Symanzik improvement of Yang-Mills gradient flow observables

Stefan Sint (Trinity College Dublin)

in collaboration with Alberto Ramos (CERN)

HHIQCD 2015, Yukawa Institute for Theoretical Physics 6 March 2015

<□> <□> <□> <□> < => < => < => = -つへで 1/23

Outline

- The Yang-Mills gradient flow equation & its properties
- Some current applications
- The gradient flow equation on the lattice
- Large cutoff effects and their tree-level anatomy
- 4+1 dimensional formulation & Symanzik improvement
- Classical a-expansion of observables & the flow equation

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 2/23</p>

Conclusions & Outlook

The Yang-Mills gradient flow equation

Starting point: Yang-Mills theory in 4-dimensions:

$$S_{g}[A] = -\frac{1}{2g_{0}^{2}} \int d^{4}x \text{ tr} \{F_{\mu\nu}(x)F_{\mu\nu}(x)\}, \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]$$

Add extra (flow) time coordinate t and define the gauge field $B_{\mu}(t,x)$

$$\begin{array}{lll} G_{\mu\nu}(t,x) &=& \partial_{\mu}B_{\nu}(t,x) - \partial_{\nu}B_{\mu}(t,x) + \left[B_{\mu}(t,x), B_{\nu}(t,x)\right] \\ \partial_{t}B_{\mu}(t,x) &=& D_{\nu}G_{\nu\mu}(t,x) \quad \left(=-\frac{\delta S_{g}[B]}{\delta B_{\mu}(t,x)}\right), \qquad B_{\mu}(0,x) = A_{\mu}(x) \end{array}$$

The linearized gradient flow equation reduces to the heat equation (use gauge freedom to diagonalize RHS):

$$\partial_t B_\mu(t,x) = -\partial_
u \partial_
u B_\mu(t,x), \qquad B_\mu(t,x) = (4\pi t)^{-2} \int \mathrm{d}^4 y \,\mathrm{e}^{-rac{(x-y)^2}{4t}} A_\mu(y)$$

⇒ The gauge field $B_{\mu}(t,x)$ is smoothed over a range with radius $r(t) = \sqrt{8t}$ (2 σ range of the Gaussian smoothing function).

Properties of the Yang-Mills gradient flow

 Correlation functions of (gauge invariant) observables at t > 0 are renormalized

$$\langle O[B] \rangle = \frac{1}{Z} \int D[A]O[B] \exp\left(-S_g[A]\right)$$

once the coupling g_0 is renormalized as usual!

• Local gauge invariant composite fields at t > 0 such as

$$E(t,x) = -\frac{1}{2} \operatorname{tr} \{ G_{\mu\nu}(x,t) G_{\mu\nu}(x,t) \}$$

are renormalized; no mixing with other fields of same or lower dimensions!

- Established to all orders in perturbation theory [Lüscher & Weisz '2012];
- Explict one-loop calculation (infinite volume, dimensional regularization) [Lüscher 2010]:

$$\langle {\cal E}(t,x)
angle = {3g_{
m MS}^2(\mu)\over 16\pi^2 t^2} \left(1 + {1.0978 + 0.0075 imes N_f\over 4\pi} g_{
m MS}^2(\mu) + {
m O}(g^4)
ight), \quad \mu = {1\over \sqrt{8t}}$$

 $\Rightarrow E(t,x)$ is, for t > 0, a renormalized field; unlike E(0,x) which has a quartic and a logarithmic divergence!

Applications of the gradient flow I

 Convenient (implicit) definition of reference scale, e.g. t₀ [Lüscher 2010] easy to measure, small statistical fluctuations, mild quark mass dependence also in χPT [Bär & Golterman 2013]

• Non-perturbative definition of a renormalized "gradient flow coupling" at scale $\mu = 1/\sqrt{8t}$:

$$g^2_{
m GF}(\mu) \stackrel{
m def}{=} rac{16\pi^2}{3} t^2 \langle {\cal E}(t,x)
angle$$

• Coupling at scale $\mu_0 = 1/\sqrt{8t_0}$:

$$g_{\rm GF}^2(\mu_0) = \frac{16\pi^2}{3} \times 0.3 = 15.8 \quad \Rightarrow \quad \alpha_{\rm GF}(\mu_0) = \frac{15.8}{4\pi} = 1.257$$

• Consider $\langle E(t,x) \rangle$ in a finite box of dimension L^4 , fix the ratio $c = \sqrt{8t/L}$ and define

$$ar{g}_{ ext{GF}}^2(L) = \mathcal{N}(c)^{-1}t^2 \langle E(t,x)
angle, \qquad \lim_{c o 0} \mathcal{N}(c) = rac{3}{16\pi^2}$$

- defines family of renormalized couplings, with parameter c. (typical range from 0.2 to 0.5; c > 0.5 implies that 2r(t) > L, i.e. "smearing around the universe")
- The normalization constant is calculable in lowest order perturbation theory; depends on b.c's for the gauge field; periodic in spatial directions, and in the time direction
 - periodic b.c.'s [Fodor et al. 2012]
 - SF (Dirichlet) b.c.'s [Fritzsch & Ramos 2012]
 - twisted periodic b.c.'s [Ramos 2013]
 - open-SF (Neumann-Dirichlet) b.c.'s [Lüscher 2013]
- <u>QCD</u>, α_s determination: advantage of gradient flow coupling at low energies, but loses to SF coupling at high energies
- \Rightarrow pursue mixed approach [Fritsch et al. (ALPHA coll.), 2014]

Applications of the gradient flow III

- Small flow time expansion & operator renormalization [Lüscher 2013]
- Definition of renormalized energy-momentum tensor [Suzuki 2013ff; Del Debbio et al.,2013; Patella et al, 2014]
- enormalized energy-momentum tensor & SU(3) thermodynamics [Asakawa et al. (FlowQCD collaboration), 2014 (cf. Hatsuda on 4 March)]
- Extension to fermions possible [Lüscher 2013]
- Use flow quantities to check for autocorrelations in Monte-Carlo simulations; significant coupling to slow modes [Lüscher & Schaefer,2012]
- Assess quality of lattice actions, new improvement conditions,...

• ...

The lattice community has only just begun to explore the possibilities! Expect much more to come;

However: Improvements and/or combination with other techniques may be required;

<u>Here</u>: systematic reduction of $O(a^2)$ cutoff effects.

The gradient flow on the lattice

• consider generic SU(3) lattice action with 4-link and 6-link Wilson loops (normalization: $c_0 + 8c_1 + 16c_2 + 8c_3 = 1$):

$$S[U; c_i^{(a)}] = \frac{1}{g_0^2} \sum_{x} \operatorname{tr} \left(1 - c_0^{(a)} - c_1^{(a)} - c_2^{(a)} - c_3^{(a)} \right)$$

Expectation values defined by integral over U_{μ} .

Gradient flow equation, choose the gradient of a lattice action:

$$\partial_t V_{\mu}(t,x) = -g_0^2 \partial_{x,\mu} S[V; c_i^{(f)}] V_{\mu}(t,x), \qquad V_{\mu}(t=0,x) = U_{\mu}(x)$$

 $\Rightarrow c_i^{(a)} \neq c_i^{(f)}$ in general!

- Observables: we focus on E(t, x); two options:
 - **9** define a lattice version of $G_{\mu\nu}(t,x)$ (e.g. clover leaf of plaquettes in $\mu \nu$ plane), then form

$$E^{\mathrm{cl}}(t,x) = -rac{1}{2} \operatorname{tr} \left\{ G^{\mathrm{cl}}_{\mu
u}(t,x) G^{\mathrm{cl}}_{\mu
u}(t,x)
ight\}$$

2 E(t, x) is an action density; choose a lattice action density such that

$$a^{4}\sum_{x}E(t,x)=g_{0}^{2}S[V;c_{i}^{(o)}]$$

 \Rightarrow yet another set of $c_i^{(o)}$!

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 필 · 원٩. · 8/23

The gradient flow on the lattice

Popular choices for action parameters & terminology:

- Wilson action, Wilson flow, plaquette observable: $c_0 = 1, c_1 = c_2 = c_3 = 0;$
- Tree-level Lüscher-Weisz action, Symanzik flow:

$$c_0 = 5/3, c_1 = -1/12, c_2 = c_3 = 0;$$

 $O(a^2)$ cutoff effects are surprisingly large & and even larger in QCD!

Anatomy of tree-level O(a^2) effects in $\langle E(t,x) \rangle$ |

$$\begin{split} t^2 \langle E(t,x) \rangle &= g^2 \int_{-\pi/a}^{\pi/a} \mathrm{d}^4 p \, \mathrm{tr} \, \left[\mathcal{K}_{\mu\nu}^{(\mathrm{o})}(p,0) \bar{D}_{\mu\nu}(p,\lambda,\alpha) \right], \\ \bar{D}_{\mu\nu}(p,\lambda,\alpha) &= (\mathrm{e}^{-t\mathcal{K}^{(\mathrm{f})}(p,\alpha)})_{\mu\rho} \left(\mathcal{K}^{(\mathrm{a})}(p,\lambda)^{-1} \right)_{\rho\sigma} (\mathrm{e}^{-t\mathcal{K}^{(\mathrm{f})}(p,\alpha)})_{\sigma\nu}, \end{split}$$

- λ, α : gauge fixing parameters for the action and flow equation, respectively.
- Observable, gradient flow and action characterized by kernels $K_{\mu\nu}(p)$ of "free lattice actions":

$$S^{(a,o,f)} = \frac{1}{2} \int_{-\pi/a}^{\pi/a} d^{4}p A^{b}_{\mu}(-p) \mathcal{K}^{(a,o,f)}_{\mu\nu}(p,\lambda) A^{b}_{\nu}(p) + O(A^{3}),$$

$$\mathcal{K}^{(a,o,f)}_{\mu\nu}(p,\lambda) = \mathcal{K}^{\text{cont}}_{\mu\nu}(p,\lambda) + a^{2} \mathcal{R}^{(a,o,f)}_{\mu\nu}(p,\lambda) + O(a^{4}),$$

$$\mathcal{K}^{\text{cont}}_{\mu\nu}(p,\lambda) = p^{2} \delta_{\mu\nu} + (\lambda - 1) p_{\mu} p_{\nu}$$

Anatomy of tree-level O(a^2) effects in $\langle E(t,x) \rangle$ II

Extend momentum integrals to infinity, then evaluate traces:

$$\langle E(t,x) \rangle = \frac{3g^2}{16\pi^2 t^2} \left\{ 1 + \frac{a^2}{t} \left[\left(d_1^{(o)} - d_1^{(a)} \right) J_{4,-2} + \left(d_2^{(o)} - d_2^{(a)} \right) J_{2,0} - 2d_1^{(f)} J_{4,0} - 2d_2^{(f)} J_{2,2} \right] + O(a^4) \right\} + O(g^4)$$

where

$$J_{n,m} = \frac{t^{(m+n)/2} \int_{-\infty}^{\infty} d^4 p \, \mathrm{e}^{-2tp^2} p^n p^m}{\int_{-\infty}^{\infty} d^4 p \, \mathrm{e}^{-2tp^2}}, \qquad p^n \Big|_{n=2,4,\dots} = \sum_{\mu} p_{\mu}^n, \qquad p^{-n} = 1/p^n.$$

All momentum integrals can be evaluated:

$$J_{2,0}=1, \quad J_{2,2}=3/2, \quad J_{4,0}=3/4, \quad J_{4,-2}=1/2$$

Hence:

$$\langle E(t,x) \rangle = \frac{3g^2}{16\pi^2 t^2} \bigg\{ 1 + \frac{a^2}{t} \underbrace{\left(d^{(o)} - d^{(a)} - 3d^{(f)} \right)}_{= d^{\text{total}}} + O(a^4) \bigg\}.$$

(ロ)・(日)・(目)・(目) 目 の(の 11/23)

Anatomy of tree-level O(a^2) effects in $\langle E(t,x) \rangle$ III

For each *d*-coeffcient we may choose Wilson-plaquette, Lüscher-Weisz or the clover kernel or combinations thereof:

$$d^{(a,o,f)} = \begin{cases} -\frac{3}{72}, & \text{plaquette (pl)}, \\ \frac{1}{72}, & \left(= -\frac{1}{24} - \frac{2}{3}c_1 \right) & \text{Lüscher-Weisz (lw)}, \\ -\frac{15}{72}, & \text{clover (cl)}. \end{cases}$$

Popular combinations, $d^{\text{total}} = d^{(\text{o})} - d^{(\text{a})} - 3d^{(\text{f})}$:

Clover observable, Wilson action & flow:

$$d^{
m total} = (-15 + 3 + 9)/72 = -3/72$$

Wilson observable & action & flow:

$$d^{\text{total}} = (-3 + 3 + 9)/72 = 9/72$$

• Clover observable, Lüscher-Weisz action & flow:

$$d^{\text{total}} = (-15 - 1 - 3)/72 = -19/72$$

• Lüscher-Weisz observable & action & flow:

$$d^{\text{total}} = (1 - 1 - 3)/72 = -3/72$$

N.B.: not improved!

<□ ▶ < □ ▶ < ∃ ▶ < ∃ ▶ E り < 0 へ 0 12/23

Qualitative understanding the $O(a^2)$ effects in t_0^{plaq} vs. t_0^{cl}

- Strategy: keep the standard definition of t₀ fixed (clover definition) and look at cutoff effects in t₀ from the Wilson/plaquette definition.
- Define $r(t) = \sqrt{8t}$ and the coupling $\bar{g}(r)$ in the GF scheme at scale $r(t_0)$

$$t^2 \langle E_{c1}(t,x)
angle|_{t=t_0} = rac{3}{16\pi^2} ar{g}^2(r(t_0)) = 0.3 \quad \Rightarrow ar{g}^2(r(t_0)) = 15.8$$

• While this relation is (by definition) exact we otherwise have

$$t^2 \langle E_{\text{plaq}}(t,x) \rangle |_{t=t_0^{\text{plaq}}} = \frac{3}{16\pi^2} \bar{g}^2(r(t_0^{\text{plaq}})) \left(1 + \Delta d \frac{a^2}{t_0} + O(a^4)\right) = 0.3$$

Here,

$$\Delta d = d^{\mathrm{pl}} - d^{\mathrm{cl}} = \frac{-3 + 15}{72} = \frac{12}{72} = \frac{1}{6}$$

<□ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > ○ Q (13/23

Use 1-loop or 2-loop evolution of the GF coupling to obtain the O(a²) shift in t₀^{plaq} w.r.t. the reference (clover) definition.

Integration of the RG equation

Recall the definition of the β -function:

$$rrac{\partial g(r)}{\partial r}=-eta(g)=b_0g^3+b_1g^5+...$$

with the universal coefficients (N = 3)

$$b_0 = \left(11 - rac{2}{3}N_{
m f}
ight)/(4\pi)^2, \qquad b_1 = \left(102 - rac{28}{3}N_{
m f}
ight)/(4\pi)^4$$

Writing $r(t_0^{\text{plaq}}) = r(t_0) + \Delta r$ with Δr small (an O(a^2) effect):

$$ar{g}^2(r(t_0)+\Delta r)=rac{ar{g}^2(r(t_0))}{1+\Delta drac{a^2}{t_0}}$$

Expanding both sides and using that $\Delta r/r(t_0) = \sqrt{t_0^{\mathsf{plaq}}/t_0} - 1$, one obtains

$$rac{t_0^{
m plaq}}{t_0} = 1 - rac{\Delta d}{\{-eta(ar{g})/g\}} rac{a^2}{t_0} + {
m O}(a^4), \qquad -eta(g)/g|_{g^2=15.8,N_{
m f}=0} = 1.10 + 1.02 + {
m O}(g^6)$$

Nonetheless one obtains qualitatively correct results:

- The sign is correctly obtained: the plaquette definition comes from below!
- Switching on $N_{\rm f}$ decreases the β -function and increases the cutoff effect.

GF coupling in finite volume with twisted periodic b.c.'s

- fix the relation between flow time t and space-time volume L^4 by choosing a value for $c = \sqrt{8t}/L$.
- The trace algebra same as before, <u>however</u>: the numbers J_{n,m} become linearly independent functions of c!
- \Rightarrow more conditions for improvement: each coefficient must vanish separately!
 - Cannot be satisfied with LW/Symanzik type flow, need to be more general: include bent rectangles/chairs with coefficient c₂ & define the <u>chair flow</u>

$$c_0 = 1,$$
 $c_1 = -1/12,$ $c_2 = 1/24$

- \Rightarrow complete tree-level O(a^2) improvement of $\langle E(t,x) \rangle$
 - However, we then checked that the connected 2-point function

$$G(t,s,p) \stackrel{\text{def}}{=} a^4 \sum_{x} e^{-ip(x-y)} \left[\langle E(t,x)E(s,y) \rangle - \langle E(t,x) \rangle \langle E(s,y) \rangle \right]$$

is not tree-level O(a^2) improved for $p \neq 0$!

 \Rightarrow need to be more systematic, i.e. apply Symanzik's procedure!

Symanzik's effective theory I

- Systematic expansion of lattice correlation functions in terms of a renormzalized effective continuum theory;
- Terms are organized by increasing canonical dimensions
- \Rightarrow reformulate as 4 + 1 dimensional local theory [Lüscher & Weisz]:

$$\begin{split} S[V,L] &= S_{\mathrm{lat}}[U] + a^4 \int_0^\infty \mathrm{d}t \, a^4 \sum_x \, \mathrm{tr}\left(L_\mu(t,x) \right. \\ & \left. \left. \times \left\{ \left(\partial_t V_\mu(t,x)\right) V_\mu(t,x)^\dagger + \partial_{x,\mu} \left(g_0^2 S_{\mathrm{lat}}[V]\right) \right\} \right) \end{split}$$

• Flow quantities as expectation values of local fields [in coordinates (t, x)]:

$$\langle O[V,L] \rangle = Z^{-1} \int D[V] D[L] O[V,L] \exp\left(-S[V,L]\right)$$

- D[V] includes integration over t = 0 gauge field $V_{\mu}(0, x) \equiv U_{\mu}(x)$
- Note: $V_{\mu}(t,x)$ is not constrained to be a solution to the flow equation;
- The gradient flow equation is enforced by the integration over L.
- For observables O = O[U]: definition reduces to usual 4-d expectation values!

Symanzik's effective theory, effective action and observables:

$$\begin{array}{lll} S_{\rm eff}[V,L] &=& S_0^{\rm cont}[B,L] + a^2 S_{2,v}[B,L] + a^2 S_{2,b}[B,L] + O(a^4) \\ O_{\rm eff} &=& O_0 + a^2 O_2 + O(a^4) \end{array}$$

 $S_{2,v}$, $S_{2,b}$: 4+1 dimensional volume action and t = 0 boundary action. Expansion of lattice expectation values:

$$\langle O \rangle_{latt} = \langle O_0 \rangle_{cont} + a^2 \langle O_2 \rangle_{cont} - a^2 \langle O_0 S_{2,\nu} \rangle_{cont} - a^2 \langle O_0 S_{2,b} \rangle_{cont} + O(a^4)$$

Possible terms appearing in $O(a^2)$ contributions:

 A priori any terms with the correct dimension which share all symmetries of the lattice theory;

$$S_{2,v}[L,B] = \int_0^\infty dt \int d^4x \sum_i T_i(t,x), \qquad S_{2,b}[L,B] = \int d^4x \sum_i O_i(t,x)|_{t=0}$$

with gauge invariant O_i , T_i of dimension 8 and 6 respectively, polynomial in B_μ and L_μ and derivatives ($[L_\mu] = 3, [B_\mu] = 1$)

• Similarly, O_2 contains local terms of dimension $[O_0] + 2$ sharing all the symmetries of the lattice observable.

BUT: This is a rather special 4 + 1 dimensional theory!

- only tree diagrams are generated in the bulk [Lüscher & Weisz, 2012]
- \Rightarrow counterterms for bulk action and observables in the 4+1 dim. volume are determined by <u>classical</u> expansion!
 - Need to expand classically the lattice bulk action & flow observables (s. below)
- ⇒ Full Symanzik analysis only required for $S_{2,b}$. List of dimension 6 terms (reduced by use of flow equation):

$$\begin{array}{ll} O_1 = \mathrm{tr} \left\{ J_{\mu\nu\rho} J_{\mu\nu\rho} \right\} & O_4 = \mathrm{tr} \left\{ L_{\mu}(0,x) J_{\nu\mu\nu} \right\} \\ O_2 = \mathrm{tr} \left\{ J_{\mu\mu\rho} J_{\nu\nu\rho} \right\} & O_5 = \mathrm{tr} \left\{ L_{\mu}(0,x) L_{\mu}(0,x) \right\} \\ O_3 = \mathrm{tr} \left\{ J_{\mu\mu\rho} J_{\mu\mu\rho} \right\} & \end{array}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 18/23

where $J_{\mu\nu
ho}=D_{\mu}F_{
u
ho}$

Symanzik's effective theory IV

- the counterterms $O_{1,2,3}$ are already fixed in the standard 4-d theory
- \Rightarrow cannot be modified!
 - The only new counterterms are $O_{4,5}$
 - Find by explicit calculation (tree-level) and directly from functional integral (general):

$$\int d^4x \left< O_4(0,x) O[B] \right> \propto \int d^4x \left< O_5(0,x) O[B] \right>$$

for observables O[B] defined at t > 0.

- \Rightarrow O_5 is redundant
 - Effect of O₄ insertion: change of boundary conditions at *t* = 0, possible implementation:

$$V_{\mu}(t=0,x) = U_{\mu}(x) \exp\left(c_4 g_0^2 \partial_{x,\mu} S_g[U]\right)$$

In the continuum this corresponds to the addition of a term

$$\propto a^2 D_{
u} F_{
u\mu}(x)$$

to $B_{\mu}(t=0,x)$

Classical a-expansion of gradient flow observables

Smooth underlying continuum gauge field $B_{\mu}(x)$ (*t*-dependence suppressed), link variables are induced:

$$V_{\mu}(x) = \mathcal{P} \exp \left\{ a \int_{0}^{1} d\lambda B_{\mu} \left(x + (1 - \lambda) a \hat{\mu} \right) \right\}$$

= $1 + a \int_{0}^{1} d\lambda B_{\mu} \left(x + (1 - \lambda) a \hat{\mu} \right)$
+ $a^{2} \int_{0}^{1} d\lambda_{1} \int_{0}^{\lambda_{1}} d\lambda_{2} B_{\mu} \left(x + (1 - \lambda_{1}) a \hat{\mu} \right) B_{\mu} \left(x + (1 - \lambda_{2}) a \hat{\mu} \right) + \dots$
= $1 + a B_{\mu}(x) + a^{2} \frac{1}{2} \left(\partial_{\mu} B_{\mu}(x) + B_{\mu}^{2}(x) \right)$
+ $\frac{1}{6} a^{3} \left(\partial_{\mu}^{2} B_{\mu}(x) + 2 B_{\mu}(x) \partial_{\mu} B_{\mu}(x) + (\partial_{\mu} B_{\mu}(x)) B_{\mu}(x) + B_{\mu}^{3}(x) \right) + \dots$

<u>Note:</u> gauge transformations in the continuum and on the lattice are compatible:

$$B_{\mu}(x)
ightarrow g(x)B_{\mu}(x)g(x)^{-1}+g(x)\partial_{\mu}g(x)^{-1} \quad \Leftrightarrow \quad V_{\mu}(x)
ightarrow g(x)V_{\mu}(x)g(x+a\hat{\mu})^{-1}$$

◆□ → ◆□ → ◆ ■ → ◆ ■ → ○ へ ○ 20/23

Plaquette field:

$$P_{\mu\nu}(x) = V_{\mu}(x)V_{\nu}(x+a\hat{\mu})V_{\mu}(x+a\hat{\nu})^{\dagger}V_{\nu}(x)^{\dagger}$$

Using the gauge fixing tricks by Lüscher & Weisz '85 one obtains relatively quickly:

$$\begin{aligned} P_{\mu\nu}(x) &= & \mathbb{1} + a^2 G_{\mu\nu}(x) + a^3 \frac{1}{2} (D_\mu + D_\nu) G_{\mu\nu}(x) \\ &+ a^4 \frac{1}{6} \left\{ \left(D_\mu^2 + \frac{3}{2} D_\nu D_\mu + D_\nu^2 \right) G_{\mu\nu}(x) + 3 G_{\mu\nu}^2(x) \right\} + \mathcal{O}(a^5) \\ D_\mu &= & \partial_\mu + [B_\mu, \cdot], \quad [D_\mu, D_\nu] = [G_{\mu\nu}, \cdot] \end{aligned}$$

similar expansions for rectangles, chairs, etc.

• Obtain O(a²) improved lattice expressions for *E*(*t*, *x*) either from LW action density or

$$E_{\text{lat}}(t,x) \stackrel{\text{def}}{=} \frac{4}{3} E(t,x)|_{\text{plag}} - \frac{1}{3} E(t,x)|_{\text{clover}} = E_{\text{cont}}(t,x) + O(a^4)$$

however, up to total derivative terms (often irrelevant, but not always!).

Classical expansion of flow equation

Lattice flow equation:

$$a^2\left(\partial_t V_\mu(t,x)
ight)V_\mu(t,x)^\dagger = -\partial_{x,\mu}\left(g_0^2 \mathcal{S}_{\mathrm{lat}}[V]
ight), \hspace{0.5cm} V_\mu(0,x) = U_\mu(x)$$

• The $O(a^2)$ term for the LW flow has a simple structure

$$\partial_t B_{\mu} = D_{\nu} G_{\nu\mu} - \frac{1}{12} a^2 D_{\mu}^2 D_{\nu} G_{\nu\mu} + O(a^3)$$

as expected: not $O(a^2)$ improved

• This suggests a simple modification of the lattice flow equation (Zeuthen flow):

$$egin{split} egin{split} egin{aligned} egin{aligned} eta^2\left(\partial_tV_\mu(t,x)
ight)V_\mu(t,x)^\dagger &= -\left(1+rac{1}{12}m{a}^2
abla^*_\mu
abla_\mu
ight)\partial_{x,\mu}\left(g_0^2S_{ ext{lat}}[V]
ight) \end{split}$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ・ ● ● ● 22/23

• This removes <u>all</u> $O(a^2)$ effects from the flow equation, corrections are in fact $O(a^4)$.

Conclusions & Outlook

In principle, $O(a^2)$ effects can be removed from all gradient flow observables:

- use a non-perturbatively $O(a^2)$ improved 4-dim. pure gauge action
- use of classically improved flow observables, e.g. choose E(t, x) as density of LW action;
- impose an O(a^2) modified t = 0 boundary condition on $V_{\mu}(t, x)$;
- integrate the modified lattice flow equation, e.g. the <u>Zeuthen flow;</u>

In practice...

- 4-d gauge action and initial boundary conditions determined perturbatively
- \Rightarrow residual O(a^2) artefacts even in pure gauge theory.
 - Still important to completely eliminate the relatively large $O(a^2)$ effects from the gradient flow and observables.

Future:

- implementation of the Zeuthen flow in openQCD (done)
- application to the QCD running coupling (started)
- quenched/unquenched scaling tests for t_0 (planned)