-1} 10^{-2}$ smaller

Cross section for $v_{\mu} N \rightarrow \mu X$

- $\pi N \& \pi \pi N$ are main channels in few-GeV region
- DCC model gives predictions for all final states
- ηN , KY cross sections are $10^{-1} 10^{-2}$ smaller

Comparison with single pion data

DCC model prediction is consistent with data

ANL Data : PRD **19**, 2521 (1979) BNL Data : PRD **34**, 2554 (1986)

- DCC model has flexibility to fit data $(ANN^*(Q^2))$
- Data should be analyzed with nuclear effects (Wu et al., arXiv:1412:2415)

Comparison with double pion data

Fairly good DCC predication

ANL Data : PRD **28**, 2714 (1983) BNL Data : PRD **34**, 2554 (1986)

- First microscopic model for 2 π production in resonance region
- 2π production model is becoming available

Mechanisms for $v_{\mu} N \rightarrow \mu \pi N$

- $\Delta(1232)$ dominates for $v_{\mu}p \rightarrow \mu^{-}\pi^{+}p$ (*I*=3/2) for $E_{\nu} \leq 2 \text{ GeV}$
- Non-resonant mechanisms contribute significantly
- Higher N^* s becomes important towards $E_v \approx 2$ GeV for $v_\mu n \rightarrow \mu \pi N$

$d\sigma/dW dQ^2$ (×10⁻³⁸ cm²/GeV²)

 $E_v = 2 \text{ GeV}$

 $v_{\mu}p \rightarrow \mu^{-}\pi^{+}p$

$d\sigma/dW dQ^2$ (×10⁻³⁸ cm²/ GeV²)

 $E_{v} = 2 \text{ GeV}$

 $v_{\mu} n \rightarrow \mu \pi N$

Conclusion

Development of DCC model for vN interaction in resonance region

Start with DCC model for γN , $\pi N \rightarrow \pi N$, $\pi \pi N$, ηN , $K\Lambda$, $K\Sigma$

→ extension of vector current to $Q^2 \neq 0$ region, isospin separation through analysis of e^--p & e^--n' data for $W \leq 2$ GeV, $Q^2 \leq 3$ (GeV/c)²

 \rightarrow Development of axial current for vN interaction; PCAC is maintained

Conclusion

- $\pi N \& \pi \pi N$ are main channels in few-GeV region
- DCC model prediction is consistent with BNL data
- Δ , N^* s, non-resonant are all important in few-GeV region (for $v_{\mu} n \rightarrow \mu^- X$)
 - → essential to understand interference pattern among them
 - \rightarrow DCC model can do this; consistency between π interaction and axial current