Spin partners of heavy meson molecules

Shunsuke Ohkoda

Tokyo Institute of Technology

HHIQCD, 3/2/2015

Outline

Introduction—Z_b and B^(*)B^(*) molecules

O Heavy quark symmetry

- Spin degeneracy in heavy meson molecules
- **O** Spin partners for Z_b

Charmonium

T. Barns, S. Godfrey and S. Swanson PRD72, 054026 (2005).

N. Brambilla, et al, Eur. Phys. J. C 71, 1554 (2011).

Bottomonium

$Z_{\rm b}(10610)$ and $Z_{\rm b}(10650)$

Exotic quantum numbers $\forall I^{G}(J^{P}) = 1 + (1 +)$ $\checkmark \Upsilon(5S) \rightarrow Z_{b}^{+} \pi^{-} \rightarrow \Upsilon(1,2,3S) \pi^{+} \pi^{-}$ $\forall Z_{b}$'s are "genuine" exotic states **Exotic masses** Zb's are twin resonances with small mass splitting, ~ 45 MeV ✓Z_b's are very close to the respective thresholds, BB^{*} and B^{*}B^{*}

Exotic decays

✓The decays of Υ (5S)→Z_bπ→h_b(mP)ππ are not suppressed although it needs spin flip

A. Bondar, et al, PRD84 054010 (2011)

<u>S. Ohkoda</u>, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D86, 014004 (2012)

Z_b are B^(*)B^(*)molecules ?

B^(*)**B**^(*)**molecules with OBEP**

<u>S. Ohkoda</u>, Y. Yamaguchi, S. Yasui and A. Hosaka, Phys.Rev. D86, 014004(2012).

B^(*)B^(*)molecules

We study B^(*) B^(*) molecules with OBEP model

✓ The B^(*)B^(*) molecules correspond to the mass of Z_b and Z_b'.
 ✓ The are many exotic states around the thresholds.
 ✓ The predicted molecules will be observed in radiative decays or a pion emission in P-wave from Y (5S).

In charm region, we do not obtain any D^(*)D^(*) states in l=1.

 \checkmark It is hard to explain the Z_c(3900) with molecular picture.

Spin degeneracy

in heavy meson molecules

Heavy quark symmetry

✓The effective Lagrangian for a heavy quark

$$\mathcal{L}_{HQ} = \bar{Q}(i\not{D} - m_Q)Q \qquad Q_v(x) = e^{im_Q v \cdot x} \frac{1 + \psi}{2}Q(x)$$

$$\downarrow \qquad 1/m_Q \text{ expansion}$$

$$\mathcal{L}_{HQET} = \overline{\bar{Q}_v v \cdot iDQ_v} + \bar{Q}_v \frac{(iD_\perp)^2}{2m_Q}Q_v - \overline{c(\mu)g_s\bar{Q}_v \frac{\sigma_{\mu\nu}G^{\mu\nu}}{4m_Q}Q_v}} + \mathcal{O}(1/m_Q^2)$$

$$LO \qquad \text{Spin-spin int.}$$

OHeavy quark flavor symmetry

Observe the served of the

Heavy quark spin symmetry

Spin degeneracy

Spin partners of heavy quarkonium

Spin partners of heavy quarkonium

Purpose

Why do we study P(*) $\overline{P}(*)$ in the HQ limit? $\overline{\mathfrak{q}}$ π $\overline{\mathfrak{q}}$ $P(P^*)$ $\overline{P}(\overline{P}^*)$

✓Spin degeneracy may occur in the heavy meson molecules, but how do they arise? Doublet or quartet?

 \checkmark This study clarify the $1/m_Q$ effects in charm/bottom region.

This study

 \checkmark We focus on $I^G(J^P)=1^+(1^+)$, which corresponds to Z_b channel \checkmark What are the spin partners for Z_b ?

OPEP model

Hamiltonian S. Ohkoda, Y. K. Sudoh, and Phys. Rev. D80

1

<u>S. Ohkoda</u>, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D86, 014004 (2012)

$$+ \left(1 + - \right) \frac{1}{\sqrt{2}} \left(P\bar{P}^* - P^*\bar{P} \right) (^{3}S_{1}), \frac{1}{\sqrt{2}} \left(P\bar{P}^* - P^*\bar{P} \right) (^{3}D_{1}), P^*\bar{P}^*(^{3}S_{1}), P^*\bar{P}^*(^{3}D_{1}) \right)$$

$$H_{1^{+-}} = \begin{pmatrix} K_0 + C_I & -\sqrt{2}T_I & -2C_I & -\sqrt{2}T_I \\ -\sqrt{2}T_I & K_2 + C_I + T_I & -\sqrt{2}T_I & -2C_I + T_I \\ -2C_I & -\sqrt{2}T_I & K_0 + C_I & -\sqrt{2}T_I \\ -\sqrt{2}T_I & -2C_I + T_I & -\sqrt{2}T_I & K_2 + C_I + T_I \end{pmatrix} \begin{array}{c} K_0 : \text{ kinetic term} \\ C : \text{ Center force} \\ T : \text{ Tensor force} \\ \end{bmatrix}$$

1-(1++):
$$\frac{1}{\sqrt{2}} \left(P\bar{P}^* + P^*\bar{P} \right) (^3S_1), \frac{1}{\sqrt{2}} \left(P\bar{P}^* + P^*\bar{P} \right) (^3D_1), P^*\bar{P}^*(^5D_1)$$

$$H_{1^{++}} = \begin{pmatrix} K_0 - C_I & \sqrt{2}T_I & -\sqrt{6}T_I \\ \sqrt{2}T_I & K_2 - C_I - T_I & -\sqrt{3}T_I \\ -\sqrt{6}T_I & -\sqrt{3}T_I & K_2 - C_I + T_I \end{pmatrix}$$

Spin structures

OPEP model in HQ limit

<u>S. Ohkoda</u>, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D86, 014004 (2012)

 $H_{J^{PC}}^{HQ}$: Hamiltonian in HQ basis

$$\begin{aligned} H_{1+-}^{HQ} &= U_{1+-}^{-1} H_{1+-} U_{1+-} \\ &= \begin{pmatrix} K_0 - C & -2\sqrt{2}T & 0 & 0 \\ -2\sqrt{2}T & K_2 - C + 2T & 0 & 0 \\ 0 & 0 & K_0 + 3C & 0 \\ \hline 0 & 0 & 0 & K_2 + 3C \end{pmatrix} & (O_H \otimes 1_I)_1 \\ &(1_H \otimes 0_I)_1 \\ &(1_H \otimes 2_I)_1 \\ &= \begin{pmatrix} H_{1+-}^{(0,1)} & 0 & 0 \\ 0 & H_{1+-}^{(1,0)} & 0 \\ \hline 0 & 0 & H_{1+-}^{(1,2)} \end{pmatrix} & \Rightarrow \text{Diagonalized} \\ &\text{Hamiltonian} : H_{J^{PC}}^{(S_Q,S_I)} \\ H_{1++}^{HQ} &= \begin{pmatrix} K_0 - C & -2\sqrt{2}T & 0 \\ -2\sqrt{2}T & K_2 - C + 2T & 0 \\ \hline 0 & 0 & K_2 - C - 2T \end{pmatrix} \\ &= \begin{pmatrix} H_{1++}^{(1,1)} & 0 \\ 0 & H_{1++}^{(1,2)} \end{pmatrix} & H_{0++}^{(0,1)} = H_{0++}^{(1,1)} = H_{1++}^{(1,1)} \\ &= H_{1++}^{(0,1)} = H_{0++}^{(1,1)} = H_{1++}^{(1,1)} = H_{2++}^{(1,1)} \end{aligned}$$

Spin partners of $P^{(*)}\overline{P}^{(*)}$ with I=1

✓Attraction

		$\mathbf{T}_{\mathbf{T}}(S_{\mathbf{H}},S_{l})$	
Hamiltonian	diag(V)	multiplets $H_{J^{PC}}^{(\sim H, \sim t)}$	
$\begin{pmatrix} K_0 - C & -2\sqrt{2}T \\ -2\sqrt{2}T & K_2 - C + 2T \end{pmatrix}$	-C-2T, $-C+4T$	$H_{1^{+-}}^{(0,1)} = H_{0^{++}}^{(1,1)} = H_{1^{++}}^{(1,1)} = H_{2^{++}}^{(1,1)}$	S-D
$K_1 - C - 2T$	-C-2T	$H_{1^{}}^{(0,1)} = H_{0^{-+}}^{(1,1)} = H_{1^{-+}}^{(1,1)} = H_{2^{-+}}^{(1,1)}$	Ρ
$\begin{pmatrix} K_1 - C + \frac{2}{5}T & -\frac{6\sqrt{6}}{5}T \\ -\frac{6\sqrt{6}}{5}T & K_3 - C + \frac{8}{5}T \end{pmatrix}$	-C-2T, $-C+4T$	$H_{2^{-+}}^{(0,2)} = H_{1^{}}^{(1,2)} = H_{2^{}}^{(1,2)} = H_{3^{}}^{(1,2)}$	P-F
$K_2 - C - 2T$	-C-2T	$H_{2^{+-}}^{(0,2)} = H_{1^{++}}^{(1,2)} = H_{2^{++}}^{(1,2)} = H_{3^{++}}^{(1,2)}$	D
$\begin{pmatrix} K_2 - C + \frac{4}{7}T & -\frac{12\sqrt{3}}{7}T \\ -\frac{12\sqrt{3}}{7}T & K_4 - C + \frac{10}{7}T \end{pmatrix}$	-C-2T, $-C+4T$	$H_{3^{+-}}^{(0,3)} = H_{2^{++}}^{(1,3)} = H_{3^{++}}^{(1,3)} = H_{4^{++}}^{(1,3)}$	D-G
$K_3 - C - 2T$	-C-2T	$H_{3^{-+}}^{(0,3)} = H_{2^{}}^{(1,3)} = H_{3^{}}^{(1,3)} = H_{4^{}}^{(1,3)}$	F

1		
$K_0 + 3C$	3C	$H_{0^{++}}^{(0,0)} = H_{1^{+-}}^{(1,0)}$
$K_1 + 3C$	3C	$H_{1^{}}^{(0,1)} = H_{0^{-+}}^{(1,1)} = H_{1^{-+}}^{(1,1)} = H_{2^{-+}}^{(1,1)}$
$K_2 + 3C$	3C	$H_{2^{++}}^{(0,2)} = H_{1^{+-}}^{(1,2)} = H_{2^{+-}}^{(1,2)} = H_{3^{+-}}^{(1,2)}$
$K_3 + 3C$	3C	$H_{3^{}}^{(0,3)} = H_{2^{-+}}^{(1,3)} = H_{3^{-+}}^{(1,3)} = H_{4^{-+}}^{(1,3)}$
$K_1 - C + 4T$	-C+4T	$H_{0^{-+}}^{(0,0)} = H_{1^{}}^{(1,0)}$

Spin partners of P^(*) P^(*) with I=0

	Hamiltonian	diag(V)	multiplets $H_{J^{PC}}^{(S_H,S_l)}$	attraction	
h _b (nP)-χ _b (nP)	$\begin{pmatrix} K_0 + 3C & 6\sqrt{2}T \\ 6\sqrt{2}T & K_2 + 3C - 6T \end{pmatrix}$	3C + 6T, 3C - 12T	$H_{1^{+-}}^{(0,1)} = H_{0^{++}}^{(1,1)} = H_{1^{++}}^{(1,1)} = H_{2^{++}}^{(1,1)}$	$\sqrt{}$	Strong
η _b (nD)-Υ _b (nD)	$ \begin{pmatrix} K_1 + 3C - \frac{6}{5}T & \frac{18\sqrt{6}}{5}T \\ \frac{18\sqrt{6}}{5}T & K_3 + 3C - \frac{24}{5}T \end{pmatrix} $	3C + 6T, 3C - 12T	$H_{2^{-+}}^{(0,2)} = H_{1^{}}^{(1,2)} = H_{2^{}}^{(1,2)} = H_{3^{}}^{(1,2)}$	$\sqrt{}$	attraction
h _b (nF)-χ _b (nF)	$ \begin{pmatrix} K_2 + 3C - \frac{12}{7}T & \frac{36\sqrt{3}}{7}T \\ \frac{36\sqrt{3}}{7}T & K_4 + 3C - \frac{30}{7}T \end{pmatrix} $	3C + 6T, 3C - 12T	$H_{3^{+-}}^{(0,3)} = H_{2^{++}}^{(1,3)} = H_{3^{++}}^{(1,3)} = H_{4^{++}}^{(1,3)}$	$\sqrt{}$	
η _b (nS)-Υ _b (nS)	$K_1 + 3C - 12T$	3C - 12T	$H_{0^{-+}}^{(0,0)} = H_{1^{}}^{(1,0)}$	$\sqrt{}$	
	$K_0 - 9C$	-9C	$H_{0^{++}}^{(0,0)} = H_{1^{+-}}^{(1,0)}$	\checkmark	
	$K_1 - 9C$	-9C	$H_{1^{}}^{(0,1)} = H_{0^{-+}}^{(1,1)} = H_{1^{-+}}^{(1,1)} = H_{2^{-+}}^{(1,1)}$	\checkmark	Weak
	$K_2 - 9C$	-9C	$H_{2^{++}}^{(0,2)} = H_{1^{+-}}^{(1,2)} = H_{2^{+-}}^{(1,2)} = H_{3^{+-}}^{(1,2)}$	\checkmark	
	$K_3 - 9C$	-9C	$H_{3^{}}^{(0,3)} = H_{2^{-+}}^{(1,3)} = H_{3^{-+}}^{(1,3)} = H_{4^{-+}}^{(1,3)}$	\checkmark	
	$K_1 + 3C + 6T$	3C + 6T	$H_{1^{-+}}^{(0,1)} = H_{0^{}}^{(1,1)} = H_{1^{}}^{(1,1)} = H_{2^{}}^{(1,1)}$		
	$K_2 + 3C + 6T$	3C+6T	$H_{2^{+-}}^{(0,2)} = H_{1^{++}}^{(1,2)} = H_{2^{++}}^{(1,2)} = H_{3^{++}}^{(1,2)}$		repulsion
	$K_3 + 3C + 6T$	3C+6T	$H_{3^{-+}}^{(0,3)} = H_{2^{}}^{(1,3)} = H_{3^{}}^{(1,3)} = H_{4^{}}^{(1,3)}$		

 \checkmark Doublets only appear in I=0.

 \checkmark Quarkonia can only couple to $P^{(*)}\overline{P}^{(*)}$ states where the strong attraction force exists.

Spin partners of Zb

P^(*)P^(*) states in HQ limit

P^(*)P^(*) states in HQ limit

B^(*)B^(*) states with OPEP

B^(*)B^(*) states

<u>S. Ohkoda</u>, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D86, 014004 (2012)

Summary

- \bigcirc We investigate the P^(*) $\overline{P}^{(*)}$ states in HQ limit.
- The spin degeneracy may be useful to understand the nature of exotic hadrons.
- **We find spin partners of Z_b:** $H_{1^{+-}}^{(0,1)} = H_{0^{++}}^{(1,1)} = H_{1^{++}}^{(1,1)} = H_{2^{++}}^{(1,1)}$
- Spin partners of Z_b are possible to be observed in future experiments.
- Spin structures give the decay properties.