Symanzik improvement of Yang-Mills gradient flow observables

Stefan Sint (Trinity College Dublin)

in collaboration with Alberto Ramos (CERN)

ALPHA

Collaboration

25
56 HHIQCD 2015, Yukawa Institute for Theoretical Physics
6 March 2015



@ The Yang-Mills gradient flow equation & its properties
@ Some current applications

@ The gradient flow equation on the lattice

o Large cutoff effects and their tree-level anatomy

@ 4+1 dimensional formulation & Symanzik improvement
o Classical a-expansion of observables & the flow equation
@ Conclusions & Outlook



The Yang-Mills gradient flow equation

Starting point: Yang-Mills theory in 4-dimensions:

S.[A] = A*x tr {Fu()Fu(x)},  Fu = 3uA, — DA, + [AL, A

2%
Add extra (flow) time coordinate t and define the gauge field B,(t, x)
Guu(t,x) = 0uBu(t,x) — 0, Bu(t,x) + [Bu(t, x), B.(t,x)]
8:Bu(t,x) = DyGuu(t,x) (: *éi”’([fl)) . Bu(0,x) = Au(x)

The linearized gradient flow equation reduces to the heat equation (use gauge
freedom to diagonalize RHS):

C(x=y)?
9eBu(t,x) = =0,0,Bu(t,x),  Bu(t,x) = (47rf)72/d4ye 4t Auly)

= The gauge field B,(t, x) is smoothed over a range with radius r(t) = v/8t
(20 range of the Gaussian smoothing function).



Properties of the Yang-Mills gradient flow

@ Correlation functions of (gauge invariant) observables at t > 0 are
renormalized

(o[B]) = / D[A]O[B] exp (— 5,[A))

once the coupling go is renormalized as usual!

o Local gauge invariant composite fields at t > 0 such as
E(t,x) = =3 tr{Gu(x, t)Guu(x, t)}

are renormalized; no mixing with other fields of same or lower dimensions!
o Established to all orders in perturbation theory [Liischer & Weisz '2012 ];

@ Explict one-loop calculation (infinite volume, dimensional regularization)
[Lischer 2010 ]:

3gars (1) 1.0078 + 0.0075 x Ny o
(E(t:x) = Fg2p2 py

1
+OEY) . =
is() 0 ), ot
= E(t,x) is, for t > 0, a renormalized field; unlike E(0, x) which has a
quartic and a logarithmic divergence!



Applications of the gradient flow |

@ Convenient (implicit) definition of reference scale, e.g. to [Liischer 2010 ]
easy to measure, small statistical fluctuations, mild quark mass
dependence also in xPT [Bar & Golterman 2013 |
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@ Non-perturbative definition of a renormalized “gradient flow coupling” at
scale pp = 1/+/8t:
def 167T
gar (i) = 5 t(E(tx)
@ Coupling at scale po = 1/+/8tp:

1672 15.8
gar(po) = 37’ x03=158 = acr(m)= -, = 1257




Applications of the gradient flow Il

o Consider (E(t,x)) in a finite box of dimension L*, fix the ratio ¢ = 1/8t/L
and define

Br(L) = N(©) ' R(E(E ), limN(c) = —

c—0 1672

o defines family of renormalized couplings, with parameter c.
(typical range from 0.2 to 0.5; ¢ > 0.5 implies that 2r(t) > L, i.e.
“smearing around the universe”)

@ The normalization constant is calculable in lowest order perturbation
theory; depends on b.c's for the gauge field; periodic in spatial directions,
and in the time direction

periodic b.c.’s [Fodor et al. 2012 ]

SF (Dirichlet) b.c.’s [Fritzsch & Ramos 2012 ]

twisted periodic b.c.'s [Ramos 2013 ]

open-SF (Neumann-Dirichlet) b.c.’s [Liischer 2013 ]

o QCD, as determination: advantage of gradient flow coupling at low
energies, but loses to SF coupling at high energies

= pursue mixed approach [Fritsch et al. (ALPHA coll.), 2014 ]




Applications of the gradient flow Il

@ Small flow time expansion & operator renormalization [Liischer 2013 ]

@ Definition of renormalized energy-momentum tensor [Suzuki 2013ff; Del
Debbio et al.,2013; Patella et al, 2014 ]

@ enormalized energy-momentum tensor & SU(3) thermodynamics [Asakawa
et al. (FlowQCD collaboration), 2014 (cf. Hatsuda on 4 March) ]

@ Extension to fermions possible [Liischer 2013 ]

o Use flow quantities to check for autocorrelations in Monte-Carlo
simulations; significant coupling to slow modes [Liischer & Schaefer,2012 ]

@ Assess quality of lattice actions, new improvement conditions,...

The lattice community has only just begun to explore the possibilities! Expect
much more to come;

However: Improvements and/or combination with other techniques may be
required;

Here: systematic reduction of O(a?) cutoff effects.



The gradient flow on the lattice

@ consider generic SU(3) lattice action with 4-link and 6-link Wilson loops
(normalization: ¢y + 8¢; + 16c2 + 8c3 = 1):

a 1 a a a a
S[U;C,-( )]:?Ztr (1—CS)I:I—C{)I:::I—C£)E—C§)
0 X

Expectation values defined by integral over U,,.
o Gradient flow equation, choose the gradient of a lattice action:

BeVou(t,x) = —g20x uSIV; c V(. x),  Viu(t = 0,x) = Upn(x)

(a) # c(f) in general!
° Observables we focus on E(t, x); two options:

@ define a lattice version of G, (t,x) (e.g. clover leaf of plaquettes in p — v
plane), then form

EY(t,x) = f%tr{Gﬁl (t,x)G L(t x)}

@ E(t,x) is an action density; choose a lattice action density such that
2t Z E(t,x) = g2S[V; )]

= yet another set of cl.(o)!



The gradient flow on the lattice

Popular choices for action parameters & terminology:
@ Wilson action, Wilson flow, plaquette observable:
aoa=la=ac=c=0;

o Tree-level Liischer-Weisz action, Symanzik flow:
w0=5/3,a=-1/12, =c; =0;
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0(a?) cutoff effects are surprisingly large & and even larger in QCD!



Anatomy of tree-level O(a?) effects in (E(t,x)) |

7/a _
CEE) = & dp [KEE.0Dulp )],

—m/a
_ —_tk® (p. a _ —tk® (p,a
Dun(pd0) = (&), (KE(p N ("),

@ A\, «a: gauge fixing parameters for the action and flow equation,

respectively.
o Observable, gradient flow and action characterized by kernels K,..(p) of

" free lattice actions”:

7/a
sod 1 / d*p AL (—p) K (p, A AL (p) + O(A%),
—7/a
KEoD(pA) = KE%(p,A) + @2RESD(p, A) + O(a)

P’ + (A= 1pupy

K™ (p,A)



Anatomy of tree-level O(a?) effects in (E(t, x)) Il

Extend momentum integrals to infinity, then evaluate traces:

3 2 a2 o a o a
(E(t,x)) = ngztz{l +Z [(d{ D= d) doa + (o) = ) g

—2d" Jy o — 2d2(f)J2,2} + O(a4)} +0(g"

where

t(m+n)/2 oo d4p ef2t‘p2 pnpm
Inm = f_oo ) p"
) f°° d*p e—2tp?

n —n n
= E = 1 .
n=2,4,... p‘“ p /P
I
All momentum integrals can be evaluated:

ho=1, h>=3/2, Juo=3/4 Js_o=1/2

Hence:
2 2

_ 3¢ a (o) _ @) _ 2B 4
(E(t,x))716ﬂ2t2{1+ a (d d® 34 )+O(a) .

_ dtota/



Anatomy of tree-level O(a?) effects in (E(t,x)) Il

For each d-coeffcient we may choose Wilson-plaquette, Liischer-Weisz or the
clover kernel or combinations thereof:

—%, plaquette (pl),
d@eh = 4, (=—% —3a) Lischer-Weisz (lw),
-2, clover (cl).

Popular combinations, d®°® = d©) — ¢ — 34(".
@ Clover observable, Wilson action & flow:

d*°® = (-15+3+9)/72 = —3/72
@ Wilson observable & action & flow:
d? = (=3+349)/72=9/72
@ Clover observable, Liischer-Weisz action & flow:
d°® = (—15 -1 —-3)/72 = —19/72
@ Liischer-Weisz observable & action & flow:
d°?' = (1-1-3)/72 = -3/72

N.B.: not improved!



Qualitative understanding the O(a2) effects in tP'9 ys. ¢
g ) 0

o Strategy: keep the standard definition of t, fixed (clover definition) and
look at cutoff effects in t from the Wilson/plaquette definition.

o Define r(t) = v/8t and the coupling g(r) in the GF scheme at scale r(to)

£ (Ea(t X)) e = 1o B (6)) =03 = B(r(t)) = 15.8

o While this relation is (by definition) exact we otherwise have

3 _ N 22
t2<Ep1aq(t7X)>|t:tg'aq = @gz(r(tgl ) (1 + Ad?o + 0(34)) =03

Here, 3415 12 1
-3+
Ad = d? — ¢ = -z
d=d d 72 72 6
@ Use 1-loop or 2-loop evolution of the GF coupling to obtain the O(a?)
shift in 2@ w.r.t. the reference (clover) definition.



Integration of the RG equation

Recall the definition of the S-function:

0,
%(r) —B(g) = bog® + bi1g® + ...
r
with the universal coefficients (N = 3)
bo = (11 — 2N) /(4m)%, = (102 — ZN;) /(4m)*

Writing r(t5°9) = r(to) + Ar with Ar small (an 0(32) effect):

2(r(to) + Ar) = E(0).

2

1+AdS
to

Expanding both sides and using that Ar/r(to) = 1/t2%/ty — 1, one obtains

plaq
B 1 BT 0, (@) elermssns = 110HL02H0(6)

Nonetheless one obtains qualitatively correct results:
@ The sign is correctly obtained: the plaquette definition comes from below!

@ Switching on N; decreases the S-function and increases the cutoff effect,



GF coupling in finite volume with twisted periodic b.c.’s

o fix the relation between flow time t and space-time volume L* by choosing
a value for ¢ = v/8t/L.

@ The trace algebra same as before, however: the numbers J, » become
linearly independent functions of c!

= more conditions for improvement: each coefficient must vanish separately!

@ Cannot be satisfied with LW /Symanzik type flow, need to be more general:
include bent rectangles/chairs with coefficient c; & define the chair flow

=1, a =-1/12, o =1/24

= complete tree-level O(a?) improvement of (E(t,x))

@ However, we then checked that the connected 2-point function
def —ip(x—
G(t,s,p) = a* Yy e P (E(t,x)E(s,y)) — (E(t,x))(E(s,¥))]

is not tree-level O(a®) improved for p # 0!

= need to be more systematic, i.e. apply Symanzik's procedure!



Symanzik's effective theory |

Systematic expansion of lattice correlation functions in terms of a
renormzalized effective continuum theory;

Terms are organized by increasing canonical dimensions

reformulate as 4 + 1 dimensional local theory [Liischer & Weisz |:
S[V,L] = Swm|U]+ 34/ dta*y " tr (Lu(t, x)
0 X

<OVt Vi)' + 0 (a8511) })
Flow quantities as expectation values of local fields [in coordinates (t, x)]:
o1V, 1) = 2" [ DVIDIL] OV, L] exp (~SV, L)

D[V] includes integration over t = 0 gauge field V,,(0,x) = U.(x)
Note: V,(t,x) is not constrained to be a solution to the flow equation;
The gradient flow equation is enforced by the integration over L.

For observables O = O[U]: definition reduces to usual 4-d expectation
values!



Symanzik's effective theory Il

Symanzik's effective theory, effective action and observables:
SerlV.L] = S[B, L]+ a*S2u[B, L]+ a°S26[B, L] + O(a*)
Ot = Oo+a 0.+ 0(a")

S2,v, S2,: 441 dimensional volume action and t = 0 boundary action.
Expansion of lattice expectation values:

<O>Iatt = <00>cont + 32<O2>cont - 32<0052,v>c0nt - a2<O()52,b>cont + 0(34)

Possible terms appearing in O(a?) contributions:

@ A priori any terms with the correct dimension which share all symmetries
of the lattice theory;

S [L, Bl :/ dt/d4x STt %), Sl Bl = /d4x 3 0i(t, ¥)lizo
0 i i

with gauge invariant O;, T; of dimension 8 and 6 respectively, polynomial
in B, and L, and derivatives ([L,] =3,[B.,]=1)

@ Similarly, O, contains local terms of dimension [Og] 4 2 sharing all the
symmetries of the lattice observable.



Symanzik's effective theory Ill

BUT: This is a rather special 4 4+ 1 dimensional theory!
@ only tree diagrams are generated in the bulk [Liischer & Weisz, 2012 ]

= counterterms for bulk action and observables in the 441 dim. volume are
determined by classical expansion!

@ Need to expand classically the lattice bulk action & flow observables
(s. below)

= Full Symanzik analysis only required for S5 .
List of dimension 6 terms (reduced by use of flow equation):

O1 = tr {JuvpJuvp} O4 = tr {Lu(0,x) v }
02 = tr {Juupduvp} Os = tr {L,(0,x)L,(0,x)}
O3 = tr {JpppJupp}

where Ju., = D,F.,



Symanzik's effective theory IV

@ the counterterms Oy >3 are already fixed in the standard 4-d theory
= cannot be modified!
@ The only new counterterms are Os 5

o Find by explicit calculation (tree-level) and directly from functional
integral (general):

/d4x (04(0,x)0[B]) x /d4x (0s(0,x)0[B])

for observables O[B] defined at t > 0.
= Os is redundant

o Effect of O, insertion: change of boundary conditions at t = 0, possible
implementation:

Vit = 0,%) = Un() exp (cugd 0S5l
In the continuum this corresponds to the addition of a term
o ale,Fl,u(x)
to B,(t = 0,x)



Classical a-expansion of gradient flow observables

Smooth underlying continuum gauge field B, (x) (t-dependence suppressed),
link variables are induced:

Vulx) = 73e><p{a/0 d\B, (x—|—(1—)\)aﬁ)}
= ]1—|—a/1d)\BM(x—|—(1—)\)aﬁ)
0

+a2/1d)\1//\1 dX2 By (x+ (1 —A1)ai) By (x + (1 — X2)aj) + ...
0 0
= 1+ aB,(x)+a’ (au B,.(x) + Bi(x))

+ta* (02Bu(x) + 2Bu(x)0u Bu(x) + (0uBu(x)) Bulx) + BL(x)) + ...

Note: gauge transformations in the continuum and on the lattice are
compatible:

Bu(x) = g(x)Bu(x)g(x) ' +&(x)0ug(x)"" & Vilx) = g(x)Vu(x)g(x+ap) !



Expansion of small Wilson loops, plaquettes etc.

Plaquette field:

Pu(x) = Vu()Vo(x + ) Viu(x + ad) "V, (x)"
Using the gauge fixing tricks by Liischer & Weisz '85 one obtains relatively
quickly:
Pu(x) = 1+42°Gu(x)+ 33%(Du + Dv)Gpu(x)
+a*l {(Dﬁ +3D,D, + Di) G (%) + 3Gjy(x)} +0(2%)
Dy = 0u+I[Bu], [Du,Dv]=[Gpuv"]

similar expansions for rectangles, chairs, etc.
o Obtain O(a%) improved lattice expressions for E(t, x) either from LW
action density or

of 4 1
Ee(t,x) < 3 (&) lpiag = 3E(t,X)laover = Econs(t,X) + O(a")

however, up to total derivative terms (often irrelevant, but not always!).



Classical expansion of flow equation

@ Lattice flow equation:
2 (9eVa(£:20) Vit )" = ~0 (el V]) . V(0,00 = U ()
o The O(a%) term for the LW flow has a simple structure
9:B, = D,G,, — 53 DD, G,y + O(3%)

as expected: not O(a?) improved

o This suggests a simple modification of the lattice flow equation (Zeuthen
flow):

& (Vo)) Va(£,3) = = (14 55°V59,,) O (8510 VI)

o This removes all O(a?) effects from the flow equation, corrections are in
fact O(a*).



Conclusions & Outlook

In principle, O(a®) effects can be removed from all gradient flow observables:
@ use a non-perturbatively O(a?) improved 4-dim. pure gauge action

@ use of classically improved flow observables, e.g. choose E(t,x) as density
of LW action;

e impose an O(a®) modified t = 0 boundary condition on V,,(t, x);
@ integrate the modified lattice flow equation, e.g. the Zeuthen flow;
In practice...
@ 4-d gauge action and initial boundary conditions determined perturbatively
= residual O(a?) artefacts even in pure gauge theory.

o Still important to completely eliminate the relatively large O(a?) effects
from the gradient flow and observables.

Future:
@ implementation of the Zeuthen flow in openQCD (done)
@ application to the QCD running coupling (started)

@ quenched/unquenched scaling tests for ty (planned)



