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Dirac fermion in condensed matter system:
A new laboratory for lattice gauge theory

» Graphene } Electrons hopping
* Topological insulator /on the atomic lattice
massless Dirac fermions at low energy

New hint

Condensed matter Lattice gauge theory

Theoretical tool

We study graphene as a first step.



Graphene system looks similar to staggered fermion.

Fermion hopping on hypercubic lattice
- massless Dirac fermion with flavors

Two approaches in staggered fermion
1. Momentum Space approach
Susskind ‘77, Sharatchandra et al.81, Doel et al’83, Golterman-Smit’84

2. Position space formulation
Kluberg-Stern et al. ‘83
Split the lattice sites into “space” and “internal”

degrees of freedom.
Exact U(1) chiral symmetry is manifest.
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This approach is absent in graphene system.




Goal of our work

» Find hidden exact U(1) “flavor-chiral” symmetry
in the Hamiltonian for graphene.

» To do so, we apply the position space
formalism, which was first used for staggered
fermion.



2. Tight-binding model
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b3 =53 —51, by =53 — 3,

Lbs =81 — 83, bg =51 —s3 °



Energy spectrum

Fourier transformation of H (t'=0 case)  G. W. Semenoff, (1984)

H :tza:/ (;Z:; (aT(/f)bT(’f))( <I>*O(k) (I)E)k) ) ( Zél’z)) >

(I)(]{Z) — e@k-sl + e’Lk'SQ + €2k~83

Eigenvalue: E = +|®(k)|
One electron per site (= half-filled)
- all negative energy states are filled(=Dirac sea) .

If there is a gap, the system is insulator .
If no gap, the system can be ngﬁetallic.



Dirac point : the lowest energy state of graphene
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LOW ENERGY APPROXIMATION

Leading order of expansion near K point
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Emergence of massless Dirac fermion



e Continuous global symmetry of Heff

Heg = vp /dQ.fL/)T (T2 ® 01)01 + (T2 @ 02)] ()

“Flavor/Chiral” symmetry ‘

0 = il', 5¢T = —iZﬁTF (T" : Hermitian matrix)

12><2 ® 12><2 tl ® 03 TZ ® 12><2 T3 ® 03




AB stacked bilayer graphene

A~B Upper layer
A B Lower layer

~

B sitessitontopof A

Inter-layer hopping Hamiltonian

Higger = / (jjr’; [(GT(kz)bT(k)) ( ° ) ( ZEZ; ) —i—h.c}



Total Hamilonian matrix for bi-layer graphene

0 t® (k) 0 0
tdT (k) 0 v 0
0 0% 0 tP (k)
( 0 0 t®T (k) 0 )
Energy Eigenvalue E(k)

E(k) =+ P; + [t®(k)[* + \/( + [t®(k — [t®(k ]

Near Dirac point, ®(k)behaves as |t<I>( )| ~vp|lk — K]

Energy
Vh 2 2o vp 2 =
E(k)~+ |y + Lk - K) ,i (k— K)?
Y

N
Y

Gapless mode with quadratic dispersion
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3. Dirac point and discrete symmetry



What is known ?

Condensed matter theorist studied the Dirac point

» Gapless : PR. Wallace 1947, JW. McClure 1956

» Existence of Dirac points by discrete symmetry:
W.M. Lomer 1955, J.C. Slonczewski P.R. Weiss 1958

» Local Stability: c. Herring 1937, K. Asano & C. Hotta 2011



Existence of Dirac points

Discrete symmetries can predict the Dirac points
| : Inversion A~ B
C3: 2/37 rotation around a point A(orB)

Fixed points under transpormation= K, K’

Invariance of Hamiltionian under I, C3
- At K, K’ there is no gap.



Local Stability against small de-tuning
Hatsugai-Fukui-Aoki 2006

Let us consider the free Hamiltonian on more
general lattice with A-, B- sites.

Ry (k) + iRz(k)  Ro(k) — Rs(k)
cf.graphene  Ry(k) = R3(k) =0, Ryi(k)—iRa(k) = ®(k)

- ( Ro(k) + Rs(k) Ri(k) —iR2(k) >

Energy eigenvalue

E=Ro+\/R} + R} + R}




Consider the map from the Brillouin zone (BZ) toR3

k — R(k)
Rs,
%pped‘\
f . .

Sur\% Energy gap is the minimum

2 distance /R? + B2 + R? between the
gd mapped 2 dimensional surface and

the origin.
R,

Fine-tuning is needed for zero gap.
One cannot expect the stability.



However, when Hamiltonian has Z2 symmetry
{H, 0’3} =0
Then, R3(k) = 0 is automatically satisfied.

* The map is restricted to x-y plane,

which includes the origin.

e Zero gap can be achieved without
Ry fine-tuning.

* Zero gap occurs at 2 points.

-———

RS 4

el R
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Existence of Dirac points are understood by discrete symmetries.

What about chiral flavor symmetries of the massless Dirac fermion?

Does it exist only in the continuum?
or even at finite lattice spacing?

( It may affect the property of the exciton excitation when there
occurs a spontaneous symmetry breaking. )



4. Position space formulation



Graphene system looks similar to staggered fermion.

Two approaches in staggered fermion

1. Momentum space approach
Susskind ‘77, Sharatchandra et al.81, C.v.d. Doel et al.’83, Golterman-Smit’84

Position space formulation ... Kiuberg-Stern et al. 83

I”

Split the lattice sites into “space” and “internal” degrees of freedom.

Exact chiral symmetry is manifest.

This approach is absent in graphene system.
We try to construct similar formalism in graphene system.
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c.f. Staggered fermion in 2dimension

Position space degree of freedom is relabeled into internal degrees of freedom.

S = Z ZZ@(X) l(ru)p,p’vu - %(Au)p,p’Au Yo (X)

X pp B

2X +p) — x) where Ti=7n®lL =707
X( p) — Yp(X) A mol A mon

5 BOX+ ) = p(X — )
WX )+ 9(X )~ 20(X)

o ® V,b(X)

N~ 1 N~——1 A,/(Z}(X)

Exact chiral symmetry on the lattice y(1), c SU(2)4

677b = F5w7 5,& = TLFS

where I's = 73 ® 73
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Position space formulation for graphene

We relabel the honeycomb lattice @ as the fundamental lattice.
6 sites in hexagonal unit cell is now the internal degree.
Fundamental vectors € ; » are those connecting @.
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Central coordinate of hexagonal lattice is labeled by ¥

I=A,B are the index for sublattices A,B

P is the index for the 3 vertices (counter-clockwise)

. X}p(x),xI,p(a:) are creation/annihilation operators

* Each lattice point has 6=2x3 dof.
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The Hamiltonian involves 6x6 matrices.
Corresponding to the indices | p o we
express 6x6 matrix using the tensor product
of 2x2 matrix and 3x3 matrix.

3

Arp,rp = Z(TG)H’ ® (B), -
a=0
6x 6 2x2 3x3

I,I'=AB p,p =0,
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* New formulation of tight-binding Hamiltonian

H=t) \'(@) [{\m‘m/\(r) =i} MmOT) (V@) +5 ) (& Fp><Ap\<r>>}}

Locality is manifest.



The mass term has 1 massive mode and 2 zero modes.

Democratic matrix Massive mode
1 1 1 \ Change of basis /3 0 0
M=|111 MYee = 0 0 0
1 1 1 0 w
Bo, B1, By can hop to Massive mode can Zero modes

Ao, A1, Ay with equal weight be integrated out

6 =2 X 3 — 2 X2

vertex spin  flavor jptegratingout effectiveDO\T

Hog = vp / 2’ (12 @ 1)1 + (T2 @ 72)] Y ()
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Comment: exact discrete symmetry

» 73 symmetry: cyclic rotation

p: (0,1,2) — (1,2,3)



* Possible global symmetry of Heff
Heg =vp /dewT (T2 ® 01)01 + (T2 ® 02)] ()
ot =i, YT = —ip'T

4 possibilites for I" (T : Hermitian matrix)

Lo ®l,| 780, | 1,®L,|(T,®0,

“Flavor-Chiral” symmetry

Parity conserving mass term md! (k) (11 ® 1ax2)d(k)
is prohibited by the last two symmetries

However, these could be violated by lattice artifacts.
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5. Hidden exact symmetry



Hidden symmetry in graphene

We look for an exact symmetry as
Ox(k) =Ts(k)x(k)  lim I's(k) = peont

Expanding T'5(k)in powers of k, we look for
solution to [H(k),I'5(k)] =0 order by order.

* Series starting from 72 ® 1  failed at 2" order in k.
 Series starting from 73 ® o3 survived at 3" order in k

— All order solution may exist for the latter?
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To 3™ order in momentum expansion, only terms of

the form 73 ® A, 1 ® B (A,B: 3x3 martix ) appeared.

= We take the following anzats for the symmetry

Sx () = i0|3(r3 ® X)x () +

o | —

Z Apx(7)) + }Z(l ® Z,)(V,x(:
P

Is

Require that Hamiltonian is invariant under the symmetry.

[H,T5] = Oﬁ

A set of algebraic equations for X, Y, Z,
and matrices M, I', in Hamiltonian
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Unique solution for X, Y, Z exists!

0 —i 1
X = 7 0 —i
—i 1 0
0 —i 1 0 —2 0 0 0 =
Yo= i Yi=| i 0 —i |, Y= 0 0 —i
—1 0 0 -1 1 0
0 -1 1 0 0 0 0 -1
1 0 0 0 -1 0 -1 1 0

Continuum limit (mass diagonal basis)

00 OJ |:> 7, ® 0, Coincide with

01 0 “ .
flavor-chiral sym.”
00 -1 Y

x(x) =7, ®
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Symmetry in terms of conventional labeling




What about AB-stacked bi-layer graphene?

When interlayer interaction is absent, each layer has
the symmetry :

5 X = ’LQF 5X X : electron in tupper-layer

X : electron in lower-layer
5X — ZHFSX 0,0 : parameters for ”chiral” symmetry

One can show that the interlayer interaction Hamiltonian
is invariant under transformation with 9 — ¢

Exact symmetry in bilayer graphene !
Gapless mode in bi-layer graphene is also protected
by “flavor-chiral” symmetry.
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Remark 1

What about the case including non-nearest neighbor
hopping or higher?
- No problem, “chiral-flavor” symmetry remains exact.

Due to the discrete rotational symmetry and parity, non-
nearest neighbor hopping Hamiltoninan is

expressed as Hyon nearest = P (H) ( P: some polynomial)

|P(H),I's] =0, although {P(H),o3}#0

Only our exact symmetry can explain the gapless mode.

Similar arguments hold also for inter-layer hopping Hamiltonian.
38



Remark 2

Example of physical interpretation:

(Non-chiral) carbon nanotube can be metallic or
semiconductor depending on the radius L of the cylinder.

Mod(L/ap,3) =0 : metallic
Mod(L/ag,3) = 1,2 : semiconductor

L,\

In position space formalism, this is understood simply as
periodic boundary condition for Dirac fermion.



6. Summary



We studied the position space formulation of graphene

Results

+»* Spin-flavor structure

+* Manifest locality of the low energy Dirac theory

+»» Discovery of exact “flavor-chiral” symmetry on the lattice

+» Alternative understanding of the existence of the Gapless
mode is understood by “flavor-chiral” symmetry

+»* “flavor-chiral” symmetry remains for bilayer graphene
+»* The symmetry also holds with non-nearest hopping.




What is next?

* Symmetry with gauge interaction.
Whether it is exact at interacting level is yet to be seen.

* Nonperturbative lattice studies on graphene including
gauge interaction.

— Phase structure

— Quantum Hall effect

— Effect of impurities and boundaries
— Atomic collapse

Our position space formalism will be helpful to give a clear
physical interpretation of low energy excitation as massless
Dirac particle.



Thank you for your attention.



Backup Slides



In order to determine X, Y,, Z,, we employ momentum representation of
X(@), X' (D)

no= [ e ®men O

with 74 = ( 7 +i7)/2 and A = M — 1, and for chiral transformation 5y (k) =
i005(k)x (k) T5(k) is given as

Ts(k) = (3@ X) + Y ™oy, + > e Hoql, (2)
p p
with
+1 -1
’Yp:mT(@Wg“rTgT@Wp. (3)

W, is defined as W, = (Y, + iZ,).
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Imposing [H (k), 5 (k)] = 0, we obtain following equations;
{AX}+ > (0,W, +WiT,) =0
p
{Tp, X} + AW+ W,A=0
AW, + WA+ Y (DWW +WiI,) =0
AN AED)
r,Wwi+w,l,=0
LWy + WiT, =0 (p £ o).
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