
U(1) axial anomaly with chiral 
fermion at finite temperature

1

time, and investigate how the effective potential for the Wilson line phase varies by running
an imaginary chemical potential. In flat space-time, the effective potential of supersymmetric
theory is flat because of the cancellation between the contribution from fermions and bosons.
However, thanks to the curvature of S2, we obtain non-trivial effective potential. We find
that large R-charge is necessary in order to break the gauge symmetry. In addition, we
confirm a finite size effect on our curved space taking smallish R-charge. This method has
several issues, which are discussed following section.

This thesis is based on following papers:

1. A. Tomiya, G. Cossu, H. Fukaya, S. Hashimoto and J. Noaki, arXiv:1412.7306 [hep-lat].

2. A. Tanaka, A. Tomiya and T. Shimotani, JHEP 1410, 136 (2014) [arXiv:1404.7639
[hep-th]].

Detailed calculations are in the Appendix in order to clarify discussions.
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Sym. of Nf=2 QCD (m=0)

4

SU(2) chiral symmetry is spontaneously broken
U(1)A Sym. is violated by the anomaly

At zero temperature…

3 Symmetries in QCD

In this section we briefly review the chiral symmetry and anomaly in the context of QCD at
zero temperature2. We discuss on field theory in Euclidean space throughout in this thesis
except for some appendices.

If Lagrangian has invariant under a transformation, such transformation is called sym-
metry. When we have symmetries, thorough the Nöther theorem, we can construct relations
for correlators of the fields by the Nöther charge. Thus, symmetry of the QCD Lagrangian
predicts degeneracy of the meson correlators. However this naive expectation proved wrong.
There are 2 nontrivial quantum effect. One called spontaneous symmetry breaking, which
is a quantum effect which breaks symmetry of the Lagrangian [8]. Another is the anomaly,
which is also a quantum effect which breaks symmetry of the Lagrangian. Important differ-
ence is that spontaneous symmetry breaking always accompany with massless scalar particle,
which is called Nambu-Goldstone (NG) boson3. The NG boson has a quantum number which
corresponds to broken symmetry. If symmetries are approximated one, NG bosons acquire
light mass. Actually, existence of NG bosons connects with the Ward-Takahashi identity.
This fact called the Nambu-Goldstone theorem. Naively, the Ward-Takahashi identity seems
to be always established when we have symmetries. In other words, if symmetry dose not
reflect to particle spectra, we expect corresponding light scalar boson. Actually, there are
loophole. For example, η′ meson is a candidate of NG boson for U(1)A symmetry breaking.
However, the mass of η′ is over 4 times heavier than other NG bosons. This is called U(1)
problem4. U(1) problem is a physical evidence of the existence of the anomaly. Following,
we review arising chiral anomaly starting from QCD Lagrangian.

3.1 Symmetries and Anomalous breaking for two flavor QCD

Quarks in Nf = 2 QCD is described by the Dirac action which is given by,

SF =

∫
d4xψ̄(i /D −m)ψ, (3.1)

where,

ψ(x) =

(
u(x)
d(x)

)
, ψ̄(x) =

(
ū(x) d̄(x)

)
. (3.2)

/D is the covariant derivative 5, which is defined by,

/D = γµDµ = γµ(∂µ −
∑

a

igAa
µT

a), (3.3)

≡ γµ(∂µ − igAµ), (3.4)

where Aµ is a gauge field and T a are a generator of gauge group6, in QCD case, T a are taken
to be the Gell-Mann matrices. In other words, covariant derivative act to quark fields as a

2This section is a review of [5].
3See Appendix C
4There is another aspects on U(1) problem [4]
5Dirac operator /D is Hermitian in this section. Following sections, we use another convention.
6Generators satisfy, [T a, T b] = ifabcT c and tr (T aT b) = 1

2δab
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4
x ̄(D/ ) 

L : SU(2)L ⇥ SU(2)R ⇥ U(1)V ⇥ U(1)A
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Anomaly = Sym. Violation by Quantum Eff.

5

Nf=2 massless QCD has chiral symmetries

Z =

Z
DAµD ¯

 D exp


�
Z

d

4
x

¯

 (D/ ) 

�
 =

✓
u
d

◆

1. K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies (Oxford University Press, Oxford, 2004) 
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Nf=2 massless QCD has chiral symmetries

Action is inv., Measure is not invariant.
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Chiral symmetry breaking in QCD (Nf=2, mud=0)

SU(2)L � SU(2)R � U(1)V � U(1)A
SSB Anomaly 

SU(2)V � U(1)V Residual symmetry

Akio Tomiya(Osaka Univ.)

T = 0
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Chiral symmetry breaking in QCD (Nf=2, mud=0)

SU(2)L � SU(2)R � U(1)V � U(1)A
SSB Anomaly 

SU(2)V � U(1)V Residual symmetry

Akio Tomiya(Osaka Univ.)

T = 0

SU(2)L � SU(2)RSU(2)V

U(1)A ??

Restored

T > Tc

What happens on the anomaly above the Tc?
15年3月5日木曜日



U(1)A may be restored...
Two supporting evidences

1. Finite temperature = Theories on L3x(1/T)
　T=∞ ←→ Theory in D=3 (No anomaly)
Anomaly disappears at infinite temperature
(Anomaly could be disappeared at finite temperature?)

2. Cohen’s argument (1996, Next page)
SU(2) chiral symmetry restoration may be related to 
U(1)A restoration

7

Akio Tomiya(Osaka Univ.)
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Cohen: SU(2) & U(1)A may be restored
Fact：T>Tc , when m→0, chiral symmetry is restored <=> h ̄ i = 0

(1996)
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Cohen: SU(2) & U(1)A may be restored
Fact：T>Tc , when m→0, chiral symmetry is restored <=> h ̄ i = 0
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 If we assume　　　　　  , gap in the Dirac spectrum, it may lead �U(1)A = 0

Order parameter
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Order parameter of
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h ̄ i = 0

※Additional
condition is needed

(1996)
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→　Let’s check this by Lattice QCD !
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Group Fermion Size Gap in the 
spectrum

UA(1)
Correlator U(1)A

JLQCD
(2013)

Overlap
(Top. fixed) 2 fm Gap Degenerate Restored

TWQCD
(2013)

Optimal 
domain-wall 3 fm No gap Degenerate Restored？

LLNL/RBC
(2013) Domain-wall 2, 4 fm Peak No 

degeneracy Violated

Previous studies (DW type) are controversial !

Akio Tomiya(Osaka Univ.)

What makes such difference?
Fermion, Volumes or Topology ?
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If U(1)A symmetry is restored ?
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By the way

Ref: http://personal.kent.edu/~mstrick6/
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If U(1)A symmetry is restored ?
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By the way

We are interested 
in this point

Ref: http://personal.kent.edu/~mstrick6/
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The order of the transition may be changed : 
2nd→1st (Pisarski&Wilczek1983)
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Degeneracy of these channels
   <=>There are symmetries

Sym. of QCD<=>Degeneracy
h⇡(x)⇡(0)i h�(x)�(0)i

h�(x)�(0)i h⌘(x)⌘(0)i

SU(2)L ⇥ SU(2)R

SU(2)L ⇥ SU(2)R

U(1)A U(1)A

Figure 2: The relationship between meson correlators. Top and bottom correlators are paired
via SU(2) chiral symmetry. Left and right are paired via U(1) chiral symmetry. Below the
critical temperature, these are not degenerated.

⇢(�)

�
�critical

Figure 3: The Dirac spectrum with the gap.

where ψ =T (u d). τ is the Pauli matrices τa for the favor degrees of freedom, however we
suppress index a for simplicity. And correlators of these composite field are given by,

ΠJ(x) ≡ ⟨J(x)J(0)⟩ − ⟨J(x)⟩⟨J(0)⟩, (3.13)

where J(x) = ψ̄(x)Γψ(x). Γ corresponds to gamma matrices and flavor matrices which
includes unit matrix. The symmetries are interpreted as correlators of there fields (Fig. 2).
At zero temperature, all of correlators are not degenerate since the existence of anomaly
and spontaneous symmetry breaking. On the other hand, above the critical temperature, π
channel and σ channel, δ channel and η channel are degenerate.

3.3 Overview of Cohen’s arguments

Here we briefly summarize Cohen’s arguments. He “proved” 3 things,

1. The effect of U(1)A anomaly on the correlators essentially comes from lower part of the
spectral density ρ(λ).

2. The disconnected part of correctors is identical. Precisely speaking, Ππ(x) = Πη(x)
and Πσ(x) = Πδ(x) at m → 0.

3. An existence of gap in the spectral density is not inconsistent with an analysis of the
connected part of correctors.

And then he concluded U(1)A is restored above the critical temperature. Here, “gap” in the
Dirac spectrum means ρ(λ) = 0 for λ <∃ λcritical (Fig. 3).

Here we introduce U(1)A susceptibility,

χU(1)A =
1

V

∫
d4x(⟨π(x)π(0)⟩ − ⟨δ(x)δ(0)⟩). (3.14)

11

⇡(x) = i ̄(x)�5⌧ (x) �(x) =  ̄(x) (x)

�(x) =  ̄(x)⌧ (x) ⌘(x) = i ̄(x)�5 (x)
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where ψ =T (u d). τ is the Pauli matrices τa for the favor degrees of freedom, however we
suppress index a for simplicity. And correlators of these composite field are given by,

ΠJ(x) ≡ ⟨J(x)J(0)⟩ − ⟨J(x)⟩⟨J(0)⟩, (3.13)

where J(x) = ψ̄(x)Γψ(x). Γ corresponds to gamma matrices and flavor matrices which
includes unit matrix. The symmetries are interpreted as correlators of there fields (Fig. 2).
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Here we briefly summarize Cohen’s arguments. He “proved” 3 things,

1. The effect of U(1)A anomaly on the correlators essentially comes from lower part of the
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and Πσ(x) = Πδ(x) at m → 0.

3. An existence of gap in the spectral density is not inconsistent with an analysis of the
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Here we introduce U(1)A susceptibility,

χU(1)A =
1

V

∫
d4x(⟨π(x)π(0)⟩ − ⟨δ(x)δ(0)⟩). (3.14)

11

Sym. of QCD<=>Degeneracy
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Let’s check Cohen’s argument
Order parameter of 

SU(2) Chiral symmetry

Order parameter
U(1)A symmetry

What happens T>Tc

・Directly measure
・Measure        → Has a gap?

�U(1)A

⇢(�)

Checking U(1)A Sym. restoration at T>Tc ....

lim
m!0

�U(1)A = lim
m!0

Z 1

0
d� ⇢(�)

4m2

(�2 +m2)2

h ̄ i = lim
m!0

Z 1

0
d� ⇢(�)

2m

�2 +m2
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3.Dirac spectrum
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h ̄ i = lim
m!0

Z 1

0
d� ⇢(�)

2m

�2 +m2
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(�5D/) j = �j j

→This reflects symmetry of quarks with 
the gauge field!

= �µ(@µ +Aµ)

ρ(λ)：Distribution of λ

=Spectral density of the Dirac operator

Akio Tomiya(Osaka Univ.)

:Dirac spectrum⇢(�)

15年3月5日木曜日



19

Argument by Cohen(1996)

U(1)A violation

If there is a gap in the Dirac spectrum
(and can be ignored exact zero-modes)

Akio Tomiya(Osaka Univ.)

Cf : Aoki-Fukaya-Taniguchi (2012)

�

�

lim
m!0

Z
d

4
x[h⇡(x)⇡(0)i � h�(x)�(0)i] = lim

m!0

Z 1

0
d�

4m2
⇢(�)

(m2 + �

2)2

= 0
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Argument by Cohen(1996)

U(1)A violation

If there is a gap in the Dirac spectrum
(and can be ignored exact zero-modes)

Akio Tomiya(Osaka Univ.)

Cf : Aoki-Fukaya-Taniguchi (2012)

�

�
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m!0

Z
d

4
x[h⇡(x)⇡(0)i � h�(x)�(0)i] = lim

m!0

Z 1

0
d�

4m2
⇢(�)

(m2 + �

2)2

= 0

λ～0 modes are important
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Group Fermion Size Gap in the 
spectrum

UA(1)
Correlator U(1)A

JLQCD
(2013)

Overlap
(Top. fixed) 2 fm Gap Degenerate Restored

TWQCD
(2013)

Optimal 
domain-wall 3 fm No gap Degenerate Restored？

LLNL/RBC
(2013) Domain-wall 2, 4 fm Peak No 

degeneracy Violated

Previous studies (DW type) are controversial !

Akio Tomiya(Osaka Univ.)

What makes such difference?
Fermion, Volume or Topology ?
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Chiral symmetry on the Lat.
=Ginsparg-Wilson rel.

22

Akio Tomiya(Osaka Univ.)

15年3月5日木曜日



Chiral symmetry on the Lat.
=Ginsparg-Wilson rel.
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Akio Tomiya(Osaka Univ.)

Cont.：

is chiral symmetric <=>S =

Z
d

4
x  ̄D/  

D/ �5 + �5D/ = 0
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Chiral symmetry on the Lat.
=Ginsparg-Wilson rel.
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Lat.：

：lattice spacinga
Ginsparg-Wilson relation

D�5 + �5D = 2aD�5D

Akio Tomiya(Osaka Univ.)

Cont.：

is chiral symmetric <=>S =

Z
d

4
x  ̄D/  

D/ �5 + �5D/ = 0
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Lat.：

：lattice spacinga
Ginsparg-Wilson relation
D�5 + �5D = 2aD�5D

Chiral sym. on the Lat.

D (satisfies above) : 2 good things
1. Action has exact chiral symmetry

2. U(1)A sym. is violated by the quantization
    as same as the continuum theory.

 !  0 = ei�5(1�aD)✓ 

 ̄ !  ̄0 =  ̄ei�5✓

→ The action has full SU(2) and U(1)A symmetries
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The overlap fermion satisfies
the Ginsparg-Wilson relation exactly !

◯ Exact chiral symmetry on the lattice
� Bad for the numerical simulation because of the

sign function (needs special care).

D�5 + �5D = 2aD�5D

Akio Tomiya(Osaka Univ.)

D
ov

=
1 +m

2
� 1�m

2
�
5

sgn(HT )
HT is a hertimitan
Dirac operator
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FIG. 5: Spectral density of the massless overlap-Dirac operator in two-flavor QCD. Top and

bottom panels are the data clearly below and above the critical temperature, respectively. The

middle panel corresponds to those around the transition point. The jackknife errors are shown for

each bin of the histogram. When the histogram is terminated at the lower end, it implies that we

find no eigenmode below that value. The statistical error in that case is also zero, because we use

the jackknife method. The lighter the color the lighter the mass.

argument about the power α and the point where gap opens would not be possible with the

currently available data. There is even a possibility that the gap develops right above the

critical point. Much more extensive data at several quark masses and volumes would be

necessary for a definite conclusion on this point.
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Previous result by JLQCD(2013)

Simulation with the overlap (Exactly chiral)
Volume : L=2 fm & fixing topology
Finite temperature simulation!

→ As a result, U(1) is restored above the Tc
 

Objections: Do finite volume affect near zero modes ?
, Does topology-fixing change the physics?

In this work, we change our set-up
and Check U(1) restoration

Gap

Akio Tomiya(Osaka Univ.)

Red -> Yellow ( m→ light)
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Ideal simulation?

• Overlap action:
Large volume,
several volume

• Without topology
fixing term

26

Ideal simulation

By the way
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Ideal simulation?

• Overlap action:
Large volume,
several volume

• Without topology
fixing term
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Ideal simulation

• Overlap like action
→reweighting to OV

• Large volume、
several volume 

• Without topology
fixing term 

Our set-up

By the way
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Mobius Domain-wall fermion
　　= Better approximation of the overlap fermion

The overlap (Exactly chiral , used in JLQCD2013):

Akio Tomiya(Osaka Univ.)

Domain-wall fermion (used in RBC/LLNL)
1 digit precision chiral symmetry

D
ov

=
1 +m

2
� 1�m

2
�
5

sgn(HT )

tanh
⇥
Ls tanh

�1 (HT )
⇤

HT  is a
hermitian Dirac op.
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The overlap (Exactly chiral , used in JLQCD2013):

Akio Tomiya(Osaka Univ.)

Domain-wall fermion (used in RBC/LLNL)

Mobius Domain-wall fermion

→ Better approximation of the OV
(Still it violates the Ginsparg-Wilson rel. )

(This work) Edwards-Heller (2000)

1 digit precision chiral symmetry

3 digit chiral symmetry 

D
ov

=
1 +m

2
� 1�m

2
�
5

sgn(HT )

tanh
⇥
Ls tanh

�1 (HT )
⇤

tanh
⇥
Ls tanh

�1 (2HT )
⇤

HT  is a
hermitian Dirac op.

15年3月5日木曜日



29

Lattice set up
Gauge action:tree level Symanzik
Fermion :Mobius DW(b=2, c=1, Scaled Shamir + Tanh) 
w/ Stout smearing(3)
code :IroIro++(G. Cossu et al.) 
Resource :BG/Q(KEK)

Akio Tomiya(Osaka Univ.)

ｍres: Scale of violation of Ginsparg-Wilson relation

Effects of near-zero Dirac eigenmodes on axial U(1) Akio Tomiya

L3 ×Lt β mud(MeV) Ls mres(MeV) Temp.(MeV)

163 ×8 4.07 30 12 2.5 180
163 ×8 4.07 15∗ 12 2.4 180
163 ×8 4.07 3.0 24 1.4 180
163 ×8 4.10 32 12 1.2 200
163 ×8 4.10 16∗ 12 1.2 200
163 ×8 4.10 3.2 24 0.8 200

323 ×8 4.07 3.0 24 5∗∗ 180
323 ×8 4.10 32 12 1.7 200
323 ×8 4.10 16 24 1.7 200
323 ×8 4.10 3.2 24 0.7 200

Table 1: Our lattice set-up. Those with m∗
ud are obtained by the stochastic reweighting of the Dirac operator

determinant from the ensemble with the higher quark mass. Residual mass with ∗∗ is estimated by weighted
average of gi with some threshold.

where λi is the i-th eigenvalue of HM and λth is a certain threshold, gives a good numerical imple-
mentation for the overlap Dirac operator. With our choice λth = 0.35 (for L = 16) and 0.24 (for
L = 32) the residual mass is negligibly small, < 4×10−3 MeV.

We perform the overlap/(Möbius )domain-wall reweighting by computing

⟨O⟩ov =

〈
O

detD2
ov(mud)

detD2
DW(mud)

detD2
DW(1/2a)

detD2
ov(1/2a)

〉

DW
, (2.5)

where the ratio of the determinants are stochastically estimated using O(10) noise samples for each
configuration [11]. Here, ⟨· · ·⟩DW denotes the ensemble average with the dynamical domain-wall
quarks. Note that we have added an additional determinant of the quarks (and ghosts) with a cut-
off scale mass (1/2a), which are irrelevant for the low-energy physics but effective in reducing
statistical fluctuation originating from the UV modes.

It turns out that this overlap/(Möbius )domain-wall reweighting works on the smaller lattice
(163 × 8) only. On the larger volume 323 × 8, we instead use the low-mode reweighting, i.e. ap-
proximating the determinants by a product of lowest O(10) eigenvalues. This is not a precise
approximation of the determinant, but as discussed later, still gives information of the possible gap
on the Dirac eigenvalue histogram.

3. Preliminary results

3.1 Dirac spectrum

First, let us compare the histogram of low-lying eigenvalues of γ5DDW (m) and the reweighted
γ5Dov(m) measured on the same configurations, which allows us to examine the effect of the vio-
lation of chiral symmetry. Since we simulate each parameter set on two different volumes, we can
check the volume scaling at the same time. Since the configurations are generated by the Möbius
domain-wall quark action, the topological tunneling is active.

4

L=2 fm 

L=4 fm 
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Result of the Mobius DW

No clear gap in the spectrum
Even for the lightest mass (Red bar).

Akio Tomiya(Osaka Univ.)

→UA(1) looks violated?
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Figure 4: The eigenvalue histograms of the domain wall (left panels) and reweighted overlap
(right) Dirac operators. The data for T ∼ 180MeV on L3 = 163 (top panels) and L3 = 323

(bottom) lattices are presented.

8.2 Ginsparg-Wilson relation violation

Wemeasure the violation of the Ginsparg-Wilson relation on each eigenmode of the Hermitian
Dirac operator through

gi ≡
ψ†
iγ5[Dγ5 + γ5D − 2Dγ5D]ψi

λmi

[
(1−mud)2

2(1 +mud)

]
, (8.3)

where λmi , ψi denotes the i–th eigenvalue/eigenvector of massive Dirac operator respectively.
Last factor in (8.3) comes from the normalization of Dirac operator. Note that one can obtain
the residual mass by an weighted average of gi,

mres =
∑

i

λmi (1 +mud)

(1−mud)2(λmi )
2
gi

/
∑

i

1

(λmi )
2
. (8.4)

Figure 7 shows a scatter plot of eigenvalues versus |gi| on the configuration of 16× 8 and
mud ∼ 3 MeV. For the Möbius domain-wall fermion (cross symbols), the low-lying modes
violate the chiral symmetry to level of λi. The violation is of course negligible for the overlap
fermion (star symbols). This result indicate that the low modes of the Möbius domain-wall
Dirac operator contain significant lattice artifact of O(1). This lattice artifacts can distort
the eigenvalues by 100%, and may explain the difference from the overlap operator.

9 Discussion

Here is discussion.
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Figure 5: The eigenvalue histograms of the domain wall (left panels) and reweighted overlap
(right) Dirac operators. The data for T ∼ 200MeV on L3 = 163 (top panels) and L3 = 323

(bottom) lattices are presented.
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Figure 6: The eigenvalue histograms of the domain wall (left panels) and reweighted overlap
(right) Dirac operators. The data for T ∼ 190MeV on L3 × Lt = 323 × 12 lattices are
presented.
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No clear gap in the domain-wall spectrum
 in large volume system

3.Histogram for DW

Same result as the previous study by 
LLNL/RBC 2013
What was wrong with previous JLQCD?

Akio Tomiya(Osaka Univ.)

→U(1)A looks violated.
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No clear gap in the domain-wall spectrum
 in large volume system

3.Histogram for DW

Same result as the previous study by 
LLNL/RBC 2013
What was wrong with previous JLQCD?

Akio Tomiya(Osaka Univ.)

previous JLQCD：Finite volume effect ?
previous JLQCD：Topology fixing changes physics?

→U(1)A looks violated.

Possible causes
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 in large volume system
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previous JLQCD：Finite volume effect ?
previous JLQCD：Topology fixing changes physics?

Ginsparg-Wilson violation in DW ? 

→U(1)A looks violated.

Possible causes
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No clear gap in the domain-wall spectrum
 in large volume system

3.Histogram for DW

Same result as the previous study by 
LLNL/RBC 2013
What was wrong with previous JLQCD?

Akio Tomiya(Osaka Univ.)

previous JLQCD：Finite volume effect ?
previous JLQCD：Topology fixing changes physics?

Ginsparg-Wilson violation in DW ? 

→U(1)A looks violated.

Possible causes
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Ginsparg-Wilson violation for each mode
Akio Tomiya(Osaka Univ.)

gi ＝0 for the chiral fermion
What happens on the Mobius domain-wall ?

Eigen-function of D↓

S =

Z
d

4
x  ̄D is chiral symmetric <=>

Lattice： D�5 + �5D = 2aD�5D

gi /  †
i �5[D�5 + �5D � 2aD�5D] i
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Akio Tomiya(Osaka Univ.)

Ginsparg-Wilson relation is violated even for
improved domain-wall fermion

Near zero modes important for the issue...
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Figure 5: The eigenvalue histograms of the domain wall (left panels) and reweighted overlap
(right) Dirac operators. The data for T ∼ 200MeV on L3 = 163 (top panels) and L3 = 323

(bottom) lattices are presented.
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presented.
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Eigenmodes of improved domain-wall :
Ginsparg-Wilson is violated

Observation
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Eigenmodes of improved domain-wall :
Ginsparg-Wilson is violated

Observation

Using reweighting technique,
we switch the fermion determinant to the OV one

(toward the ideal simulation...)
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Re-weighting tech. enables us to change 
another fermion determinant 

Akio Tomiya(Osaka Univ.)

Multiplying R and taking average, we obtain 
the result with the overlap determinant

R =
Det[D2

OV]

Det[D2
DW]

(skip)

hOiOverlap /
Z

D ̄D DAµ O e�Sgaugee� ̄[DOV] 

=

Z
DAµ O e�SgaugeDet[D2

OV]

=

Z
DAµ O e�SgaugeDet[D2

OV]
Det[D2

DW]

Det[D2
DW]

=

Z
D ̄D DAµ OR e�Sgaugee� ̄[DDW] 

/hORiDomain Wall
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ρa3

Reweighting suppress near zero-modes!

λa

Blue: Reweighted  =w/ det of OV
Red: Partially quenched = w/ det of DW 

Spectral density for the overlap Dirac operator 
with different fermion determinant (OV or DW)

Cf: Microscopic Origin of UA(1) Symmetry Violation in the High Temperature Phase 
of QCD - Dick, Viktor et al. arXiv:1502.06190 [hep-lat]

T=180 MeV, L=2fm , m=3 MeV
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Figure 4: The eigenvalue histograms of the domain wall (left panels) and reweighted overlap
(right) Dirac operators. The data for T ∼ 180MeV on L3 = 163 (top panels) and L3 = 323

(bottom) lattices are presented.

8.2 Ginsparg-Wilson relation violation

Wemeasure the violation of the Ginsparg-Wilson relation on each eigenmode of the Hermitian
Dirac operator through

gi ≡
ψ†
iγ5[Dγ5 + γ5D − 2Dγ5D]ψi

λmi

[
(1−mud)2

2(1 +mud)

]
, (8.3)

where λmi , ψi denotes the i–th eigenvalue/eigenvector of massive Dirac operator respectively.
Last factor in (8.3) comes from the normalization of Dirac operator. Note that one can obtain
the residual mass by an weighted average of gi,

mres =
∑

i

λmi (1 +mud)

(1−mud)2(λmi )
2
gi

/
∑

i

1

(λmi )
2
. (8.4)

Figure 7 shows a scatter plot of eigenvalues versus |gi| on the configuration of 16× 8 and
mud ∼ 3 MeV. For the Möbius domain-wall fermion (cross symbols), the low-lying modes
violate the chiral symmetry to level of λi. The violation is of course negligible for the overlap
fermion (star symbols). This result indicate that the low modes of the Möbius domain-wall
Dirac operator contain significant lattice artifact of O(1). This lattice artifacts can distort
the eigenvalues by 100%, and may explain the difference from the overlap operator.

9 Discussion

Here is discussion.
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T~TcDomain-wall
2 fm

4 fm

Overlap

The overlap spectrums have gaps 
on the spectruｍ(λ~20MeV)

DW/OV Dirac spectrum has different shape
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7.Summary
1.  

1.1. Thanks to the reweighting,  we can perform the simulation
with the overlap in large volume without topology fixing

1.2. We find, the ov and DW spectrum have different shape

1.3. We find Ginsparg-Wilson violation for DW each eigenmodes

1.4. We find gaps in the spectrum for OV: T=180 MeV, T=200MeV ，2 
fm and 4 fm.

2.  We are going to,

2.1. find a gap in the spectrum for finer lattice

2.2. do quantitative evaluation for the gap (Check vol. scaling)

2.3. check consistency with the measurement for χU(1) 

time, and investigate how the effective potential for the Wilson line phase varies by running
an imaginary chemical potential. In flat space-time, the effective potential of supersymmetric
theory is flat because of the cancellation between the contribution from fermions and bosons.
However, thanks to the curvature of S2, we obtain non-trivial effective potential. We find
that large R-charge is necessary in order to break the gauge symmetry. In addition, we
confirm a finite size effect on our curved space taking smallish R-charge. This method has
several issues, which are discussed following section.

This thesis is based on following papers:

1. A. Tomiya, G. Cossu, H. Fukaya, S. Hashimoto and J. Noaki, arXiv:1412.7306 [hep-lat].

2. A. Tanaka, A. Tomiya and T. Shimotani, JHEP 1410, 136 (2014) [arXiv:1404.7639
[hep-th]].

Detailed calculations are in the Appendix in order to clarify discussions.
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