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Bottomonium
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Zb(10610) and Zb(10650)
Exotic quantum numbers

Exotic masses

Exotic decays

Zb are B(*)B(*)molecules ?

IG(JP)=1+(1+) 
Υ(5S)➜Zb+π‒➜Υ(1,2,3S)π+ π‒ 
Zb’s are “genuine” exotic states

Zb’s are twin resonances with small 
mass splitting, ~ 45 MeV 
Zb’s are very close to the respective 
thresholds, BB* and B*B* 

The decays of Υ(5S)➜Zbπ➜hb(mP)ππ are 
not suppressed although it needs spin flip

A. Bondar, et al, 
PRD84 054010 (2011)

S. Ohkoda, Y. Yamaguchi, S. Yasui, 
K. Sudoh, and A. Hosaka, 
Phys. Rev. D86, 014004 (2012)
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The B(*)B(*) molecules correspond to the mass of Zb and Zb’. 
The are many exotic states around the thresholds. 
The predicted molecules will be observed in radiative 

decays or a pion emission in P-wave from Υ(5S).

We study B(*)B(*) molecules with OBEP model

B(*)B(*) molecules

It is hard to explain the Zc(3900) with molecular picture. 

In charm region, we do not obtain any D(*)D(*) states 
in I=1.
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Heavy quark symmetry

Heavy quark spin symmetry                              
̶̶ The heavy quark spins are conserved                           
in mQ -> ∞.

M. B. Wise, 
PRD45, 2188 (1992)

Chapter 5. Spin selection rules for decays and productions of Zb resonances and other
BB̄ molecules 52

Υ(5S) and Υ(nS) are spin triplet states of QQ̄, whereas hb(mP ) are spin singlet states.

At first glance, one may expect that spin flip processes, Zb → hb(mP )π, should be

suppressed compared with non-spin flip processes, Zb → Υ(nS)π, because of the large

mass of b quark. Nevertheless, two kind of decays occur with comparable rate [1, 2] This

puzzle is germane to the spin structure of Zb .[11, 12], which will be discussed in this

chapter.

In this chapter, we derive relative rates of each transition when we consider that B(∗)B̄(∗)

molecular states obey the heavy quark symmetry. The heavy quark symmetry allows

only the processes where heavy quark spin is conserved, leading to selection rules among

certain classes of transitions. To derive them, we consider the spin structure of the

mesons by means of spin re-coupling formula which is equivalent to Fierz rearrangement.

By rearranging the two heavy quarks in B(∗) and B̄(∗) mesons of a molecular state, we

can separate the heavy quark spin and the spin of light degrees of freedom in heavy

quark limit.

This chapter is organized as follows. First we define the conserved quantity in heavy

quark limit, namely heavy quark spin and spin of light degrees of freedom in Section 4.2.

In Section ??, We show the examples of spin selection rules for the bottomonium decays,

and discuss some symmetry breaking case for bottomonium decays. We analyze the spin

structures of Zb resonances, and estimate the decay properties of Zb in Section 4.4. After

that, we also analyze the spin structures of the predicted B(∗)B̄(∗) molecules to estimate

the decay properties of them in Section 4.5.

4.2 Heavy quark spin symmetry

4.2.1 Heavy quark spin symmetry

In the heavy effective theory, the effective Lagrangian for heavy quark field Qv is given

as

LHQET = Q̄vv · iDQv + Q̄v
(iD⊥)2

2mQ
Qv − c(µ)gsQ̄v

σµνGµν

4mQ
Qv + O(1/m2

Q), (4.1)

where Dµ
⊥ = Dµ−vµv ·D,Gµν = [DµDν ]/igs, and σµν = i[γµ, γν ]/2. Here, the covariant

derivative is defined as Dµ = ∂µ + igsAa
µtq with the gluon field Aa

µ, the gauge coupling

gs, and ta = λa/2 with the Gell-Mann matrices λa(a = 1, · · · , 8). c(µ) is the Wilson

Chapter 2. Heavy quark symmetry and effective heavy hadron theory 7

To begin with, we consider a heavy quark with the velocity v interacting with the

external fields such as gluon fields. On the on-shell quark, the velocity v is defined by

pQ = mQv, where pQ is a mometum of the heavy quark. Because the mass of a heavy

quark is sufficiently heavy compared with ΛQCD, we can regard an off-shell heavy quark

as an almost on-shell heavy quark and its momentum pQ can be written, introducing a

residual momentum k of the order of ΛQCD, as

pQ = mQv + k (2.1)

The usual dirac propagator of a heavy quark simplifies to

i
p/ + mQ

p2 −m2
Q + iϵ

= i
mQv/ + mQ + k

2mQv · k + k2 + iϵ
→ i

1 + v/

2v · k + iϵ
, (2.2)

in the heavy quark limit. A projection operator which is depend on the velocity,

1 + v/

2
(2.3)

appears in the propagator. In the rest frame of the heavy quark this projection operator

becomes (1+ γ0)/2, which projects onto the particle components of the Dirac spinor. It

is useful to formulate the effective Lagragian with the velocity-dependent fields Qv(x),

Using Qv(x), we can decompose the original heavy quark field into the positive energy

Qv(x) and the negative energy heavy quark fields Qv(x) as

Q(x) = e−imQv·x[Qv(x) + Qv(x)], (2.4)

where

Qv(x) = eimQv·x 1 + v/

2
Q(x), Q(x) = eimQv·x 1− v/

2
Q(x). (2.5)

The exponential prefactor subtracts mQvµ from the heavy quark momentum. At the

leading order, The Qv field only appears in the effective Lagrangian, whereas the Qv

field is suppressed by powers of 1/mQ. Neglecting Qv and substituting Eq .2.4 into the

part of QCD Lagrangian involving the heavy quark field, Q̄(iD/−mQ)Q, we obtain the

effective Lagrangian at lowest order as

L = Q̄v(iv · D)Qv, (2.6)

2. Hadrons with a heavy quark and spin-complex

In this section, we introduce the spin-complex as a convenient tool to
express the brown muck and then a hadron, starting from the HQS in QCD.
We show that a heavy hadron with the total spin J ≥ 1/2 may have two
components with different spin complex of spin j = J ± 1. They can mix for
a finite heavy quark mass, but are decoupled in the heavy quark limit. The
spin-complex basis is then related to the particle basis, from which the wave
functions of the pair states in the HQS doublet are analyzed in terms of the
hadronic degrees of freedom. Explicit examples of these components will be
given in Section 3 for the P̄ (∗)N system.

The HQS also leads to the systematic expansion of the hadron mass in
the inverse powers of the heavy quark mass. This expansion enables us to
define the mass of the brown muck, and hence that of the spin-complex, in
the heavy quark limit. We present the basic formula which will be used in
Section 4 to extract the spectrum of the brown muck from the experimental
data and theoretical predictions with a finite heavy quark mass.

2.1. Heavy quark symmetry in QCD
We consider that the heavy quark mass mQ is much larger than a typical

energy scale of low energy QCD. In this case, an effective field theory with
the 1/mQ expansion is useful to study the hadrons containing a single heavy
quark. To this end, let us start our discussion first with the heavy quark
Lagrangian;

LHQ = Q̄(iD/ − mQ)Q, (1)

where Q is the heavy quark field, the covariant derivative is defined by Dµ =
∂µ + igsAa

µt
a with the gluon field Aa

µ, the gauge coupling gs, and ta = λa/2
with the Gell-Mann matrices λa (a = 1, · · · , 8). The term from light quark
and gluon sectors is not relevant in the current discussion. Denoting the four-
velocity of the heavy quark as v (v2 = 1), we decompose the heavy quark field
into the positive energy component Qv(x) and the negative energy component
Qv(x) as

Q(x) = e−imQv·x [Qv(x) + Qv(x)] , (2)

by the projections

Qv(x) = eimQv·x1 + v/

2
Q(x), Qv(x) = eimQv·x 1 − v/

2
Q(x). (3)

5

The effective Lagrangian for a heavy quark

1/mQ expansion

Heavy quark flavor symmetry                             

LO Spin-spin int.
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Heavy quark spin symmetry
light spin                                                                               
̶  ̶We can classify the heavy hadrons with the spin 
structures (SH ⊗ Sl )J .
Spin degeneracy                                                                              
̶  ̶Masses of the spin partners are degenerate.
Ex ) 

Sl = J - SH  
   

K

K*
D*

D
B
B*

500MeV
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2010MeV

5280MeV

5325MeV

spin=0

spin=1

HQS doublet
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JPC 0- + 2++1++1- - 0++1+ -
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JPC 0- + 2++1++1- - 0++

(SH⊗Sl)J

1+ -

(0H⊗0l)0 (1H⊗0l)1 (0H⊗1l)1 (1H⊗1l)0,1,2

L=1

L=0
ηb

hb χb0 χb1 χb2

Doublet

Quartet

Υ



π

Spin degeneracy may occur in the heavy meson molecules, 
but how do they arise? Doublet or quartet? 
This study clarify the 1/mQ effects in charm/bottom region.

Why do we study P(*)P(*) in the HQ limit?
P(P*) P(P*)

Q Q
q q

Purpose

We focus on IG(JP)=1+(1+), which corresponds to Zb channel 
What are the spin partners for Zb? 

This study
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Hamiltonian
S. Ohkoda, Y. Yamaguchi, S. Yasui, 
K. Sudoh, and A. Hosaka, 
Phys. Rev. D86, 014004 (2012)

1+(1+ -) : 

1-(1++) : 

:
T

C

:
Center force
Tensor force

The decomposition for higher J states will be given in the same way. This relation is

independent the interactions between two heavy mesons and valid as far as we consider the

heavy quark symmetry.

APPENDIX B: HAMILTONIANS IN PARTICLE BASIS AND HQS BASIS

Now we present the Hamiltonians in particle basis and HQS basis. As a matter of fact,

we have constructed the Hamiltonians written by particle basis in the previous work [28].

The wavefunctions for each state are given in Tab. I. Using the OPEP’s in Eqs. (24)-(27)

and notations Ci, Ti and Kl given in Eqs. (35)-(37), we obtain the Hamiltonians for P (∗)P̄ (∗)

states in particle basis as follows:

H0++ =

⎛

⎜⎜⎜⎝

K0

√
3CI −

√
6TI

√
3CI 2CI + K0

√
2TI

−
√

6TI

√
2TI −CI + 2TI + K2

⎞

⎟⎟⎟⎠
, (B1)

H0−+ =

⎛

⎝ K1 + CI + 2TI 2TI − 2CI

2TI − 2CI K1 + CI + 2TI

⎞

⎠ , (B2)

H0−− = (K1 − CI − 2TI), (B3)

H1+− =

⎛

⎜⎜⎜⎜⎜⎝

K0 + CI −
√

2TI −2CI −
√

2TI

−
√

2TI K2 + CI + TI −
√

2TI −2CI + TI

−2CI −
√

2TI K0 + CI −
√

2TI

−
√

2TI −2CI + TI −
√

2TI K2 + CI + TI

⎞

⎟⎟⎟⎟⎟⎠
, (B4)

H1++ =

⎛

⎜⎜⎜⎝

K0 − CI

√
2TI −

√
6TI

√
2TI K2 − CI − TI −

√
3TI

−
√

6TI −
√

3TI K2 − CI + TI

⎞

⎟⎟⎟⎠
, (B5)

H1−+ =

⎛

⎝ K1 + CI − TI −2CI − TI

−2CI − TI K1 + CI − TI

⎞

⎠ , (B6)

48
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Now we present the Hamiltonians in particle basis and HQS basis. As a matter of fact,

we have constructed the Hamiltonians written by particle basis in the previous work [28].

The wavefunctions for each state are given in Tab. I. Using the OPEP’s in Eqs. (24)-(27)

and notations Ci, Ti and Kl given in Eqs. (35)-(37), we obtain the Hamiltonians for P (∗)P̄ (∗)
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√
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√
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⎟⎟⎟⎟⎟⎠
, (B4)

H1++ =

⎛

⎜⎜⎜⎝
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H1−+ =

⎛
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: kinetic term

TABLE I: Relevant coupled channels for P (∗)P̄ (∗) states for given quantum numbers JPC .

JPC components

0+− ——

0++ PP̄(1S0), P∗P̄∗(1S0), P∗P̄∗(5D0)

0−− 1√
2

(
PP̄∗ + P∗P̄

)
(3P0)

0−+ 1√
2

(
PP̄∗ − P∗P̄

)
(3P0), P∗P̄∗(3P0)

1+− 1√
2

(
PP̄∗ − P∗P̄

)
(3S1), 1√

2

(
PP̄∗ − P∗P̄

)
(3D1), P∗P̄∗(3S1), P∗P̄∗(3D1)

1++ 1√
2

(
PP̄∗ + P∗P̄

)
(3S1), 1√

2

(
PP̄∗ + P∗P̄

)
(3D1), P∗P̄∗(5D1)

1−− PP̄(1P1), 1√
2

(
PP̄∗ + P∗P̄

)
(3P1), P∗P̄∗(1P1), P∗P̄∗(5P1), P∗P̄∗(5F1)

1−+ 1√
2

(
PP̄∗ − P∗P̄

)
(3P1), P∗P̄∗(3P1)

2+− 1√
2

(
PP̄∗ − P∗P̄

)
(3D2), P∗P̄∗(3D2)

2++ PP̄(1D2), 1√
2

(
PP̄∗ + P∗P̄

)
(3D2), P∗P̄∗(1D2), P∗P̄∗(5S2), P∗P̄∗(5D2), P∗P̄∗(5G2)

2−+ 1√
2

(
PP̄∗ − P∗P̄

)
(3P2), 1√

2

(
PP̄∗ − P∗P̄

)
(3F2), P∗P̄∗(3P2), P∗P̄∗(3F2)

2−− 1√
2

(
PP̄∗ + P∗P̄

)
(3P2), 1√

2

(
PP̄∗ + P∗P̄

)
(3F2), P∗P̄∗(5P2), P∗P̄∗(5F2)

2. Spin structures and partners for P (∗)P̄ (∗) states in JPC = 1+−

To show the transformation with Eq. 5 concretely, we consider the P (∗)P̄ (∗) state in 1+−.

This channel allows the S-wave components, and therefore a bound state may exist as the

low-lying states. First, we show the transformation of the components from the particle

basis to the HQS basis. Given the spin structures, the spin partners of the molecule in 1+−

are obtained. In 1+− channel, four components are given in particle basis:

1√
2
(PP̄ ∗ − P ∗P̄ )(3S1),

1√
2
(PP̄ ∗ − P ∗P̄ )(3D1), P

∗P̄ ∗(3S1), P
∗P̄ ∗(3D1). (6)
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TABLE I: Relevant coupled channels for P (∗)P̄ (∗) states for given quantum numbers JPC .

JPC components

0+− ——

0++ PP̄(1S0), P∗P̄∗(1S0), P∗P̄∗(5D0)

0−− 1√
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2

(
PP̄∗ − P∗P̄

)
(3P0), P∗P̄∗(3P0)

1+− 1√
2

(
PP̄∗ − P∗P̄

)
(3S1), 1√

2

(
PP̄∗ − P∗P̄

)
(3D1), P∗P̄∗(3S1), P∗P̄∗(3D1)

1++ 1√
2

(
PP̄∗ + P∗P̄

)
(3S1), 1√

2

(
PP̄∗ + P∗P̄

)
(3D1), P∗P̄∗(5D1)

1−− PP̄(1P1), 1√
2

(
PP̄∗ + P∗P̄

)
(3P1), P∗P̄∗(1P1), P∗P̄∗(5P1), P∗P̄∗(5F1)

1−+ 1√
2

(
PP̄∗ − P∗P̄

)
(3P1), P∗P̄∗(3P1)

2+− 1√
2

(
PP̄∗ − P∗P̄

)
(3D2), P∗P̄∗(3D2)

2++ PP̄(1D2), 1√
2

(
PP̄∗ + P∗P̄

)
(3D2), P∗P̄∗(1D2), P∗P̄∗(5S2), P∗P̄∗(5D2), P∗P̄∗(5G2)

2−+ 1√
2

(
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(3P2), 1√

2

(
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(3F2), P∗P̄∗(3P2), P∗P̄∗(3F2)

2−− 1√
2

(
PP̄∗ + P∗P̄
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(3P2), 1√

2

(
PP̄∗ + P∗P̄
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(3F2), P∗P̄∗(5P2), P∗P̄∗(5F2)

2. Spin structures and partners for P (∗)P̄ (∗) states in JPC = 1+−

To show the transformation with Eq. 5 concretely, we consider the P (∗)P̄ (∗) state in 1+−.

This channel allows the S-wave components, and therefore a bound state may exist as the

low-lying states. First, we show the transformation of the components from the particle

basis to the HQS basis. Given the spin structures, the spin partners of the molecule in 1+−

are obtained. In 1+− channel, four components are given in particle basis:

1√
2
(PP̄ ∗ − P ∗P̄ )(3S1),

1√
2
(PP̄ ∗ − P ∗P̄ )(3D1), P

∗P̄ ∗(3S1), P
∗P̄ ∗(3D1). (6)

8



Spin structures

15

Sl = Sqq + L (≠ 0+ -, 1- +, 2+ - , J<2)  
IG(JP)=1+(1+) : Zb

Chapter 7. Spin degeneracy of the heavy meson molecules 96

for HQS basis are described with the product of heavy quark spin and light spin, (SQ⊗
Sl)J , where J is total angular momentum. In the heavy meson molecule case, the

light spin is given as Sl = Sq + L, where Sq is total spin of light quarks and L is the

orbital angular momentum. To specify the light spin structures, we use the notation

|SQ, Sq, L, Sl; J⟩ for HQS basis. It should be noted that SQ, Sl and J are conserved

quantities, whereas Sq and L are not good quantum numbers. Using the notation

|SQ, Sq, L, Sl; J⟩, we write the explicit wave functions for P (∗)P̄ (∗) states with 1+− and

I = 0 as

|0H , 1q, 0L, 1l; 1⟩ , |0H , 1q, 2L, 1l; 1⟩ , |1H , 0q, 0L, 0l; 1⟩ , |1H , 01, 2L, 2l; 1⟩ . (7.3)

We find three kind of independent components in this channel. The particle basis is

transformed to HQS basis with spin recoupling formula. We write the transformation

with unitary matrix UJPC as

⎛

⎜⎜⎜⎜⎜⎝

| 1√
2
(PP̄ ∗ − P ∗P̄ )(3S1)⟩

| 1√
2
(PP̄ ∗ − P ∗P̄ )(3D1)⟩
|P ∗P̄ ∗(3S1)⟩
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⎞

⎟⎟⎟⎟⎟⎠
= U1+−
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⎞

⎟⎟⎟⎟⎟⎠
, (7.4)
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1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2

1√
2

0 1√
2

0

0 1√
2

0 1√
2

⎞

⎟⎟⎟⎟⎟⎠
. (7.5)

In the same way, we show the transformation from particle basis to HQS basis for other
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|PP̄ (1S0)⟩
|P ∗P̄ ∗(1S0)⟩
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⎞

⎟⎟⎠ = U0++

⎛

⎜⎜⎝

|0H , 0q, 0L, 0l; 0⟩
|1H , 1q, 0L, 1l; 0⟩
|1H , 1q, 2L, 1l; 0⟩

⎞

⎟⎟⎠ , (7.6)

U0++ =

⎛

⎜⎜⎝

1
2

√
3

2 0
√

3
2 −1

2 0

0 0 1

⎞

⎟⎟⎠ , (7.7)

(SH ⊗ Sl)J
(0H ⊗ 1l)1
(1H ⊗ 0l)1
(1H ⊗ 2l)1
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χb1γ(0+) ∼ (1H ⊗ 1l)|J=1 (76)

χb1γ(1+) ∼ − 1√
3
(1H ⊗ 0l) +

1

2
(1H ⊗ 1l)|J=1 +

15

6
(1H ⊗ 2l)|J=1 (77)

χb1γ(2+) ∼ −1

2
(1H ⊗ 1l)|J=1 +

√
3

2
(1H ⊗ 2l)|J=1 (78)

χb2γ(1+) ∼
√

5

3
(1H ⊗ 0l) +

√
15

6
(1H ⊗ 1l)|J=1 +

1

6
(1H ⊗ 2l)|J=1 (79)

χb2γ(2+) ∼
√

3

2
(1H ⊗ 1l)|J=1 +

1

2
(1H ⊗ 2l)|J=2 (80)

f(PP̄ ∗(3S1)) : f(P ∗P̄ ∗(3S1))
1 : 1.

(81)

=
1√
2
|0H ⊗ 1l⟩1 +

1√
2
|1H ⊗ 0l⟩1 (82)
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Now we rewrite the Hamiltonian H1+− in the HQS basis with the unitary matrix U1+−

as

HHQ
1+− = U−1

1+−H1+−U1+−

=

⎛

⎜⎜⎜⎜⎜⎝

K0 − C −2
√

2T 0 0

−2
√

2T K2 − C + 2T 0 0

0 0 K0 + 3C 0

0 0 0 K2 + 3C

⎞

⎟⎟⎟⎟⎟⎠
τ⃗1 · τ⃗2 (7.34)

=

⎛

⎜⎜⎝

H(0,1)
1+− 0 0

0 H(1,0)
1+− 0

0 0 H(1,2)
1+−

⎞

⎟⎟⎠ τ⃗1 · τ⃗2, (7.35)

where HHQ
1+− means the Hamiltonian described by HQS basis. We define the Hamilto-

nian H(SH ,Sl)
JPC , where SH and Sl are heavy quark and the light spin, respectively. The

Hamiltonian HHQ
1+− is given as the block-diagonal forms, because the Hamiltonians H(0,1)

1+− ,

H(1,0)
1+− and H(1,2)

1+− cannot interact each other in the heavy quark limit.

Since the kinetic term is always repulsive and suppressed due to the infinite reduced mass,

µ → ∞, whether the states are bound or not is depend on the potential. Therefore, it

is useful to see the potential part of Hamiltonian. First, we consider the I = 1 state,

which corresponds τ⃗1 · τ⃗2 = 1. The potential of H(1,0)
1+− and H(1,2)

1+− are 3C, which is

clearly repulsive. In contrast, the diagonalized potential of H(0,1)
1+− has both attractive

and repulsive channels. This eigenvalues are approximately E = K + 3C + 6T and

E = K + 3C − 6T under the condition, K0 ≈ K2 ≈ K, which is given by the infinite

reduced mass. As a result, we can conclude that P (∗)P̄ (∗) state in I(JPC) = 1(1+−) have

only one bound state in the H(0,1)
1+− channel with eigenvalue E ∼ K + 3C − 6T . Next,

consider the I = 1 state. In this case, the coefficient is τ⃗1 · τ⃗2 = −3, which is three times

larger than the case of I = 0. As is clear from the Hamiltonian (D.31), the potentials of

H(1,0)
1+− and H(1,2)

1+− are attractive and the eigenvalues of them are given as E = K0 − 9C

and E = K2 − 9C, respectively. The eigen values of H(0,1)
1+− are approximately given

as E = 3C − 12T and E = 3C + 6T . Thus the deepest bound state is in H(0,1)
1+− with

eigenvalue E = 3C − 12T .

The spin degenerate states must exist as a consequence of HQS. As an example, we

consider the spin partners for H(1,0)
1+− . This state do not have the spin partner as a type

β because of SH = 0−+. We can identify the spin partners as a type α by replacing

: Hamiltonian 
in HQ basis

S. Ohkoda, Y. Yamaguchi, S. Yasui, 
K. Sudoh, and A. Hosaka, 
Phys. Rev. D86, 014004 (2012)
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H
(SQ,Sl)
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SH = 0−+ to 1−−. The spin partners should be H(1,1)
0++ ,H(1,1)

1++ and H(1,1)
2++ . To confirm

this argument, we also rewrite the Hamiltonians, H0++ ,H1++ and H2++ , as follows:

HHQ
0++ = U−1

0++H0++U0++

=

⎛

⎜⎜⎝

K0 + 3C 0 0

0 K0 − C −2
√

2T

0 −2
√

2T K2 − C + 2T

⎞

⎟⎟⎠ τ⃗1 · τ⃗2 (7.36)

=

(
H(1,0)

0++ 0

0 H(1,1)
0++

)
τ⃗1 · τ⃗2, (7.37)

HHQ
1++ = U−1

1++H1++U1++

=

⎛

⎜⎜⎝

K0 − C −2
√

2T 0

−2
√

2T K2 − C + 2T 0

0 0 K2 − C − 2T

⎞

⎟⎟⎠ τ⃗1 · τ⃗2 (7.38)

=

(
H(1,1)

1++ 0

0 H(1,2)
1++

)
τ⃗1 · τ⃗2, (7.39)

HHQ
2++ = U−1

2++H2++U2++

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K0 − C −2
√

2T 0 0 0 0

−2
√

2T K2 − C + 2T 0 0 0 0

0 0 K2 + 3C 0 0 0

0 0 0 K2 − C − 2T 0 0

0 0 0 0 K2 − C + 4
7T −12

√
3

7 T

0 0 0 0 −12
√

3
7 T K4 − C + 10

7 T

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×τ⃗1 · τ⃗2 (7.40)

=

⎛

⎜⎜⎜⎜⎜⎝

H(1,1)
2++ 0 0 0

0 H(0,2)
2++ 0 0

0 0 H(1,2)
2++ 0

0 0 0 H(1,3)
2++

⎞

⎟⎟⎟⎟⎟⎠
τ⃗1 · τ⃗2. (7.41)

From the above Eqs. (D.24)-(7.41), we can confirm that the Hamiltonians H(1,1)
0++ , H(1,1)

1++ ,

H(1,1)
2++ and H(0,1)

1+− are equivalent in the heavy quark limit. Thus they degenerate to

forthlets.

It is important to consider the decay properties of the P (∗)P̄ (∗) states. H(0,1)
1+− states is

possible to decay into the the heavy quark singlet with a light meson such as ϵbρ(γ)

and hbπ. In contrast, H(1,1)
0++ , H(1,1)

1++ and H(1,1)
2++ , which are degenerate with H(0,1)

1+− as spin
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➜ Diagonalized     
:Hamiltonian

(0H ⊗ 1l)1
(1H ⊗ 0l)1
(1H ⊗ 2l)1

H(0,1)
1+� = H(1,1)

0++ = H(1,1)
1++ = H(1,1)

2++

HQS Quartet
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TABLE V: Properties of P (∗)P̄ (∗) molecules in I = 0. Diagonalized potentials are given with the

notations, C and T . Hamiltonians H(SH ,Sl)
JPC are classified with heavy quark spins SH and light spin

Sl. Spin partners for each state are shown. Weak and strong attractive channels are denoted by
√

and
√√

, respectively. Quarkonia are listed in corresponding Hamiltonians.

Hamiltonian diag(V ) multiplets H(SH ,Sl)
JPC⎛

⎝K0 − C −2
√

2T

−2
√

2T K2 − C + 2T

⎞

⎠ −C − 2T,−C + 4T H(0,1)
1+− = H(1,1)

0++ = H(1,1)
1++ = H(1,1)

2++

K1 − C − 2T −C − 2T H(0,1)
1−− = H(1,1)

0−+ = H(1,1)
1−+ = H(1,1)

2−+
⎛

⎝K1 − C + 2
5T −6

√
6

5 T

−6
√

6
5 T K3 − C + 8

5T

⎞

⎠ −C − 2T,−C + 4T H(0,2)
2−+ = H(1,2)

1−− = H(1,2)
2−− = H(1,2)

3−−

K2 − C − 2T −C − 2T H(0,2)
2+− = H(1,2)

1++ = H(1,2)
2++ = H(1,2)

3++
⎛

⎝K2 − C + 4
7T −12

√
3

7 T

−12
√

3
7 T K4 − C + 10

7 T

⎞

⎠ −C − 2T,−C + 4T H(0,3)
3+− = H(1,3)

2++ = H(1,3)
3++ = H(1,3)

4++

K3 − C − 2T −C − 2T H(0,3)
3−+ = H(1,3)

2−− = H(1,3)
3−− = H(1,3)

4−−

K0 + 3C 3C H(0,0)
0++ = H(1,0)

1+−

K1 + 3C 3C H(0,1)
1−− = H(1,1)

0−+ = H(1,1)
1−+ = H(1,1)

2−+

K2 + 3C 3C H(0,2)
2++ = H(1,2)

1+− = H(1,2)
2+− = H(1,2)

3+−

K3 + 3C 3C H(0,3)
3−− = H(1,3)

2−+ = H(1,3)
3−+ = H(1,3)

4−+

K1 − C + 4T −C + 4T H(0,0)
0−+ = H(1,0)

1−−

whose kinetic terms are K1, K2, which are the only difference from the second lying states.

In the same way, we can see the forth lying states as a quartet. The forth lying states are

obtained from the Hamiltonians:

H(0,3)
3+− = H(1,3)

2++ = H(1,3)
3++ = H(1,3)

4++ . (53)

Though their potentials are attractive, they may not form bound states in the real situation

due to the high orbital angular momentum, L = 2.

It is also possible to predict the level of the bound states having the potential, −9C. In

this case the lowest lying states are (0H ⊗ 0l)0++ and (1H ⊗ 0l)1+− . They come in a doublet

and have the kinetic term K0. The second lying states are a quartet. They are obtained

26

Attraction

Repulsion

TABLE V: Properties of P (∗)P̄ (∗) molecules in I = 0. Diagonalized potentials are given with the

notations, C and T . Hamiltonians H(SH ,Sl)
JPC are classified with heavy quark spins SH and light spin

Sl. Spin partners for each state are shown. Weak and strong attractive channels are denoted by
√

and
√√

, respectively. Quarkonia are listed in corresponding Hamiltonians.

Hamiltonian diag(V ) multiplets H(SH ,Sl)
JPC⎛

⎝K0 − C −2
√

2T

−2
√

2T K2 − C + 2T

⎞

⎠ −C − 2T,−C + 4T H(0,1)
1+− = H(1,1)

0++ = H(1,1)
1++ = H(1,1)

2++

K1 − C − 2T −C − 2T H(0,1)
1−− = H(1,1)

0−+ = H(1,1)
1−+ = H(1,1)

2−+
⎛

⎝K1 − C + 2
5T −6

√
6

5 T

−6
√

6
5 T K3 − C + 8

5T

⎞

⎠ −C − 2T,−C + 4T H(0,2)
2−+ = H(1,2)

1−− = H(1,2)
2−− = H(1,2)

3−−

K2 − C − 2T −C − 2T H(0,2)
2+− = H(1,2)

1++ = H(1,2)
2++ = H(1,2)

3++
⎛

⎝K2 − C + 4
7T −12

√
3

7 T

−12
√

3
7 T K4 − C + 10

7 T

⎞

⎠ −C − 2T,−C + 4T H(0,3)
3+− = H(1,3)

2++ = H(1,3)
3++ = H(1,3)

4++

K3 − C − 2T −C − 2T H(0,3)
3−+ = H(1,3)

2−− = H(1,3)
3−− = H(1,3)

4−−

K0 + 3C 3C H(0,0)
0++ = H(1,0)

1+−

K1 + 3C 3C H(0,1)
1−− = H(1,1)

0−+ = H(1,1)
1−+ = H(1,1)

2−+

K2 + 3C 3C H(0,2)
2++ = H(1,2)

1+− = H(1,2)
2+− = H(1,2)

3+−

K3 + 3C 3C H(0,3)
3−− = H(1,3)

2−+ = H(1,3)
3−+ = H(1,3)

4−+

K1 − C + 4T −C + 4T H(0,0)
0−+ = H(1,0)

1−−

whose kinetic terms are K1, K2, which are the only difference from the second lying states.

In the same way, we can see the forth lying states as a quartet. The forth lying states are

obtained from the Hamiltonians:

H(0,3)
3+− = H(1,3)

2++ = H(1,3)
3++ = H(1,3)

4++ . (53)

Though their potentials are attractive, they may not form bound states in the real situation

due to the high orbital angular momentum, L = 2.

It is also possible to predict the level of the bound states having the potential, −9C. In

this case the lowest lying states are (0H ⊗ 0l)0++ and (1H ⊗ 0l)1+− . They come in a doublet

and have the kinetic term K0. The second lying states are a quartet. They are obtained

26

S-D
P
P-F
D

D-G
F
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TABLE III: Properties of P (∗)P̄ (∗) molecules in I = 0. Diagonalized potentials are given with the

notations, C and T . Hamiltonians H(SH ,Sl)
JPC are classified with heavy quark spins SH and light spin

Sl. Spin partners for each state are shown. Weak and strong attractive channels are denoted by
√

and
√√

, respectively. Quarkonia are listed in corresponding Hamiltonians.

Hamiltonian diag(V ) multiplets H(SH ,Sl)
JPC attraction

⎛

⎝K0 + 3C 6
√

2T

6
√

2T K2 + 3C − 6T

⎞

⎠ 3C + 6T, 3C − 12T H(0,1)
1+− = H(1,1)

0++ = H(1,1)
1++ = H(1,1)

2++

√√

⎛

⎝K1 + 3C − 6
5T 18

√
6

5 T

18
√

6
5 T K3 + 3C − 24

5 T

⎞

⎠ 3C + 6T, 3C − 12T H(0,2)
2−+ = H(1,2)

1−− = H(1,2)
2−− = H(1,2)

3−−
√√

⎛

⎝K2 + 3C − 12
7 T 36

√
3

7 T

36
√

3
7 T K4 + 3C − 30

7 T

⎞

⎠ 3C + 6T, 3C − 12T H(0,3)
3+− = H(1,3)

2++ = H(1,3)
3++ = H(1,3)

4++

√√

K1 + 3C − 12T 3C − 12T H(0,0)
0−+ = H(1,0)

1−−
√√

K0 − 9C −9C H(0,0)
0++ = H(1,0)

1+−
√

K1 − 9C −9C H(0,1)
1−− = H(1,1)

0−+ = H(1,1)
1−+ = H(1,1)

2−+

√

K2 − 9C −9C H(0,2)
2++ = H(1,2)

1+− = H(1,2)
2+− = H(1,2)

3+−
√

K3 − 9C −9C H(0,3)
3−− = H(1,3)

2−+ = H(1,3)
3−+ = H(1,3)

4−+

√

K1 + 3C + 6T 3C + 6T H(0,1)
1−+ = H(1,1)

0−− = H(1,1)
1−− = H(1,1)

2−−

K2 + 3C + 6T 3C + 6T H(0,2)
2+− = H(1,2)

1++ = H(1,2)
2++ = H(1,2)

3++

K3 + 3C + 6T 3C + 6T H(0,3)
3−+ = H(1,3)

2−− = H(1,3)
3−− = H(1,3)

4−−

detail in III C 3.

Because we are interested in the bound states of the P (∗)P̄ (∗), let us focus on the multiplets

where the potential is attractive. There are two kinds of attractive potentials for I = 0 states

in Table III: −9C and 3C − 12T . Because the central force is weaker than the tensor force,

the potential −9C will be weaker attractive force than the potential 3C − 12T and the

potentials 3C − 12T work as a strong attraction force. In this reason, we can expect the

bound states where the potentials are 3C−12T , and therefore first we consider the multiplets

with the potential 3C − 12T . There are three quartet and one doublet whose potential is

3C − 12T . The potential of these multiplets are same and the only difference is the kinetic

terms. Given the repulsive contributions from the kinetic terms, it is concluded that the

22

Spin partners of P(*)P(*) with I=0

Strong  
attraction

weak 
attraction

repulsion

Doublets only appear in I=0. 
Quarkonia can only couple to P(*)P(*) states where the strong 

attraction force exists.

hb(nP)-χb(nP)

ηb(nD)-Υb(nD)

hb(nF)-χb(nF)
ηb(nS)-Υb(nS)



Spin partners of Zb 
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P(*)P(*) states in HQ limit
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PP*,P*P*

P(P*) 

IG(JPC) 1+(1+ -) 1-(2++)1-(1++)1-(0++)
(SH⊗Sl)J (1H⊗1l)0,1,2(0H⊗1l)1

π
P(P*) 

PP 

Pion 
Extended

Quartet
Zb?



P(*)P(*) states in HQ limit
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PP*,P*P*

P(P*) 

IG(JPC) 1+(1+ -) 1-(2++)1-(1++)1-(0++)
(SH⊗Sl)J (1H⊗1l)0,1,2(0H⊗1l)1

π
P(P*) 

PP 

Pion 
Extended

Quartet

hbπ χb1π χb1,2π χb1,2π

Zb?

Υπ
✗
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BB*

B(*)B(*) states with OPEP
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B*B*

BB 

IG(JPC) 1+(1+ -) 1-(2++)1-(1++)1-(0++)

Zb

Zb’

(10559) 

(10604) 

(10650) 

45MeV 
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BB*

B(*)B(*) states

23

B*B*

BB 

IG(JPC) 1+(1+ -) 1-(2++)1-(1++)1-(0++)

Zb

Zb’

Decays hbπ Υπ (Υπ)D-wave

HQS is broken in the bottom quark region 
(1H⊗0l )1 component allows the decays,   

Υ(5S) ➜ Zb+ π‒➜ Υ(nS)π+π‒ 

P(*)P(*)

B(*)B(*)

(0H⊗1l)1 (1H⊗0l)1 (1H⊗2l)1(SH⊗Sl)J

100% 0% 0%

84% 15% 1%

Mixing ratio of each channel

�(Z0
b � �b0�) : �(Z0

b � �b1�) : �(Z0
b � �b2�)

1 : 3 : 5

ηbγ χbJγ

(10559) 

(10604) 

(10650) 

45MeV 



We investigate the P(*)P(*) states in HQ limit. 

The spin degeneracy may be useful to understand the nature  
of exotic hadrons. 

We find spin partners of Zb : 
Spin partners of Zb are possible to be observed in future 
experiments. 

Spin structures give the decay properties.

Summary

24

H(0,1)
1+� = H(1,1)

0++ = H(1,1)
1++ = H(1,1)

2++


