Hadron Spectroscopy from Strange to Charm/Bottom - Effective theories or Lattice ? -

Makoto Oka (Tokyo Institute of Technology)

03/02/2015

Hadrons and Hadron Interactions in QCD - Effective theories and Lattice -Yukawa Institute Theoretical Physics

Introduction

Nuclear Physics vs Hadron Physics

Nuclear Dynamics single particle motions shell structure collective motions rotations and vibrations cluster alpha, di-neutron exotic nuclei neutron rich nuclei, halo large amplitude motions, deformation, fission superfluidity/dense matter

Hadron Dynamics valence quark motions quark model, symmetries collective motions in field theory NG bosons, Skyrmion di-quark color-non-singlet clusters exotic hadrons multi-quark, hybrid hadrons molecular bound states resonance states hot/dense hadronic matter

From QCD to Hadron Spectrum

- # QCD = colored quarks + colored gluons with SU(3)c gauge symmetry
- Quarks have flavor quantum numbers: u, d, s, c, b, t.
 QCD Lagrangian is flavor independent, but the coupling constant runs.
- The lowest-lying hadrons with u, d, s quarks form complete patterns of the SU(3)_f representations.

SU(3)*f* symmetry is the basis of the constituent quark model.

From QCD to Hadron Spectrum

- After 50 years since it was born, the quark model gives very good guidelines to classify and interpret the hadron spectrum.
- The charmonium spectrum is a textbook example. *"hydrogen atom" in QCD*
- The Hamiltonian with a Linear + Coulomb potential
 V(r) = -^e/_r + σr
 E. Eichten, et al., PRL 34 (1975) 369
 gives a good fit to the 1S, 1P, 2S, ...
 charmonium (and bottomonium)
 states.

From QCD to Hadron Spectrum

- The color is confined. Effective dynamical degrees of freedom at low energy are color-singlet hadrons.
- In the variety of excited hadrons, can we identify constituent quark excitations? hadron molecule states? di-quark or other clusters of quarks and gluons?
- QCD is the judge.
 The lattice QCD will be able to help us to understand the (most) effective DOF in the hadron spectrum.
- It is important to "derive" effective theories from QCD. inter-quark potential from lattice QCD or PQCD comparison of effective theories in a box with LQCD

Lattice QCD calculations is reaching state-of-theart stage. It is very successful for the ground-state hadrons. For excited states, q-q^{bar} or qqq operators may not be good enough.

Charmonium spectra on Lattice

Liuming Liu, et al. (Hadron Spectrum Collaboration) JHEP 07, 126 (2012)

New Charmonium-like States

- **X(3872) found in 2003 by Belle (KEK)**
- **Z**(3900), Z(4430) etc. : charged hidden charm states

X(3872)

 $Z_{c}^{+}(4430)$

 $Z_{c}^{+}(3900)$

Baryons in LQCD

Light baryon spectra by R.G. Edwards et al., PRD84 (2011)
 074508, are consistent with the SU(6)×O(3) quark model.

Lattice QCD has confirmed that the overall features of the low-lying hadron spectrum are given by the constituent quark model.

Some (exotic) hadrons are not reproduced by the simple qq^{bar} or qqq operators. They may be given by multi-quark or multi-hadron operators.

Which are exotic? Recent development of analyses of $\Lambda(1405)$

Recent analysis of the lattice QCD data by J.M.M. Hall et al. ArXiv:1411.3402, claims K^{bar}N dominance.

Recent analysis of the lattice QCD data by J.M.M. Hall et al. ArXiv:1411.3402, claims K^{bar}N dominance.

$\Lambda(1405)$ as a hadron molecule

$\Lambda(1405)$ as a K^{bar} N "bound" state.

Chiral unitary approaches predict *two resonance poles for* $\Lambda(1405)$. (Jido et al., 2003) They originate from a K^{bar}N bound state and a $\pi\Sigma$ resonance. (Hyodo, Weise)

Multi-quark states

Multi-quark exotic hadrons

M (MeV)

Multi-quark exotic hadrons

Why is $\Lambda(1405)$ likely to be a 5-quark state (in the quark model)? $\Lambda(1405)$ J^{π}= 1/2⁻, flavor singlet \therefore uds L=1 orbital excited state with spin 1/2 $=> J=1/2^{-}$ and $3/2^{-}$: spin-orbit partner $\Lambda(1520) 3/2^{-}$ $rightarrow udsu\overline{u}$, ... L=0 state, *i.e.* NO orbital excitation required $(ud)_{s=0} (su)_{s=0} \overline{u}$ (= two di-quarks + an anti-quark) The total quark spin is S=1/2 so that only a $J=1/2^{-}$ state exists, *i.e.* no spin-orbit partner.

The competition between the kinetic energy (L=1) and the extra quark masses (qq^{bar}) indicates possible mixing of the two Fock components.

QCD sum rule approach

- How can we directly determine the Fock components of hadrons from QCD?
- In order to identify 5-quark components, one may use overlaps of local operators to the hadron states.
 Choose two local operators, 3-quark J₃ and 5-quark J₅

$$\begin{array}{l} \langle 0|J_{3q}(x)|\Lambda\rangle = \lambda\cos\theta\,u(x)\\ \langle 0|J_{5q}(x)|\Lambda\rangle = \lambda\sin\theta\,u(x) \end{array}$$

Then one can determine the "mixing angle" ?

QCD sum rule approach

\blacksquare Choose some operators for $\Lambda(1/2^{-})$

$$J_{3} = \epsilon_{abc} \left[\left(u_{a}^{T} C \gamma_{5} d_{b} \right) s_{c} - \left(u_{a}^{T} C d_{b} \right) \gamma_{5} s_{c} - \left(u_{a}^{T} C \gamma_{5} \gamma^{\mu} d_{b} \right) \gamma_{\mu} s_{c} \right] \\ = 2\epsilon_{abc} \left[\left(u_{a}^{T} C \gamma_{5} d_{b} \right) s_{c} + \left(d_{a}^{T} C \gamma_{5} s_{b} \right) u_{c} + \left(s_{a}^{T} C \gamma_{5} u_{b} \right) d_{c} \right] \\ J_{5} = \epsilon_{abc} \epsilon_{def} \epsilon_{cfg} \left[\left(d_{a}^{T} C \gamma_{5} s_{b} \right) \left(s_{d}^{T} C \gamma_{5} u_{e} \right) \gamma_{5} C \overline{s}_{g}^{T} \\ + \left(s_{a}^{T} C \gamma_{5} u_{b} \right) \left(u_{d}^{T} C \gamma_{5} d_{e} \right) \gamma_{5} C \overline{u}_{g}^{T} \\ + \left(u_{a}^{T} C \gamma_{5} d_{b} \right) \left(d_{d}^{T} C \gamma_{5} s_{e} \right) \gamma_{5} C \overline{d}_{g}^{T} \right]$$

- However, it does not work, as these operators are not normalized properly (ex. their dimensions are different).
- We need to normalize the operators. Two methods were proposed.

T. Nakamura, J. Sugiyama, T. Nishikawa, N. Ishii, MO, PRD78 (2008) 014010

QCD sum rule approach

Choose a J_5 and define a genuine 5-quark operator J_5 ' so that 3quark component of J_5 is subtracted.

$$J_5 = J_5' + \underbrace{\left(-\frac{1}{18}(\langle \bar{u}u \rangle + \langle \bar{d}d \rangle + \langle \bar{s}s \rangle)J_3\right)}_{J_3'}$$

then one may determine the operator which couples most strongly to the physical state,

 $J_{\Lambda}(x) = \cos \theta J'_{3}(x) + \sin \theta J'_{5}(x)$

This method is "model independent", but it depends on the choice of the operators.

 Λ (singlet, 1/2⁻)

Mass and mixing angle *v.s.* the Borel mass

T. Nakamura, et al, PRD78 (2008) 014010

"Counting" the number of quarks? There is no conserved current corresponding to the # of quarks: N(q)+N(q).

It may depend on choices of the quark operator. Ex. Bogoliubov transformation may change the # of quarks in a hadron.

Any observables which can distinguish valence and sea quarks? Parton distribution in the light-cone frame?

In DIS and other high energy processes, one may distinguish and count "valence" quarks.

Hadronization in heavy ion collisions: Recombination and fragmentation of partons R. J. Fries, S. A. Bass, B. Muller, C. Nonaka, PRL 90 (2003) 202303

meson vs baryon

 $qq \rightarrow 2 < p_T >$ $qqq \rightarrow 3 < p_T >$

Then how do 4 or 5 quark states behave?

M. Hirai, S. Kumano, MO, K. Sudoh, PR D77 (2008) 017504

- We proposed to apply to the fragmentation functions of resonances.
 - determined by a global analysis of e⁺+e⁻→ h+X experimental data
- **#** Favored vs Disfavored FF
 - Favored FF → valence quarks
 constituents of produced hadrons
 - peaked at medium to large z
 Disfavored FF → sea quarks
 - peaked at small z

 $Z=E_h/E_q$

M. Hirai, S. Kumano, MO, K. Sudoh, PR D77 (2008) 017504

- **#** We proposed to apply to the fragn resonances.
 - determined by a global analysis e⁺+e⁻→ h+X experimental data
- **#** Favored vs Disfavored FF
 - Favored FF → valence quarks
 constituents of produced hadrons
 - peaked at medium to large z
 Disfavored FF → sea quarks
 peaked at small z

Applied to f₀(980) (0⁺, I=0) - Tetra-quark configuration favored FF: u and s quarks Peak at large-z (z~0.85) z_u^{max} ~ Z_s^{max} OR

- $S\overline{S}$ configuration $M_u < M_s$ $(M_u/M_s=0.43 \pm 6.73)$

Large uncertainty Need further precise data $\chi^2/d.o.f. = 0.907$ Total Number of data: 23

Heavy Quark Hadrons

Why Heavy Quarks are interesting?

The c, b, (t) quarks have large masses.
 m(ρ/ω): m(K*): m(D*): m(B*)
 = 1 : 1.15 : 2.59 : 6.87

$\Lambda_{QCD}(\sim 300 \text{ MeV}) \ll m_c(\sim 1.3 \text{ GeV}) \ll m_b(\sim 4.2 \text{ GeV})$

light quarks Aqc	CD	heavy q	uarks	mq
1 10 100 MeV	1	10 b	100 GeV	
chiral symmetry m _q expansion	h	eavy qu (1	ark symme /m _Q) expan	try sior

Why Heavy Quarks are interesting?

■ Dynamics of Heavy Quarks
 Asymptotic free
 small α_s ~ v/c (~ 0.25 for charm)
 → Heavy Quark Spin Symmetry

Non-relativistic

QQ^{bar} mixing is suppressed.

Are Strange quarks light or heavy? Or both?
 SU(3)_f symmetry vs HQ symmetry

and also

"heavy" to be isolated from the u, d quarks.

φ 1020		J /ψ 3096	Y 9460	
η' 958	1 S	2000		
0015		<u>η</u> ε 2980		

- A(1405) as a (K^{bar}N) molecule Hadron molecule
 the lowest negative parity baryon resonance
- **H** dibaryon
- significantly lower than the other P-wave baryons H dibaryon
 B=2, Str = -2, J=0⁺, I=0 resonance predicted by Jaffe (1977)
 - Also predicted by the LQCD calculation (HALQCD, etc)
- (strongly) coupled to $\Lambda\Lambda$ -N Ξ - $\Sigma\Sigma$ two-baryon channels Θ^+ pentaquark Exotic hadron $\blacksquare \Theta^+$ pentaquark - Str = +1 baryon resonance, classified as SU(3) 10^{bar} predicted
- in the chiral quark model by Diakonowhadron # S= -2, -3 baryons Multi-flavor hadron
 - The available data are very limited.

Are these "novel" features unique to the Strangeness? Do they persist in the charm/bottom sectors? HHIOCD2015

Heavy Quark Spin Symmetry

Magnetic gluon coupling is suppressed

$$\bar{\Psi}\gamma^{\mu}\frac{\lambda^{a}}{2}\Psi A^{a}_{\mu} \sim \underbrace{\Psi^{\dagger}\frac{\lambda^{a}}{2}\Psi A^{a}_{0}}_{(Color \ Electric \ coupling)} = \underbrace{\Psi^{\dagger}\sigma\frac{\lambda^{a}}{2}\Psi\cdot\frac{1}{m_{Q}}(\nabla\times A^{a})}_{(Color \ Electric \ coupling)} > (Color \ Magnetic \ coupling)$$
HQ spin-flip amplitudes are suppressed by (1/m_Q).
 \Rightarrow Heavy Quark Spin Symmetry

Heavy Quark Spin Symmetry

HQ spin symmetry $[S_Q, H] = O\left(\frac{1}{m_O}\right)$

$$\vec{q}$$
 = $\vec{j}_L = \vec{S}_Q + \vec{j}_L$ $\vec{j}_L = \vec{S}_Q + \vec{L}_Q$

 $J = j_L \pm \frac{1}{2}$ states are degenerate in the HQ limit.

Spectroscopy of Light Diquarks

HHIQCD2015

0

Charmed Baryons: Ground states

- All the ground-state (S-wave) single charm baryons have been observed, and are consistent with the quark model.
- Lattice QCD reproduces the ground state baryon spectrum fairly well.
- Y. Namekawa, et al., (PACS-CS Collaboration)
 (2+1) flavor with physical quark mass, PRD 87, 094512 (2013)

P-wave excited states

P-wave excited states

- The "diquark clusters" can be identified with the help of the heavy quark in the HQ baryon spectroscopy.
- The ρ mode excitations of the HQ baryons provide us with a diquark spectrum.
- The λ mode excitations reveal the interaction of the diquarks.
- In The decays of the ρ and λ modes have different properties.
 ρ-mode → Heavy baryon (Qqq) + light mesons (qq^{bar})
 λ-mode → Heavy meson (Qq^{bar}) + light baryon (qqq)

P-wave excited states

- # The "diquark clusters" can be identified with the help of the heavy quark in the HOC barrier of mode
- The ρ mode e a diquark spe
- The λ mode end diquarks.

In The decays of the ρ and λ modes have different properties.
ρ-mode → Heavy baryon (Qqq) + light mesons (qq^{bar})
λ-mode → Heavy meson (Qq^{bar}) + light baryon (qqq)

Probabilities of λ and ρ modes v.s. heavy quark mass
 by a Hamiltonian quark model with spin-spin, spin-orbit and tensor forces

Yoshida, Sadato, Hosaka, Hiyama, MO, in preparation.

HHIQCD2015

\ddagger Transition from the SU(3)_f to HQ.

Lattice QCD for $m_Q = m_S \rightarrow m_C$ with $m_{\pi}^2 = 410$ MeV

P. Gubler, T.T. Takahashi, M.O., preliminary

Conclusion and Further possibilities

- Going from strange to charm/bottom, we may isolate light degrees freedom by using the heavy quark spin symmetry. This may help extracting inter-quark and di-quark interactions in hadrons.
- Hadrons and Hadronic Interactions of charmed (heavy) quarks may show more exotic features than strangeness.
- A few interesting problems are: Where are Ecc ground and excited states? Do exotic double charm mesons exist? Are there any bound states of D mesons to nucleon/nuclei? How strong are the interactions of charmed baryons with nucleon? Are there charmed hyper-nuclei?
- Many interesting physics subjects are waiting for the new heavy quark projects in J-PARC, GSI and others.