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2. The QCD Phase diagram

Before discussing calculations for the η/s ratio for confined matter, let
us present a novel form of displaying the phase diagram of QCD matter,
i.e. matter, where the mean interparticle spacing is of the order of a few
femtometers. In this case the strong interaction is the main player in the
equation of state. Rather than representing the phase diagram in terms of
temperature T and baryo-chemical potential µ we choose to plot pressure
vs. temperature. This has the advantage of a more direct comparison with
other substances such as water or liquid Helium. The results are shown in
Fig. 2.
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Fig. 2. Phase diagram of strong-interaction matter in the pressure-temperature
plane [5]. Due to relativistic effects there exists an unphysical region in which
QCD matter cannot exist in equilibrium.

The low-temperature regime is the realm of nucleonic matter, which may
undergo a first-order chiral restoration transition to chirally ordered and
superconducting quark matter at high pressure. These phases could be
realized in the interior of neutron stars. At high temperatures one encoun-
ters quark-gluon matter, whose boundary to the unphysical region (µ = 0)
is quantitatively described by lattice QCD and a free pion gas at low T .
When raising the temperature the first-order chiral transition line ends in a
chiral critical endpoint (CEP) of second order. Current and future heavy-
ion experiments are indicated as well as the chemical freeze out. The latter
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2. The QCD Phase diagram

Before discussing calculations for the η/s ratio for confined matter, let
us present a novel form of displaying the phase diagram of QCD matter,
i.e. matter, where the mean interparticle spacing is of the order of a few
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other substances such as water or liquid Helium. The results are shown in
Fig. 2.
























































 







        

















































































Fig. 2. Phase diagram of strong-interaction matter in the pressure-temperature
plane [5]. Due to relativistic effects there exists an unphysical region in which
QCD matter cannot exist in equilibrium.

The low-temperature regime is the realm of nucleonic matter, which may
undergo a first-order chiral restoration transition to chirally ordered and
superconducting quark matter at high pressure. These phases could be
realized in the interior of neutron stars. At high temperatures one encoun-
ters quark-gluon matter, whose boundary to the unphysical region (µ = 0)
is quantitatively described by lattice QCD and a free pion gas at low T .
When raising the temperature the first-order chiral transition line ends in a
chiral critical endpoint (CEP) of second order. Current and future heavy-
ion experiments are indicated as well as the chemical freeze out. The latter
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 CHIRAL RESTORATION
from Nambu-Goldstone to 

Wigner-Weyl Realisation of Chiral Symmetry

PHASE TRANSITION or smooth CROSSOVER ?

T [MeV]

P


MeV

fm3

�

nuclear
physics
terrain

Chiral 1st order phase transition incl. critical point 
based on chiral quark models (NJL, PNJL, quark-meson models, …)

These models do not respect nuclear physics constraints 

Needed:  systematic (EFT) approach to nuclear thermodynamics
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NUCLEAR MATTER  and  QCD PHASES

momentum scale:
Fermi momentum 

?

kF ≃ 1.4 fm
−1

∼ 2mπ

NN distance:  dNN ≃ 1.8 fm ≃ 1.3 m
−1

π

Scales in N = Z nuclear matter

energy per nucleon:  E/A ≃ −16 MeV

compression modulus: K = (260 ± 30) MeV∼ 2mπ

?
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Fig. 8. (Left) The multi-Gaussian fit of the central potential VC(r) with NGauss = 5. (Right) The scattering
phase in 1S0 channel in the laboratory frame obtained from the lattice NN potential, together with experimental
data [38].

We solve the Schrödinger equation in the 1S0 channel with this fitted potential VC(r), in order to
calculate the scattering phase shift. Figure 8 (right) shows the scattering phase δ(k) in the laboratory
frame, together with the experimental data [38] for a comparison. A qualitative feature of the experi-
mental data is well reproduced by the lattice potential, though the strength is weaker, most likely due
to the heavier pion mass, mπ ≃ 701MeV. The scattering length obtained from the derivative of the
phase shift at k = 0 becomes a(1S0) = limk→0 tan δ(k)/k = 1.6(1.1) fm, which is compared to the
experimental value aexp(1S0) ≃ 20 fm.

4.5. Nuclear force in the odd parity sector and the spin-orbit force in full QCD
In this subsection, we consider the potentials in odd parity sectors. Together with nuclear forces
in even parity sectors, information on odd parity sectors is necessary for studying many-nucleon
systems with Schrödinger equations. In particular, we are interested in the spin-orbit (LS) force,
which gives rise to part of the spin-orbit coupling in the average single-particle potential of nuclei.
It is also expected to induce superfluidity in neutron stars by providing an attraction between two
neutrons in the 3P2 channel [13].
The LS force appear at the NLO of the derivative expansion as

[H0 + VC(r)(S,I ) + VT (r)S12 + VLS(r)L · S]ϕW (r; J−, I ) = EkϕW (r; J−, I ) (4.3)

To obtain the three unknown potentials, VC , VT , and VLS , we need three independent NBS wave
functions. We therefore generalize the two-nucleon source for odd parity sectors, by imposing a
momentum on the composite nucleon fields as

Jαβ(t0; f (i)) ≡ Nα(t0; f (i))Nβ(t0; f (i)∗) for i = ±1, ±2, ±3, (4.4)

where N denotes a composite nucleon source field carrying a momentum,

Nα(t0; f (i)) ≡
∑

x1,x2,x3
ϵabc(uTa (x1)Cγ5db(x2))qc,α(x3) f (i)(x3), (4.5)

with f (± j)(x) = exp[±2π i x j/L]. The star “*” in the r.h.s. of Eq. (4.4) represents the complex con-
jugation, which is used to invert the direction of the plane wave. A cubic group analysis shows that the
two-nucleon source Eq. (4.4) contains the orbital contribution A+

1 ⊕ E+ ⊕ T−
1 , whose main com-

ponents are S-, D-, and P-waves, respectively. Thus the two-nucleon source Eq. (4.4) covers all the
two-nucleon channels with J ≤ 2.
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Nuclear Forces

Hierarchy of  
SCALES

Early history:   M. Taketani et al.  (1951)

  Chiral Effective  
 Field Theory  

&  
Lattice QCD

contact terms explicit treatment of  
two-pion exchange

contemporary approaches: 

NN Central Potential 
from Lattice QCD

S. Aoki, T. Hatsuda, N. Ishii
 Prog. Theor. Phys. 123 (2010) 89

r [m−1

π
]
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PIONS,  NUCLEONS and NUCLEI  
in the context of  LOW-ENERGY QCD

CONFINEMENT of quarks and gluons in hadrons

Spontaneously broken CHIRAL SYMMETRY

LOW-ENERGY QCD with light (u,d) quarks:     
Effective  Field  Theory  of (weakly) interacting 
Nambu-Goldstone Bosons (pions) 

Q << 4π fπ ∼ 1GeV

Chiral EFT represents QCD at energy/momentum scales

Strategies at the interface between QCD and nuclear physics :

In-medium Chiral Perturbation Theory
based  on  non-linear sigma model 

(with inclusion of nucleons)

Chiral Nucleon-Meson model
based  on  linear sigma model

non-perturbative  
Renormalization Group approach

expansion of free energy density  
in powers  of  Fermi momentum 
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PART  I:   
 In-medium Chiral Perturbation Theory

and the nuclear many-body problem
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Interacting systems of 
PIONS  (light / fast)  and  NUCLEONS  (heavy / slow):   

+ + . . .

π πN N

+

π π

Leff = Lπ(U, ∂U) + LN (ΨN , U, ...)

U(x) = exp[iτaπa(x)/fπ]

CHIRAL  EFFECTIVE  FIELD  THEORY

Construction of Effective Lagrangian: Symmetries
short 

distance 
dynamics:

contact terms

8



NUCLEAR  INTERACTIONS  from
CHIRAL  EFFECTIVE  FIELD  THEORY  
 Weinberg                Bedaque & van Kolck             Bernard,  Epelbaum,  Kaiser,  Meißner;  . . . 
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Systematically organized HIERARCHY
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   Systematic expansion of  ENERGY DENSITY  
powers of Fermi momentum

E(kF)

 Loop expansion of (In-Medium) Chiral Perturbation Theory

[modulo functions fn(kF/mπ)

in
]

   IN-MEDIUM CHIRAL PERTURBATION THEORY

Nuclear thermodynamics: compute free energy density  
(3-loop order)
N. Kaiser,  S. Fritsch,  W. W. 

 (2002-2004)

in-medium
nucleon propagators
incl.  Pauli blocking

Small 
scales:

mπ, kF << 4πfπ ∼ 1GeVenergy,  momentum,

10



Inclusion of chiral πN∆-dynamics
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essentially an analytical calculation
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Hugenholtz-van-Hove theorem:
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3

∂Ē
∂kf

severe problem in BHF calculations

N. Kaiser Chiral dynamics of nuclear matter
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NUCLEAR  MATTER

S. Fritsch, N. Kaiser,  W. W. 
 Nucl. Phys.  A 750 (2005) 259  In-medium ChPT  

(π,N,∆)

basically: 
analytic calculation

Input parameters:
few contact terms

Output:

Binding & saturation

Realistic (complex, momentum dependent) single-particle potential

Asymmetry energy:

A(k0

F) = 34MeV

Fermi Liquid Theory:
Quasiparticle interaction and Landau parameters

 3-loop T = 0

J.W. Holt, N. Kaiser,  W. W.
Nucl. Phys.  A 870 (2011) 1, 
Nucl. Phys.  A 876 (2012) 61, 
Phys. Rev. C 87 (2013) 014338

... satisfying Hugenholtz - van Hove and Luttinger theorems (!)

Recent reviews:     
J.W. Holt, N. Kaiser,  W. W.              Prog. Part. Nucl. Phys. 73 (2013) 35
J.W. Holt, M. Rho, W. W.                  arXiv:1411.6681, to appear in Phys. Reports

C. Wellenhofer, J.W. Holt, 
N. Kaiser,  W. W.

Phys. Rev. C 89 (2014) 064009

E0/A = �16MeV

⇢0 = 0.16 fm�3

K = 290MeV

Nuclear Energy Density Functional and finite nuclei
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Phase diagram of nuclear matter: summary

T � � diagram
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Nuclear liquid - gas phase transition: 
Trajectory of CRITICAL POINT for asymmetric matter

. . . determined almost completely by 
isospin dependent (one- and two-) pion exchange dynamics

as function of proton fraction Z/A
S. Fiorilla, 

N. Kaiser,  W. W.   
Nucl. Phys.  
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Figure 1. Left: Equation of State of nuclear matter [1]. Right: measured Temperature-Energy
correlation (caloric curve) [3].

confirmed this observation [4]. The measured value of the saturation temperature changes
with the system charge indicating that Coulomb energy can modify the onset of the phase
transition [5].

Together with the flattening of the caloric curves [3], also the sudden opening of the
high fragment multiplicity channel, the onset of collective expansion, the enhanced pro-
duction of equal mass fragments [6], the abnormally high partial energy fluctuations [7],
the bimodal distribution of exclusive observables [8], and the finite size and Fisher scal-
ings [9,10], have all been related to the occurrence of a phase transition.

To contribute to this program, in this work we present statistical analyses of fragment
observables performed with different reactions: from peripheral 35 A MeV Au + Au
collisions to central events from 25 A MeV Au + C, 25 and 35 A MeV Au + Cu and
35 A MeV Au + Au collisions [10]. Data were collected at the K1200-NSCL Cyclotron
at MSU with the MULTICS-MINIBALL apparatus. Almost complete events have been
selected with a constant value for the collected charge (about 90% of the total charge [10]).

2. GLOBAL FRAGMENT OBSERVABLES

Nuclear transport models predict that after the projectile and target touch themselves, a
fast compression stage (≈ 20 fm/c) starts and light particles are emitted (pre-equilibrium
emission). The system subsequently expands, correlations develop, and after a few tens of
fm/c surfaces appear inside the inhomogeneous medium. Once the fragment surfaces are
separated by a distance overcoming the nuclear interaction range, inter-fragment interac-
tions are inhibited and the chemical and energetic fragment content is fixed (freeze-out
stage). These fragments are typically not in their ground state, and they undergo a slow
light particles decay in vacuum, in some hundreds of fm/c. Finally, after a time of the
order of nanoseconds ≈ 1014 fm/c, the final (cold) products impinge on the detecting
system, keeping the same identity reached after the secondary decays.

To perform thermodynamical analyses, data must be selected such as to isolate events
keeping a negligible memory of the entrance channel dynamics. This can be verified by
checking that for a given source the fragmentation pattern is determined by the average
size, charge, energy and freeze-out volume solely, independent of the way the source has

M. D’Agostino et al. / Nuclear Physics A 749 (2005) 55c–64c56c

NUCLEAR  LIQUID-GAS  TRANSITION

from multifragmentation measurements in heavy-ion collisions

THe−Li [MeV]

⟨E⟩

⟨A⟩
[MeV]

J. Pochodzalla et al.
Phys. Rev. Lett. 75 (1995) 1040

M. D’Agostino et al.
Nucl. Phys.  A 749 (2005) 55
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Phys. Rev. C 87 (2013) 014338

NEUTRON  MATTER

In-medium chiral effective field theory (3-loop) with resummation of 
short distance contact terms (large nn scattering length, as = 19 fm)

agreement with sophisticated many-body calculations
(e.g.  recent  Quantum Monte Carlo  computations )

Neutron matter
behaves almost 
(but not quite) like
a unitary Fermi gas 

Bertsch parameter

ξ =

Ē

EFermi gas
≃ 0.5

S. Gandolfi et al.
EPJ A50 (2014) 10
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PART  II:   
Chiral Nucleon-Meson Model 

and 
Functional Renormalization Group
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Mesons, Nucleons, Nuclear Matter 
and

Functional Renormalization Group

Chiral nucleon - meson model  

Effective potential constructed to reproduce standard 
nuclear thermodynamics around equilibrium  

Mean field calculations    
S. Floerchinger, Ch. Wetterich :  Nucl. Phys.  A 890-891 (2012) 11

M. Drews, T. Hell, B. Klein, W. W.       Phys. Rev. D88 (2013) 096011

2

find no such critical endpoint for temperatures T � 100 MeV
and baryon chemical potentials µ � 1 GeV.

II. CHIRAL NUCLEON-MESON MODEL

We begin with a brief description of the chiral nucleon-
meson model used in ref.[? ]. The degrees of freedom at
work in baryonic matter at densities around the nuclear liquid-
gas phase transition are nucleons and pions, with their dynam-
ics governed by the spontaneously broken chiral symmetry of
low-energy QCD. Chiral symmetry is realized at the level of
the effective Lagrangian in the form of a generalized linear
sigma model. The nucleon mass is generated by the expecta-
tion value of a scalar field ⌃. The ⌃ and pion fields are com-
bined in a four-component field, ⌥ = (⌃,�), that transforms
under the chiral group SO(4) ⌅= SU(2)L ⇤ SU(2)R. Its in-
variant square is defined as:

⇧ =
1

2
⌥†⌥ =

1

2
(⌃2 + �2). (1)

Protons and neutrons are combined in the isospin doublet
Dirac field � = (�p,�n)T . As an additional important in-
gredient, the repulsive short-range nucleon-nucleon force is
conveniently modeled in terms of a four-fermion vector in-
teraction proportional to �̄⇥µ� �̄⇥µ�. When bosonized by
means of a Hubbard-Stratonovich transformation, this short-
distance repulsion can be thought of as mediated by a vector
field,  µ, as in the time-honoured Walecka model [? ], but
now in a framework that explicitly incorporates chiral sym-
metry.

In summary, the Lagrangian of the chiral nucleon-meson
model with baryon chemical potential µ reads

L = �̄
⌥
i/� � gs(⌃ + i⇥5 ⇥ · �)� gv ⇥µ 

µ + µ⇥0
�
�

+ 1
2�µ⌃ �

µ⌃ + 1
2�µ� · �µ� � U(�,⌃)

� 1
4Fµ⇤F

µ⇤ + 1
2m

2
v  µ 

µ , (2)

with the field tensor Fµ⇤ = �µ ⇤ � �⇤ µ. The parameters
of the model are the (pseudo) scalar and vector couplings gs
and gv , respectively, and the mass mv of the vector boson.
The potential U(�,⌃) has a chiral invariant piece, U0(⇧), and
a term linear in ⌃ that breaks chiral symmetry explicitly,

U(�,⌃) = U0(⇧) +m2
⌅ f⌅ ⌃ (3)

involving the squared pion mass together with the pion decay
constant f⌅ = 93 MeV.

The only fields that can acquire non-zero vacuum expec-
tation values are the scalar field ⌃, representing the chiral
(quark) condensate in the hadronic phase of QCD with spon-
taneously broken chiral symmetry, and the time component
 0 of the vector field  µ linked to the baryon density as its
source. The spatial components of the  field vanish in the
mean-field approximation in order to preserve the rotational
symmetry of the vacuum. The expectation value of the pion
field vanishes assuming that there is no pion condensate.

As in ref. [? ] the aim is now to construct an effective
potential, U(⌃, 0;T, µ), that incorporates effects of quantum
and thermal fluctuations. A detailed computation of this ef-
fective potential (starting from the microscopic action and po-
tential U ) is not feasible. However, for the thermodynamics
derived from the model Lagrangian (2), only the difference
between effective potentials,

U(⌃, 0;T, µ)� U(⌃, 0;T = 0, µ = µc) , (4)

is of interest [? ]. Here µc is the critical baryon chemical
potential where the nuclear liquid-gas phase transition occurs
at vanishing temperature. This chemical potential is the dif-
ference of the nucleon mass and binding energy in nuclear
matter at equilibrium: µc = mN � B = (939 � 16) MeV =
923 MeV.

In practice, the effective potential U is parametrized such as
to reproduce empirical nuclear physics data at T = 0 and µ =
µc. The chiral symmetric part of the potential is expanded
up to a sufficiently high order Nmax in the chiral field ⇧ =
1
2 (⌃

2 + �2) (reduced by setting � = 0) around its vacuum
value, ⇧0 = 1

2f
2
⌅ :

U(⌃, 0) = m2
⌅f⌅(⌃ � f⌅) +m2

⌅(⇧� ⇧0)

+
Nmax⇧

n=2

an
n!

(⇧� ⇧0)
n +

1

2
m2

v  
2
0 . (5)

The coefficient of the term linear in ⇧�⇧0 is fixed by the phys-
ical pion mass, m⌅ = 139 MeV. The minimum of U(⌃, 0)
determines the expectation values of ⌃ and  0. A constant has
been subtracted to achieve a vanishing vacuum pressure,

Pvac = �U(⌃ = f⌅, 0 = 0) = 0 .

When the nucleons are integrated out the mean-field effective
potential takes the form

UMF = U(⌃, 0)� 4PFG , (6)

where

PFG =

⌃
d3p

(2⌅)3
T ln
⇤
1 + e��

�
EN (p)�µeff

⇥ ⌅

+

⌃
d3p

(2⌅)3
T ln
⇤
1 + e��

�
EN (p)+µeff

⇥ ⌅
(7)

is the Fermi gas pressure of (relativistic) nucleon quasiparti-
cles with energy EN (p) =

 
p2 +m2

eff , and � = 1/T . The
prefactor of four in eq.(6) accounts for spin and isospin degen-
eracies. The effective nucleon quasiparticle mass and chemi-
cal potential are given as

meff = gs ⌃ , µeff = µ� gv  0 . (8)

The presence of the background vector field shifts (reduces)
the baryon chemical potential.

For a given temperature T and chemical potential µ, the
mean-field effective potential (6) is minimized with respect to
⌃ and  0,

�UMF

�⌃
= 0 ,

�UMF

� 0
= 0 . (9)
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The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is

Uk,⌅(T , µp, µn, ⇧, ⌃0, ⇤3
0) =

�

n

an,k(T , µp, µn, ⌃0, ⇤3
0)

n!
(⇧ � ⇧0)

n . (4.95)

In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,

⌥�k

⌥k
= �V · ⌥Uk,⌅(T , µp, µn, ⇧, ⌃0, ⇤3

0)
⌥k

. (4.96)

The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is

k
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with

E2
� = k2 + m2

� , E2
⇤ = k2 + m2

⇤ , E2
N = k2 + m2

N ,
m2

� = U �
k,⌅(⇧) , m2

⇤ = U �
k,⌅(⇧) + 2⇧ U ��

k,⌅(⇧) , m2
N = 2g2

s⇧ ,
µp,e� = µp � g⇧⌃0 � g⇥⇤3

0 , µn,e� = µn � g⇧⌃0 + g⇥⇤3
0 .

The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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the flow equations for the couplings can be computed directly from the full flow equation
as

k
�an,k

�k
= k

�

�k

�nUk,⇤
�n⌃

�����
⇤=⇤0

=
�nfU
�⌃n

�����
⇤=⇤0

. (4.98)

To get a better physical understanding, it is useful to study the expression for fU with
the Matsubara sums not yet performed. As shown in App. A.3,

fU = lbos
0 (E⇥) + lbos

0 (E⇥) �
⌅

i,n,p
lfer
0 (E⇥, µi,e�) , (4.99)

where the threshold functions are

lbos
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k5

6⇧2 T
⌅

l

1
⌥2

l + E2 , ⌥l = 2l⇧T ,

lfer
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k5

6⇧2 T
⌅

l

1
(⌥l + iµ)2 + E2 , ⌥l = (2l + 1)⇧T .

(4.100)

Instead of the Matsubara formalism one can work in the real-time formalism (which is
however practically more di⇥cult) by replacing

1
⌥2

l + |p|2 + m2 ⇥ i

p2 � m2 + i⇤
+

2⇧

e�|p0| �1⇥(p2 � m2) , (4.101)

in the case of bosons, as is shown for instance in Ref. [175]. We have defined p2 = p2
0 � |p|2.

The Matsubara sum is then replaced by an integral over p0. For fermions, the fields double
in real-time formalism, and correspondence is in general more di⇥cult. However, in the
case of vanishing temperature the same results can be obtained from a calculation in real
time, using the propagator

DF = (pµ�µ + m)
⇥

i

p2 � m2 + i⇤
� 2⇧ ⌅(p0) · ⌅(kf � |p|) · ⇥(p2 � m2)

⇤
. (4.102)

The first term is identified as the vacuum propagator. The second term is an in-medium
insertion as a result of the Fermi sea, filled up to kf =

⇧
µ2 � m2, which accounts for

Pauli-blocking e�ects. In the non-relativistic limit, an equivalent description of the prop-
agator is given by

DF =
i⌅(kf � |p|)
p0 � p2

2m � i⇤
+

i⌅(|p| � kf )

p0 � p2
2m + i⇤

. (4.103)

The first expression corresponds to propagating particles, the second to holes. All particle-
hole excitations are therefore naturally included in the FRG framework. We can now
give a physical interpretation of the flow equations. First, look at the flow of the zero-
component, i.e., the pressure, which is given by

k
�a0,k
�k

= fU

���
⇤=⇤0

=
1
2

�����
⇤=⇤0

+
1
2

�����
⇤=⇤0

. (4.104)

Note that the interpretation of the loops is di�erent from that in the full flow equation.
Here, the loops are evaluated at the minimum ⌃0, whereas in the flow equation, the loops

See: pages 55 ff.  
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Neutron stars put nowadays strong constraints on a realistic equation of state of highly dense matter. We
perform a study of cold and dense matter in a chirally effective nucleon-meson model extended to asymmet-
ric nuclear matter. After a mean-field analysis, fluctuations are included in the framework of the functional
renormalization group. The liquid-gas phase transition of nuclear matter is investigated in detail and the study
is extended to asymmetric nuclear matter. The equations of state of both symmetric nuclear matter and pure
neutron matter are found to be in excellent agreement with realistic computations. Finally, beta equilibrium is
included and neutron star matter is discussed. The mass-radius constraints are satisfied.

I. INTRODUCTION

The increasing quality of observational data of neutron
stars in the last years opened up a new window to con-
strain the equation of state (EoS) of cold and dense matter,
otherwise inaccessible by experiment. Two heavy pulsars
were measured with extreme accuracy: J1614-2230 with a
mass of M = (1.97± 0.04)M⇥ [1], and J0348+0432 with
M = (2.01± 0.04)M⇥ [2]. Only a sufficiently stiff EoS can
support two-solar-mass neutron stars against gravitational col-
lapse. In contrast, the radii of neutron stars are much harder
to determine in a model-independent way. Nevertheless, the
combined data makes neutron stars an indispensable tool to
put boundaries to possible equations of state [3–5].

Also theoretical investigations of neutron-rich matter con-
verged in recent years. Different approaches, such as chiral
effective field theory (ChEFT,[6–8]), chiral Fermi liquid the-
ory [9], as well as quantum Monte Carlo (QMC) methods,
with phenomenological potentials [10, 11]) and with ChEFT
potentials [12–14] agree well in their common overlap of ap-
plicability at lower densities.

For larger densities, it is crucial to include effects from
three-body forces as well as higher-order pion-exchange pro-
cesses [15, 16]. It is therefore expected that fluctuations play
an important role also in effective boson-exchange models. A
powerful method to study the effects of fluctuations in a con-
sistent and fully non-perturbative way is the functional renor-
malization group (FRG [17–21]). In recent studies [22–24]
we applied the FRG methods to a chiral nucleon-meson model
[25, 26] for symmetric nuclear matter and pure neutron matter.
A great improvement of the equation of state was observed.
In the present paper, we provide a full study of asymmetric
nuclear matter, characterized by different neutron and proton
densities. Eventually we will study neutron star matter under
the condition of beta equilibrium. We present the results in
the light of the observational constraints.

II. THE EXTENDED CHIRAL EFFECTIVE
NUCLEON-MESON MODEL

The predominant degrees of freedom of cold and dense
matter are baryons. Since the equation of state has to be

stiff enough in order to support two-solar-mass neutron stars,
exotic matter, such as quark matter, kaon condensates, or a
substantial contribution of hyperons in the interior of neu-
tron stars becomes more and more unlikely, unless there is
a strong enough repulsive force [27]. Moreover, it might
well be the case that the density even in the center of neu-
tron stars does not exceed about five times nuclear satura-
tion density, n0 = 0.16 fm�3, see Ref. [5]. Up to these
densities, conventional descriptions based on baryonic de-
grees of freedom work extremely well [28]. It is therefore
reasonable to study an effective model based on baryonic
matter. The chiral nucleon-meson model, as constructed in
[25, 26, 29], is well-suited for this purpose. It is based on
neutrons and protons combined into an isospin doublet nu-
cleon field ⇤ = (⇤p,⇤n)T . The nucleon-nucleon interactions
are modeled by effective bosons exchanged between the nu-
cleons. The long-range attractive part is modeled by a four-
component field (⇥,�), which transforms under the chiral
group SO(4) ⇤= SU(2)L ⇥ SU(2)R. The short-range repul-
sive part is described by four-fermion vector-isoscalar inter-
actions (⇤̄�µ⇤) (⇤̄�µ⇤), as well as vector-isovector interac-
tions (⇤̄�µ⇤⇤) · (⇤̄�µ⇤⇤), where ⇤ are the isospin Pauli ma-
trices. After a Hubbard-Stratonovich transformation, these in-
teractions are bosonized and effective vector-isovector fields
⌅µ and vector-isovector bosons ⇥µ are introduced. In the
present study, both vector particles are introduced at the level
of a mean field approximation. They parametrize the un-
known short-range physics and are therefore not to be identi-
fied with the physical omega and rho mesons. The Lagrangian
(in Minkowski space-time) of this extended effective chiral
nucleon-meson model reads

L = ⇤̄i�µ⇧
µ⇤ +

1

2
⇧µ⇥ ⇧µ⇥ +

1

2
⇧µ� · ⇧µ�

� ⇤̄
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⇥
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� 1

4
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2
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2
m2
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(1)

Here, the field strength tensors of the two vector bosons
⌅µ and ⇥µ are given by F (⇤)

µ� = ⇧µ⌅� � ⇧�⌅µ and
F (⇥)
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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the flow equations for the couplings can be computed directly from the full flow equation
as
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To get a better physical understanding, it is useful to study the expression for fU with
the Matsubara sums not yet performed. As shown in App. A.3,

fU = lbos
0 (E⇥) + lbos

0 (E⇥) �
⌅

i,n,p
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where the threshold functions are
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Instead of the Matsubara formalism one can work in the real-time formalism (which is
however practically more di⇥cult) by replacing

1
⌥2

l + |p|2 + m2 ⇥ i

p2 � m2 + i⇤
+

2⇧

e�|p0| �1⇥(p2 � m2) , (4.101)

in the case of bosons, as is shown for instance in Ref. [175]. We have defined p2 = p2
0 � |p|2.

The Matsubara sum is then replaced by an integral over p0. For fermions, the fields double
in real-time formalism, and correspondence is in general more di⇥cult. However, in the
case of vanishing temperature the same results can be obtained from a calculation in real
time, using the propagator

DF = (pµ�µ + m)
⇥

i

p2 � m2 + i⇤
� 2⇧ ⌅(p0) · ⌅(kf � |p|) · ⇥(p2 � m2)

⇤
. (4.102)

The first term is identified as the vacuum propagator. The second term is an in-medium
insertion as a result of the Fermi sea, filled up to kf =

⇧
µ2 � m2, which accounts for

Pauli-blocking e�ects. In the non-relativistic limit, an equivalent description of the prop-
agator is given by

DF =
i⌅(kf � |p|)
p0 � p2

2m � i⇤
+

i⌅(|p| � kf )

p0 � p2
2m + i⇤

. (4.103)

The first expression corresponds to propagating particles, the second to holes. All particle-
hole excitations are therefore naturally included in the FRG framework. We can now
give a physical interpretation of the flow equations. First, look at the flow of the zero-
component, i.e., the pressure, which is given by

k
�a0,k
�k

= fU

���
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=
1
2

�����
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+
1
2

�����
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. (4.104)

Note that the interpretation of the loops is di�erent from that in the full flow equation.
Here, the loops are evaluated at the minimum ⌃0, whereas in the flow equation, the loops
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Neutron stars put nowadays strong constraints on a realistic equation of state of highly dense matter. We
perform a study of cold and dense matter in a chirally effective nucleon-meson model extended to asymmet-
ric nuclear matter. After a mean-field analysis, fluctuations are included in the framework of the functional
renormalization group. The liquid-gas phase transition of nuclear matter is investigated in detail and the study
is extended to asymmetric nuclear matter. The equations of state of both symmetric nuclear matter and pure
neutron matter are found to be in excellent agreement with realistic computations. Finally, beta equilibrium is
included and neutron star matter is discussed. The mass-radius constraints are satisfied.

I. INTRODUCTION

The increasing quality of observational data of neutron
stars in the last years opened up a new window to con-
strain the equation of state (EoS) of cold and dense matter,
otherwise inaccessible by experiment. Two heavy pulsars
were measured with extreme accuracy: J1614-2230 with a
mass of M = (1.97± 0.04)M⇥ [1], and J0348+0432 with
M = (2.01± 0.04)M⇥ [2]. Only a sufficiently stiff EoS can
support two-solar-mass neutron stars against gravitational col-
lapse. In contrast, the radii of neutron stars are much harder
to determine in a model-independent way. Nevertheless, the
combined data makes neutron stars an indispensable tool to
put boundaries to possible equations of state [3–5].

Also theoretical investigations of neutron-rich matter con-
verged in recent years. Different approaches, such as chiral
effective field theory (ChEFT,[6–8]), chiral Fermi liquid the-
ory [9], as well as quantum Monte Carlo (QMC) methods,
with phenomenological potentials [10, 11]) and with ChEFT
potentials [12–14] agree well in their common overlap of ap-
plicability at lower densities.

For larger densities, it is crucial to include effects from
three-body forces as well as higher-order pion-exchange pro-
cesses [15, 16]. It is therefore expected that fluctuations play
an important role also in effective boson-exchange models. A
powerful method to study the effects of fluctuations in a con-
sistent and fully non-perturbative way is the functional renor-
malization group (FRG [17–21]). In recent studies [22–24]
we applied the FRG methods to a chiral nucleon-meson model
[25, 26] for symmetric nuclear matter and pure neutron matter.
A great improvement of the equation of state was observed.
In the present paper, we provide a full study of asymmetric
nuclear matter, characterized by different neutron and proton
densities. Eventually we will study neutron star matter under
the condition of beta equilibrium. We present the results in
the light of the observational constraints.

II. THE EXTENDED CHIRAL EFFECTIVE
NUCLEON-MESON MODEL

The predominant degrees of freedom of cold and dense
matter are baryons. Since the equation of state has to be

stiff enough in order to support two-solar-mass neutron stars,
exotic matter, such as quark matter, kaon condensates, or a
substantial contribution of hyperons in the interior of neu-
tron stars becomes more and more unlikely, unless there is
a strong enough repulsive force [27]. Moreover, it might
well be the case that the density even in the center of neu-
tron stars does not exceed about five times nuclear satura-
tion density, n0 = 0.16 fm�3, see Ref. [5]. Up to these
densities, conventional descriptions based on baryonic de-
grees of freedom work extremely well [28]. It is therefore
reasonable to study an effective model based on baryonic
matter. The chiral nucleon-meson model, as constructed in
[25, 26, 29], is well-suited for this purpose. It is based on
neutrons and protons combined into an isospin doublet nu-
cleon field ⇤ = (⇤p,⇤n)T . The nucleon-nucleon interactions
are modeled by effective bosons exchanged between the nu-
cleons. The long-range attractive part is modeled by a four-
component field (⇥,�), which transforms under the chiral
group SO(4) ⇤= SU(2)L ⇥ SU(2)R. The short-range repul-
sive part is described by four-fermion vector-isoscalar inter-
actions (⇤̄�µ⇤) (⇤̄�µ⇤), as well as vector-isovector interac-
tions (⇤̄�µ⇤⇤) · (⇤̄�µ⇤⇤), where ⇤ are the isospin Pauli ma-
trices. After a Hubbard-Stratonovich transformation, these in-
teractions are bosonized and effective vector-isovector fields
⌅µ and vector-isovector bosons ⇥µ are introduced. In the
present study, both vector particles are introduced at the level
of a mean field approximation. They parametrize the un-
known short-range physics and are therefore not to be identi-
fied with the physical omega and rho mesons. The Lagrangian
(in Minkowski space-time) of this extended effective chiral
nucleon-meson model reads

L = ⇤̄i�µ⇧
µ⇤ +

1

2
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2
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Here, the field strength tensors of the two vector bosons
⌅µ and ⇥µ are given by F (⇤)

µ� = ⇧µ⌅� � ⇧�⌅µ and
F (⇥)

µ� = ⇧µ⇥� � ⇧�⇥µ � g⇥ ⇥µ ⇥ ⇥� , respectively. Since both
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The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
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the RG treatment. Therefore, the ansatz for Uk,⌅ is
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In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,
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The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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the flow equations for the couplings can be computed directly from the full flow equation
as

k
�an,k

�k
= k

�

�k

�nUk,⇤
�n⌃

�����
⇤=⇤0

=
�nfU
�⌃n

�����
⇤=⇤0

. (4.98)

To get a better physical understanding, it is useful to study the expression for fU with
the Matsubara sums not yet performed. As shown in App. A.3,

fU = lbos
0 (E⇥) + lbos

0 (E⇥) �
⌅

i,n,p
lfer
0 (E⇥, µi,e�) , (4.99)

where the threshold functions are

lbos
0 (E) =

k5

6⇧2 T
⌅

l

1
⌥2

l + E2 , ⌥l = 2l⇧T ,

lfer
0 (E, µ) =

k5

6⇧2 T
⌅

l

1
(⌥l + iµ)2 + E2 , ⌥l = (2l + 1)⇧T .

(4.100)

Instead of the Matsubara formalism one can work in the real-time formalism (which is
however practically more di⇥cult) by replacing

1
⌥2

l + |p|2 + m2 ⇥ i

p2 � m2 + i⇤
+

2⇧

e�|p0| �1⇥(p2 � m2) , (4.101)

in the case of bosons, as is shown for instance in Ref. [175]. We have defined p2 = p2
0 � |p|2.

The Matsubara sum is then replaced by an integral over p0. For fermions, the fields double
in real-time formalism, and correspondence is in general more di⇥cult. However, in the
case of vanishing temperature the same results can be obtained from a calculation in real
time, using the propagator

DF = (pµ�µ + m)
⇥

i

p2 � m2 + i⇤
� 2⇧ ⌅(p0) · ⌅(kf � |p|) · ⇥(p2 � m2)

⇤
. (4.102)

The first term is identified as the vacuum propagator. The second term is an in-medium
insertion as a result of the Fermi sea, filled up to kf =

⇧
µ2 � m2, which accounts for

Pauli-blocking e�ects. In the non-relativistic limit, an equivalent description of the prop-
agator is given by

DF =
i⌅(kf � |p|)
p0 � p2

2m � i⇤
+

i⌅(|p| � kf )

p0 � p2
2m + i⇤

. (4.103)

The first expression corresponds to propagating particles, the second to holes. All particle-
hole excitations are therefore naturally included in the FRG framework. We can now
give a physical interpretation of the flow equations. First, look at the flow of the zero-
component, i.e., the pressure, which is given by

k
�a0,k
�k

= fU

���
⇤=⇤0

=
1
2

�����
⇤=⇤0

+
1
2

�����
⇤=⇤0

. (4.104)

Note that the interpretation of the loops is di�erent from that in the full flow equation.
Here, the loops are evaluated at the minimum ⌃0, whereas in the flow equation, the loops

See: pages 55 ff.  
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Neutron stars put nowadays strong constraints on a realistic equation of state of highly dense matter. We
perform a study of cold and dense matter in a chirally effective nucleon-meson model extended to asymmet-
ric nuclear matter. After a mean-field analysis, fluctuations are included in the framework of the functional
renormalization group. The liquid-gas phase transition of nuclear matter is investigated in detail and the study
is extended to asymmetric nuclear matter. The equations of state of both symmetric nuclear matter and pure
neutron matter are found to be in excellent agreement with realistic computations. Finally, beta equilibrium is
included and neutron star matter is discussed. The mass-radius constraints are satisfied.

I. INTRODUCTION

The increasing quality of observational data of neutron
stars in the last years opened up a new window to con-
strain the equation of state (EoS) of cold and dense matter,
otherwise inaccessible by experiment. Two heavy pulsars
were measured with extreme accuracy: J1614-2230 with a
mass of M = (1.97± 0.04)M⇥ [1], and J0348+0432 with
M = (2.01± 0.04)M⇥ [2]. Only a sufficiently stiff EoS can
support two-solar-mass neutron stars against gravitational col-
lapse. In contrast, the radii of neutron stars are much harder
to determine in a model-independent way. Nevertheless, the
combined data makes neutron stars an indispensable tool to
put boundaries to possible equations of state [3–5].

Also theoretical investigations of neutron-rich matter con-
verged in recent years. Different approaches, such as chiral
effective field theory (ChEFT,[6–8]), chiral Fermi liquid the-
ory [9], as well as quantum Monte Carlo (QMC) methods,
with phenomenological potentials [10, 11]) and with ChEFT
potentials [12–14] agree well in their common overlap of ap-
plicability at lower densities.

For larger densities, it is crucial to include effects from
three-body forces as well as higher-order pion-exchange pro-
cesses [15, 16]. It is therefore expected that fluctuations play
an important role also in effective boson-exchange models. A
powerful method to study the effects of fluctuations in a con-
sistent and fully non-perturbative way is the functional renor-
malization group (FRG [17–21]). In recent studies [22–24]
we applied the FRG methods to a chiral nucleon-meson model
[25, 26] for symmetric nuclear matter and pure neutron matter.
A great improvement of the equation of state was observed.
In the present paper, we provide a full study of asymmetric
nuclear matter, characterized by different neutron and proton
densities. Eventually we will study neutron star matter under
the condition of beta equilibrium. We present the results in
the light of the observational constraints.

II. THE EXTENDED CHIRAL EFFECTIVE
NUCLEON-MESON MODEL

The predominant degrees of freedom of cold and dense
matter are baryons. Since the equation of state has to be

stiff enough in order to support two-solar-mass neutron stars,
exotic matter, such as quark matter, kaon condensates, or a
substantial contribution of hyperons in the interior of neu-
tron stars becomes more and more unlikely, unless there is
a strong enough repulsive force [27]. Moreover, it might
well be the case that the density even in the center of neu-
tron stars does not exceed about five times nuclear satura-
tion density, n0 = 0.16 fm�3, see Ref. [5]. Up to these
densities, conventional descriptions based on baryonic de-
grees of freedom work extremely well [28]. It is therefore
reasonable to study an effective model based on baryonic
matter. The chiral nucleon-meson model, as constructed in
[25, 26, 29], is well-suited for this purpose. It is based on
neutrons and protons combined into an isospin doublet nu-
cleon field ⇤ = (⇤p,⇤n)T . The nucleon-nucleon interactions
are modeled by effective bosons exchanged between the nu-
cleons. The long-range attractive part is modeled by a four-
component field (⇥,�), which transforms under the chiral
group SO(4) ⇤= SU(2)L ⇥ SU(2)R. The short-range repul-
sive part is described by four-fermion vector-isoscalar inter-
actions (⇤̄�µ⇤) (⇤̄�µ⇤), as well as vector-isovector interac-
tions (⇤̄�µ⇤⇤) · (⇤̄�µ⇤⇤), where ⇤ are the isospin Pauli ma-
trices. After a Hubbard-Stratonovich transformation, these in-
teractions are bosonized and effective vector-isovector fields
⌅µ and vector-isovector bosons ⇥µ are introduced. In the
present study, both vector particles are introduced at the level
of a mean field approximation. They parametrize the un-
known short-range physics and are therefore not to be identi-
fied with the physical omega and rho mesons. The Lagrangian
(in Minkowski space-time) of this extended effective chiral
nucleon-meson model reads

L = ⇤̄i�µ⇧
µ⇤ +

1

2
⇧µ⇥ ⇧µ⇥ +

1

2
⇧µ� · ⇧µ�

� ⇤̄
�
g(⇥ + i�5 ⇤ · �) + �µ(g⇤ ⌅µ + g⇥⇤ · ⇥µ)

⇥
⇤

� 1

4
F (⇤)
µ� F (⇤)µ� � 1

4
F (⇥)

µ� · F (⇥)µ�

+
1

2
m2

⇤ ⌅µ ⌅
µ +

1

2
m2

⇥ ⇥µ · ⇥µ � U(⇥,�),

(1)

Here, the field strength tensors of the two vector bosons
⌅µ and ⇥µ are given by F (⇤)

µ� = ⇧µ⌅� � ⇧�⌅µ and
F (⇥)

µ� = ⇧µ⇥� � ⇧�⇥µ � g⇥ ⇥µ ⇥ ⇥� , respectively. Since both
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FIG. 1: Curve of constant baryon number nBaryons =
0.15 nnuclear in the Meson-Baryon model (solid black line).
The points with error-bars mark the chemical freeze-out as
obtained from the fits to experimentally measured particle
yields [3]. The red line marks the first order phase transition
to nuclear matter. The dashed and dashed-dotted lines indi-
cate an estimate for the range of applicability of our model.
More specific, in the region to the right of the dashed line the
relative contribution of pions to the pressure is smaller than
20%. In the region to the left of the dashed-dotted line the
baryon density nBaryons is smaller than 1.5 times the nuclear
saturation density nnuclear = 0.153/fm3. In this region no
signs of a phase transition are visible.
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FIG. 2: Number density of baryons as a function of the
temperature for µ = 750 MeV (solid line). Note that the
number of anti-baryons is negligible within the plot resolu-
tion. We also show the number of pions (dashed line). The
dot marks the experimental result for the chemical freeze-
out temperature Tch = 56+9.6

�2.0 MeV corresponding to µch =
760± 22.8MeV.

The computational task concerns then mainly the dif-
ference of the e�ective meson potential U(⇧;T, µ) �
U(⇧; 0, µc). This can be done by various methods – for
example one could employ functional renormalization by
adding nucleon degrees of freedom to the setting of ref.
[10]. For our limited purpose a very simple approach
will do. The potential di�erence is directly related to
di�erence of pressure for the parameters (⇧;T, µ) and
(⇧; 0, µc). This can be approximated by a free gas of
nucleons with ⇧-dependent mass. We can consider ⇧ as
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FIG. 3: Chiral order parameter as a function of the tempera-
ture for µ = 750 MeV. The dot marks the experimental result
for the chemical freeze-out temperature Tch = 56+9.6

�2.0 MeV
corresponding to µch = 760± 22.8MeV.

an additional parameter in thermodynamics. Its value
can be varied by varying the quark mass. If needed, me-
son fluctuations can be added in a similar way. We will
discuss the linear nucleon-meson model in the setting of
ref. [11]. (Our normalization of ⇧ di�ers by a factor 2
from [11].) Our new results extend the analysis to non-
vanishing temperature.

Linear nucleon-meson model

We use an e�ective model for baryons ⌥a (a is an
isospin index with ⌥1 describing protons and ⌥2 neu-
trons), an isospin singlet vector meson �µ, a scalar meson
⇧ and pseudo-scalar mesons ⇤0 = ⇤3, ⇤± = 1⇤

2
(⇤1± i⇤2).

It is convenient to combine the scalars and pseudo-scalars
in the field

⌃ab =

⇧
1⇤
2
(⇧ + i⇤0) i⇤�

i⇤+ 1⇤
2
(⇧ � i⇤0)

⌃
. (1)

The e�ective Lagrangian is of the form

L = ⌥̄a i�⇥( ⇥ � i g �⇥ � i µ ⇥0⇥) ⌥a

+
⇤
2h

⇤
⌥̄a

� 1+�5

2

⇥
⌃ab⌥b + ⌥̄a

� 1��5

2

⇥
(⌃†)ab⌥b

⌅

+ 1
2⌃

⇥
ab(� µ µ)⌃ab + Umic(⌅,⇧)

+
1

4
( µ�⇥ �  ⇥�µ)( 

µ�⇥ �  ⇥�µ) +
1

2
m2

⌅ �µ�
µ.

(2)

Here we use the chiral invariant scalar field combination
⌅ = 1

2⌃
⇥
ab⌃ab and Umic(⌅,⇧) is a microscopic form of the

e�ective potential

Umic(⌅,⇧) = Ū(⌅)�m2
⇤f⇤⇧. (3)

The Lagrangian (2) is invariant under the chiral symme-
try SU(2)V ⇥SU(2)A⇥U(1)V ⇥U(1)A where the nucleon

.
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Fixing the input:  some comments

Potential  

an isospin doublet nucleon field � = (�p,�n)T . The
nucleons are coupled to boson fields: a chiral four-
component field (⇧,⇡) transforming under the chiral
group SO(4) ⇧= SU(2)L ⇤ SU(2)R, an isoscalar-vector
field  µ and an isovector-vector field ⇢µ. Note that
these  and ⌅ fields are not to be identified with the
known omega and rho mesons. They are introduced
here to act as background mean fields representing
the effects of short-distance interactions between nu-
cleons, averaged over the baryonic medium. The ⌅
field appears as an additional degree of freedom in
isospin-asymmetric matter, as compared to symmetric
nuclear matter where its expectation value vanishes due
to isospin symmetry. The Lagrangian of the extended
nucleon-meson model reads

L = �̄i�µ�
µ� +

1

2
�µ⇧ �

µ⇧ +
1

2
�µ⇡ · �µ⇡

� �̄
⇧
g(⇧ + i�5 ⌧ · ⇡) + �µ(g⌥  

µ + g⇧⌧ · ⇢µ)
⌃
�

� 1

4
F (⌥)
µ⇤ F (⌥)µ⇤ � 1

4
F (⇧)

µ⇤ · F (⇧)µ⇤

+
1

2
m2

⌥  µ  
µ +

1

2
m2

⇧ ⇢µ · ⇢µ � U(⇧,⇡),
(1)

Here ⌧ are the isospin Pauli-matrices, and F (⌥)
µ⇤ =

�µ ⇤��⇤ µ, F (⇧)
µ⇤ = �µ⇢⇤��⇤⇢µ�g⇧ ⇢µ⇤⇢⇤ (only

the three-component in isospin space of the time com-
ponent of ⇢µ will be involved in the further discussions,
so the non-abelian part of F (⇧)

µ⇤ is actually not relevant).
The potential U(⇧,⇡) has a piece, U0(⌥), that depends
only on the chirally invariant square ⌥ = 1

2 (⇧
2 + ⇡2),

as well as an explicit symmetry breaking term:

U(⇧,⇡) = U0(⌥)�m2
⌅f⌅(⇧ � f⌅) , (2)

with the pion mass m⌅ = 135 MeV and the pion decay
constant f⌅ = 93 MeV.

As demonstrated in [11], fluctuations beyond the
mean-field approximation can be included using the
functional renormalization group approach. A proper
treatment of fluctuations turned out to be crucial in or-
der to make contact with results from in-medium chi-
ral perturbation theory calculations of symmetric nu-
clear matter [5], emphasizing in particular the role of
two-pion exchange dynamics and three-body forces in
the nuclear medium. One therefore expects that a full
treatment of fluctuations with FRG methods is also im-
portant for asymmetric nuclear matter, given the pro-
nounced isospin dependence induced by the fluctuating
pion field through multiple pion exchange processes.

The effective action �k based on the Lagrangian (1)
depends on a renormalization scale k and interpolates

between a microscopic action, �k=⇥, defined at an ul-
traviolet renormalization scale ⇥, and the full quantum
effective action, �eff = �k=0. As the scale k is lowered,
the renormalization group flow of �k is determined by
Wetterich’s equation [13],

k
��k

�k
= =

1

2
Tr

k  Rk
 k

�(2)
k +Rk

, (3)

where Rk = (k2 � p2) ⇥(k2 � p2) is a regulator func-
tion and �(2)

k = �2�k
�⌃2 is the full inverse propaga-

tor. In leading order of the derivative expansion,
�k =

⌅
d4x

�
1
2�µ⌃

† �µ⌃+ Uk

⇥
, where ⌃ symbolizes

all appearing fields and Uk is the scale-dependent ef-
fective potential. The flow equation reduces now to an
equation for Uk. In the spirit of Ref. [14] the flow of the
difference

Ūk(T, µn, µp) = Uk(T, µn, µp)� Uk(0, µc, µc) (4)

is computed, with the effective potential Uk(T, µn, µp)
taken at given values of temperature T and of neu-
tron/proton chemical potentials, µn and µp, subtracting
Uk(0, µc, µc) at the liquid-gas transition for symmetric
matter at zero temperature. The critical chemical poten-
tial µc = 923 MeV at vanishing temperature is the dif-
ference between nucleon mass and binding energy. The
subtraction at µ = µc is motivated by the fact that at
this point, nuclear physics information can be optimally
used to constrain the effective potential. The regime
0 ⌅ µ < µc corresponds to a single physical state, the
vacuum, with constants m⌅ and f⌅ unchanged by the
FRG evolution [11]. A more detailed discussion will be
presented in a forthcoming publication [15].

The k-dependence of Ūk is given by the simplified
flow equation

V

T

k �Ūk

�k
(T, µn, µp)

=

⇤⇤⇤⇤⇤
T,µn,µp

�

⇤⇤⇤⇤⇤T=0
µn=µp=µc

.

(5)

The loops symbolize the full propagators of both
fermions (nucleons) and bosons (pions and sigma) with
inclusion of the regulator. The heavy vector bosons  µ

and ⇢µ are treated as non-fluctuating mean fields. Their
Compton wavelengths are supposed to be small com-
pared to the distance scales characteristic of the Fermi
momenta under consideration. Rotational invariance
implies that the spatial components of the vector mean

2

                      chiral invariant part 
parametrized in powers of
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nuclear matter where its expectation value vanishes due
to isospin symmetry. The Lagrangian of the extended
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with the pion mass m⌅ = 135 MeV and the pion decay
constant f⌅ = 93 MeV.

As demonstrated in [11], fluctuations beyond the
mean-field approximation can be included using the
functional renormalization group approach. A proper
treatment of fluctuations turned out to be crucial in or-
der to make contact with results from in-medium chi-
ral perturbation theory calculations of symmetric nu-
clear matter [5], emphasizing in particular the role of
two-pion exchange dynamics and three-body forces in
the nuclear medium. One therefore expects that a full
treatment of fluctuations with FRG methods is also im-
portant for asymmetric nuclear matter, given the pro-
nounced isospin dependence induced by the fluctuating
pion field through multiple pion exchange processes.

The effective action �k based on the Lagrangian (1)
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equation for Uk. In the spirit of Ref. [14] the flow of the
difference

Ūk(T, µn, µp) = Uk(T, µn, µp)� Uk(0, µc, µc) (4)

is computed, with the effective potential Uk(T, µn, µp)
taken at given values of temperature T and of neu-
tron/proton chemical potentials, µn and µp, subtracting
Uk(0, µc, µc) at the liquid-gas transition for symmetric
matter at zero temperature. The critical chemical poten-
tial µc = 923 MeV at vanishing temperature is the dif-
ference between nucleon mass and binding energy. The
subtraction at µ = µc is motivated by the fact that at
this point, nuclear physics information can be optimally
used to constrain the effective potential. The regime
0 ⌅ µ < µc corresponds to a single physical state, the
vacuum, with constants m⌅ and f⌅ unchanged by the
FRG evolution [11]. A more detailed discussion will be
presented in a forthcoming publication [15].

The k-dependence of Ūk is given by the simplified
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The loops symbolize the full propagators of both
fermions (nucleons) and bosons (pions and sigma) with
inclusion of the regulator. The heavy vector bosons  µ

and ⇢µ are treated as non-fluctuating mean fields. Their
Compton wavelengths are supposed to be small com-
pared to the distance scales characteristic of the Fermi
momenta under consideration. Rotational invariance
implies that the spatial components of the vector mean

2

explicit chiral 
symmetry breaking

Vector fields encode short-distance NN dynamics,

(NOT to be identified with physical     and    mesons)  ω ρ

self-consistently determined background mean fields (non-fluctuating)

Scalar (“sigma”) field  
has mean-field (chiral order parameter) and fluctuating pieces. 
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fields vanish. The only components that can acquire
non-zero expectation values are ⌥0 and ⇤30. Their ef-
fect is a shift of neutron and proton chemical potentials
according to:
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n,p = µn,p � g⌅ ⌥0 ± g⇥ ⇤
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The scalar boson ⌅ and the pions � are light compared
to the energy scales we are interested in and so they are
allowed to fluctuate. Similarly, the nucleons are kept
in the flow equations, thus incorporating soft nucleon-
hole excitations around the Fermi surface. Under these
conditions, the flow equations for the present model be-
come:
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The k-dependent mean fields ⌥0(k) and ⇤30(k) are de-
fined at the minima of Uk for each scale k. These fields
are thus eliminated as external parameters, simplifying
the numerical effort. Their values at k are given by the
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Figure 1: Equation of state for small densities for the full FRG calcu-
lation (black line) compared with mean field results (dashed line), and
chiral Fermi liquid theory [3] (gray band).

The ultraviolet potential at k = � is fixed in such a way
as to reproduce the mean field potential from Ref. [11]
at T = 0 and µn = µp = µc. This guarantees a good
description of well-known properties of symmetric nu-
clear matter around the liquid-gas transition. In fact
all parameters apart from g⇥ and m⇥ are determined in
this way. The explicit values can be found in Ref. [11].
With ⇤30 entering as a mean field, only the ratio g2⇥/m

2
⇥

appears in the (Hartree type) self-consistent equations.
Therefore only a single additional parameter, represent-
ing the strength G⇥ ⇧ g2⇥/m

2
⇥ of an equivalent short-

distance contact term, G⇥(⌃†⇥⌃)2, is introduced when
turning from symmetric to asymmetric nuclear mat-
ter and neutron matter. The intermediate and long-
range isospin-dependent dynamics is governed entirely
by pion degrees of freedom with no additional input re-
quired. This renders the model extremely rigid.

We note that a potential source of isospin break-
ing is neglected in the present approach. Introducing
an isospin chemical potential, µI = µp � µn, the pi-
ons are no longer degenerate and SO(4) is broken to
SO(2)⇤ SO(2). As a consequence, the pion field com-
ponents ⇥+ and ⇥� experience the chemical potential
µI . The complexity of the RG equations increases sub-
stantially and the equations for the vector bosons can no
longer be integrated since they depend on the potential
Uk. However the influence of these isospin-breaking
terms on the equation of state is expected to be small as
pointed out in perturbative calculations based on chiral
effective field theory [16]. All isospin-breaking effects
are therefore considered to be absorbed by adjusting the
coupling strength G⇥ of the isovector-vector boson.

The full set of equations (7) and (10) is solved us-
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The k-dependent mean fields ⌥0(k) and ⇤30(k) are de-
fined at the minima of Uk for each scale k. These fields
are thus eliminated as external parameters, simplifying
the numerical effort. Their values at k are given by the
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Figure 1: Equation of state for small densities for the full FRG calcu-
lation (black line) compared with mean field results (dashed line), and
chiral Fermi liquid theory [3] (gray band).

The ultraviolet potential at k = � is fixed in such a way
as to reproduce the mean field potential from Ref. [11]
at T = 0 and µn = µp = µc. This guarantees a good
description of well-known properties of symmetric nu-
clear matter around the liquid-gas transition. In fact
all parameters apart from g⇥ and m⇥ are determined in
this way. The explicit values can be found in Ref. [11].
With ⇤30 entering as a mean field, only the ratio g2⇥/m

2
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appears in the (Hartree type) self-consistent equations.
Therefore only a single additional parameter, represent-
ing the strength G⇥ ⇧ g2⇥/m

2
⇥ of an equivalent short-

distance contact term, G⇥(⌃†⇥⌃)2, is introduced when
turning from symmetric to asymmetric nuclear mat-
ter and neutron matter. The intermediate and long-
range isospin-dependent dynamics is governed entirely
by pion degrees of freedom with no additional input re-
quired. This renders the model extremely rigid.

We note that a potential source of isospin break-
ing is neglected in the present approach. Introducing
an isospin chemical potential, µI = µp � µn, the pi-
ons are no longer degenerate and SO(4) is broken to
SO(2)⇤ SO(2). As a consequence, the pion field com-
ponents ⇥+ and ⇥� experience the chemical potential
µI . The complexity of the RG equations increases sub-
stantially and the equations for the vector bosons can no
longer be integrated since they depend on the potential
Uk. However the influence of these isospin-breaking
terms on the equation of state is expected to be small as
pointed out in perturbative calculations based on chiral
effective field theory [16]. All isospin-breaking effects
are therefore considered to be absorbed by adjusting the
coupling strength G⇥ of the isovector-vector boson.

The full set of equations (7) and (10) is solved us-
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allowed to fluctuate. Similarly, the nucleons are kept
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hole excitations around the Fermi surface. Under these
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The k-dependent mean fields ⌥0(k) and ⇤30(k) are de-
fined at the minima of Uk for each scale k. These fields
are thus eliminated as external parameters, simplifying
the numerical effort. Their values at k are given by the
solutions of the following equations which supplement
the FRG equation (7):
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Figure 1: Equation of state for small densities for the full FRG calcu-
lation (black line) compared with mean field results (dashed line), and
chiral Fermi liquid theory [3] (gray band).

The ultraviolet potential at k = � is fixed in such a way
as to reproduce the mean field potential from Ref. [11]
at T = 0 and µn = µp = µc. This guarantees a good
description of well-known properties of symmetric nu-
clear matter around the liquid-gas transition. In fact
all parameters apart from g⇥ and m⇥ are determined in
this way. The explicit values can be found in Ref. [11].
With ⇤30 entering as a mean field, only the ratio g2⇥/m

2
⇥

appears in the (Hartree type) self-consistent equations.
Therefore only a single additional parameter, represent-
ing the strength G⇥ ⇧ g2⇥/m

2
⇥ of an equivalent short-

distance contact term, G⇥(⌃†⇥⌃)2, is introduced when
turning from symmetric to asymmetric nuclear mat-
ter and neutron matter. The intermediate and long-
range isospin-dependent dynamics is governed entirely
by pion degrees of freedom with no additional input re-
quired. This renders the model extremely rigid.

We note that a potential source of isospin break-
ing is neglected in the present approach. Introducing
an isospin chemical potential, µI = µp � µn, the pi-
ons are no longer degenerate and SO(4) is broken to
SO(2)⇤ SO(2). As a consequence, the pion field com-
ponents ⇥+ and ⇥� experience the chemical potential
µI . The complexity of the RG equations increases sub-
stantially and the equations for the vector bosons can no
longer be integrated since they depend on the potential
Uk. However the influence of these isospin-breaking
terms on the equation of state is expected to be small as
pointed out in perturbative calculations based on chiral
effective field theory [16]. All isospin-breaking effects
are therefore considered to be absorbed by adjusting the
coupling strength G⇥ of the isovector-vector boson.

The full set of equations (7) and (10) is solved us-
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g2
ρ

m2

V
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contact terms in ChEFT  , 

σ

Nucleon mass: m
2

N = 2g χ . . .  in vacuum: mN = g fπ

Parameters:  2 coefficients in      ,   U0 mσ ≃ 0.8GeV , Gρ ∼ Gω/4 ≃ 1 fm
2

determined by nuclear matter properties and symmetry energy
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group, as demonstrated in [22]. A proper treatment of fluctu-
ations highly improved the agreement with calculations done
in chiral effective field theory [7]. The functional renormal-
ization group is a recipe to compute the full quantum effective
action �eff from a given initial action at a cutoff ⇥ [17–21]. To
this end, an effective action �k is introduced which depends
on a renormalization scale k. It is build in such a way that it
interpolates between the initial action at ⇥, which equals �⇤

and the full quantum effective action �eff = �0. The flow of
�k as a function of k is determined by a functional differential
equation, Wetterich’s flow equation [35]

k
✏�k

✏k
= =

1

2
Tr

k  Rk
 k

�(2)
k +Rk

. (16)

Pictorially, the dot represents the full propagator, while the
cross symbolizes the insertion of a regulator function Rk. The
regulator ensures that the flow equation is IR-finite. The fluc-
tuations contributing to the flow equation at a scale k have mo-
menta peaked around k. The optimized Litim-cutoff [36, 37]
is chosen

Rk(p
2) = (k2 � p2) ⇥(k2 � p2) . (17)

The masses of the ↵ and the ⇧ boson are large compared to
the relevant scales. Both fields are therefore kept as back-
ground fields. In contrast, the fluctuations of the pions and
(in order to keep chiral symmetry) also of the ⌃ are included,
as well as particle-hole excitations of the nucleons around the
Fermi surface. In the mean-field approximation, the quan-
tum and thermal fluctuations were effectively taken care of
in the parameterization of the mean-field model. Since their
influence should be not too large, it is reasonable to com-
pute only the flow of the difference between the effective ac-
tion at given values of temperature and chemical potential,
�k(T, µ), as compared to the potential right at the phase tran-
sition, �k(0, µc). In analogy to Ref. [36], we study the flow
of the difference

�̄k = �k(T, µ)� �k(0, µc) . (18)

The k-dependence of �k is given by

k ✏�̄k

✏k
(T, µ) =

⇤⇤⇤⇤⇤
T,µ

�

⇤⇤⇤⇤⇤T=0
µ=µc

. (19)

The effective action is treated in leading-order of the deriva-
tive expansion, i.e. operators with higher powers in deriva-
tives are not included. Likewise the Y -term Y (�) (✏�)2 or a
possible anomalous dimension is not considered. Moreover,
the running of the Yukawa couplings is ignored. The effective
action can be written as

�k =

⌦
d4x
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�
⌦
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⌥
.

(20)

The vector particles ↵0 and ⇧30 appear here only as mean fields.
The whole k-dependence is no contained in the effective po-
tential Uk. In analogy to the mean-field potential (11), the ef-
fective potential contains a chirally symmetric piece U (⇧), the
explicit chiral symmetry breaking term and the mass terms of
the vector mesons:

Uk = U (⇧)
k �m2
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2
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2
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2
m2

⇤(⇧
3
0)

2 .

(21)

The second derivative �(2) is computed and the Dirac and
isospin trace is performed. Due to the choice of the opti-
mized cutoff (17), the only momentum dependence comes in
through a step function and the remaining momentum inte-
gral can be performed trivially. The remaining flow equations
depend only on the chirally invariant field  .

The flow of the subtracted chirally symmetric potential
Ū (⇧)
k = U (⇧)

k (T, µ)� U (⇧)
k (0, µc) is then computed to be
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Here,

E2
N = k2 + 2g2 ,

E2
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✏ 
, E2
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+ 2 
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,
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, and nF(E, µ) =

1

e(E�µ)/T +1
.

(24)

The fields ↵0 and ⇧30 are so far constant background fields.
They have to be determined in the end such that the potential is
minimized as a function of ↵0 and ⇧30. Instead, it is possible to
introduce a k-dependence for the fields in such a way that the
full potential Uk is minimized at each scale k. From Eq. (21)
follow the two gap equations for ↵0(k) and ⇧30(k):
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= 0 .

(25)

With help of the flow equation (22) it is possible to rewrite the

Chiral nucleon - meson model beyond mean-field 
         - Renormalization Group strategies -

Fluctuations:  Wetterich’s RG flow equations

3

value, ⌅0 = 1
2f

2
⇤ :

U(⇧,⌃0) = �m2
⇤ f⇤(⇧ � f⇤) +m2

⇤(⌅� ⌅0)

+
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n=2

an
n!

(⌅� ⌅0)
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2
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v ⌃
2
0 .

(6)

The coefficient of the term linear in ⌅�⌅0 is fixed by the phys-
ical pion mass. The explicit symmetry breaking term linear in
⇧ fixes the vacuum expectation value of ⇧ to f⇤ . A constant
has been subtracted to achieve a vanishing vacuum pressure,

Pvac = �U(⇧ = f⇤,⌃0 = 0) = 0 . (7)

When the nucleons are integrated out the mean-field effective
potential takes the form

UMF = U(⇧,⌃0) + 4UN , (8)

where

UN = �
⇧

d3p

(2⇤)3
T ln

�
1 + e��(EN (p)�µeff)

⇥

�
⇧

d3p

(2⇤)3
T ln

�
1 + e��(EN (p)+µeff)

⇥ (9)

is the effective potential of (relativistic) nucleon quasiparticles
with EN (p) =

⌃
p2 +m2

eff. The prefactor of four in Eq. (8)
accounts for spin and isospin degeneracies. The effective nu-
cleon quasiparticle mass and chemical potential are given as

meff = gs ⇧ , µeff = µ� gv ⌃0 . (10)

The presence of the background vector field shifts (reduces)
the baryon chemical potential.

For a given temperature T and chemical potential µ, the
mean-field effective potential (8) is minimized with respect to
⇧ and ⌃0,

⌦UMF

⌦⇧

⇤⇤⇤⇤
⌅=⌅̄,⇧0=⇧̄0

= 0 ,
⌦UMF

⌦⌃0

⇤⇤⇤⇤
⌅=⌅̄,⇧0=⇧̄0

= 0 . (11)

Minimization with respect to ⌃0 gives the self-consistent
equation

⌃̄0 =
gv
m2

v

n(T, µ� gv⌃̄0) , (12)

where the baryon density n is determined by

n(T, µ� gv⌃0) = �4
⌦

⌦µ
UN(T, µ� gv⌃0) . (13)

At this level, the vector coupling gv and the mass of the ⌃
field are not independent. Only their ratio gv/mv appears
in the shifted chemical potential that enters the mean-field
equations. A parametrization of the effective potential with
Nmax = 4 that is consistent with nuclear physics constraints is
the one chosen in [29]

gs =
mN

f⇤
= 10 ,

gv
mv

= 1.21 · 10�2 MeV�1 ,

a2 = 50 , a3 = 5.55 · 10�3 MeV�2 ,

and a4 = 6.42 · 10�5 MeV�4 .

(14)

With the parameters fixed in this way, the nuclear liquid-gas
phase transition takes place at the correct values of the chem-
ical potential and saturation density, n0 = 0.16 fm�3. More-
over, these parameters were optimized to get realistic val-
ues for the compressibility and the surface tension of nuclear
droplets. In the next section, we extend the model beyond
mean-field level taking into account mesonic fluctuations.

III. BEYOND MEAN FIELD: FLUCTUATIONS

A consistent treatment of fluctuations beyond the mean-
field approximation can be achieved with the functional renor-
malization group approach applied to the nucleon-meson
model [28, 37]. We use Wetterich’s equation [33],

k ⌦k�k = =
1

2
Tr

k ⌦kRk

�(2)
k +Rk

, (15)

to derive the renormalization group flow of the scale-
dependent effective action �k under a change of the cutoff
scale k. The trace in this flow equation is taken over all
bosonic and fermionic degrees of freedom as well as internal
indices and involves an integral over space-time or momentum
coordinates. The exact inverse propagator �(2)

k is the second
functional derivative of the effective action with respect to the
fields. The function Rk(p) regularizes the theory by providing
an effective mass for infrared modes. The flow equation (15)
connects the bare action, defined at a high-momentum cutoff
scale k = ⇥, with the full quantum effective action, �eff, at
k = 0. In the actual calculations we apply the leading order
of a derivative expansion for which the regulator function can
be optimized [38–41]. At finite temperature, it is sufficient to
regularize the spatial momentum modes, and the appropriate
dimensionally reduced regulator function is given by [42, 43]

Rk(p
2) = (k2 � p2) �(k2 � p2) . (16)

Since the mass associated with the ⌃ field is large compared
to all relevant energy scales of interest, we continue treating
⌃0 as a background field. Nucleons, despite their large mass,
can fluctuate around the Fermi surface as particle-hole excita-
tions that are treated properly. The fluctuations of the pion and
sigma degrees of freedom are taken into account explicitly.

Previously, the effects of quantum and thermal fluctuations
were implicitly parametrized in the effective low-energy po-
tential at T = 0 and µ = µc. The effective action was then
generated by computing the nucleonic loop only. Explicit
fluctuation effects of pions and of the sigma field are expected
not to be too large. It is reasonable to evaluate their effects as
deviations relative to the phenomenological effective poten-
tial. Again, only the difference (5) with respect to the action
at T = 0 and µ = µc is relevant. Following [42] we compute
the flow of the difference

�̄k(T, µ) = �k(T, µ)� �k(0, µc) (17)

4

between effective actions at given values of temperature and
chemical potential, �k(T, µ), and exactly at the phase transi-
tion, �k(0, µc). It is given by the flow equation

k  k�̄k(T, µ) =

�
+

 ⇤⇤⇤⇤⇤
T,µ

�
�

+

 ⇤⇤⇤⇤⇤
T=0,µ=µc

.

(18)

The full circles represent the effects of the nucleons, while the
dashed circles are the mesonic loops. The dots indicate full
propagators, while the cross-circles stand for the regulator Rk.
When mesonic loops are ignored, only the nucleons contribute
to the flow, and the integration gives their quasiparticle Fermi-
gas pressure, as in the mean-field approximation, Eq. (8). In
leading order of the derivative expansion the effective action
takes the form

�k =

�
d4x

⌅
1

2
 µ⇧

†  µ⇧+ Uk

⇧
, (19)

where Uk is the scale-dependent effective potential. The flow
equation simplifies now to an equation for the difference

Ūk(T, µ) = Uk(T, µ)� Uk(0, µc) . (20)

For vanishing temperature, the integral extends over all four
dimensions with measure

↵ dp0

2⇤

↵ d3p
(2⇤)3 , while for finite tem-

peratures the momentum trace splits into a sum over Matsu-
bara frequencies and a three-dimensional integral over spa-
tial momenta, T

⌦
n

↵ d3p
(2⇤)3 . The integrals and the Matsubara

sums can be evaluated explicitly for the spatial Litim regulator
(16). The flow equation for the effective potential Ūk becomes

 kŪk(T, µ) = f(T, µ)� f(0, µc) (21)

with
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Here,

E2
⇤ = k2 +m2

⇤ , E2
⌅ = k2 +m2

⌅ , E2
N = k2 + g2s⌅

2 ,

m2
⇤ = U 0

k(⇤) , m2
⌅ = U 0

k(⇤) + 2⇤U 00
k (⇤) ,

µeff = µ� gv ⌃0,k ,

nB(E) =
1

e�E �1
, and nF(E, µ) =

1

e�(E�µ) +1
.

(23)

In the limit T ⇧ 0 the finite-temperature flow equation re-
duces correctly to the expression obtained at T = 0 with the

3d-cutoff function [44, 45]. The prefactors account for the
number of degrees of freedom (for nucleons, the number of
flavors, Nf = 2, times a factor of 4 from the Dirac trace).

In addition to the flow equation for the effective action,
the ⌃0 field must be computed self-consistently. Therefore,
at each momentum scale k we solve the mean-field equation
for ⌃0,k,

 Uk

 ⌃0,k
= 0 . (24)

The only dependence on ⌃0,k appears in the mass term and
the fermionic loop. Hence, ⌃0,k is given by the solution of the
flow equation

 k ⌃0,k = � 2gv k4

3⇥2m2
v

 

 µ

⌅
nF(EN , µeff) + nF(EN ,�µeff)

EN

⇧
.

(25)

In this equation, the effective baryon chemical potential,
µeff = µ� gv⌃0,k, depends also on the field ⌃0,k, and both
⌃0,k and E2

N = k2 + g2s⌅
2 depend on the scale k. The initial

condition for the flow equation is

⌃0,�(⇤) ⇤ 0 . (26)

The ultraviolet scale, ⇥, is a parameter of the model which
must be sufficiently large in order to allow for the relevant
fluctuation effects and small enough to render the description
in terms of the model degrees of freedom realistic; we choose
⇥ = 1.4 GeV. The flow equation is then solved for a given
temperature and chemical potential. The model should be re-
liably applicable for temperatures up to at least 100 MeV and
densities up to about twice the saturation density n0 of nuclear
matter. At much higher densities, the field dependence of the
Yukawa couplings gs and gv can no longer be ignored.

Once fluctuations are taken into account, a readjustment of
the potential parameters is required. If the parametrization
(14) is chosen for the potential UMF, the nuclear equilibrium
density comes out too low by about ten percent after fluctua-
tions are taken into account. The reason is that the µ depen-
dence of the thermodynamical potential U is more involved
due to the influence of the mesonic fluctuations. It is neces-
sary to readjust the parameters in such a way that the nuclear
physics constraints are reproduced in the presence of fluctu-
ations. The parameters of the potential used in the following
are:

gs = 10 ,
gv
mv

= 1.02 · 10�2 MeV�1 ,

a2 = 65.9 , a3 = 5.55 · 10�3 MeV�2 ,

and a4 = 8.38 · 10�5 MeV�4 .

(27)

The resulting nuclear matter quantities are listed in Table I.
The mass of the ⌅ boson (not to be confused with the position
of the complex pole at

⌥
s ⌅ (500 � i 300) MeV in the I =

0 s-wave ⇥⇥ T matrix [46, 47]) becomes m⌅ ⌃ 770 MeV
with inclusion of mesonic fluctuations. Not surprisingly, it is
significantly larger than the sigma mass used previously at the
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Parameter a3 (MeV�2) a4(MeV�4) m⌅ (MeV) m⌃ = m⇤ (MeV) gs g⌃ g⇤
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Table 2: List of all mean-field parameters.

Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [202]. The Yukawa
couplings gs, g⌃, and g⇤ are therefore taken to be constants. We define the following
matrix of chemical potentials

µ = µpPp + µnPn =

⇧

⌥µp

µn

⌃

� . (4.91)

The ansatz for the e�ective action ⇥k in the nucleon-meson model then is in four-
dimensional Euclidean space-time:
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(4.92)

where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
components in Minkowski-space. Hence, �E,4 and ⇤3

E,4 are replaced by �i�0 and �i⇤3
0,

respectively. The e�ective action simplifies to

⇥k =
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.
(4.93)

In analogy to the mean-field potential (4.36), the ansatz for the e�ective potential Uk

is

Uk(T , µp, µn, �,⌅,�0, ⇤3
0) = �1

2m2
⌃�

2
0 � 1

2m2
⇤(⇤

3
0)

2

+ Uk,⇧(T , µp, µn,⌃,�0, ⇤3
0) + m2

⇥f⇥(f⇥ � ⌅) .
(4.94)
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In analogy to the mean-field potential (4.36), the ansatz for the e�ective potential Uk

is
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4.3 wetterich’s flow equation 55

The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is

Uk,⌅(T , µp, µn, ⇧, ⌃0, ⇤3
0) =

�

n

an,k(T , µp, µn, ⌃0, ⇤3
0)

n!
(⇧ � ⇧0)

n . (4.95)

In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,

⌥�k

⌥k
= �V · ⌥Uk,⌅(T , µp, µn, ⇧, ⌃0, ⇤3

0)
⌥k

. (4.96)

The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is

k
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⌥k
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(4.97)

with

E2
� = k2 + m2

� , E2
⇤ = k2 + m2

⇤ , E2
N = k2 + m2

N ,
m2

� = U �
k,⌅(⇧) , m2

⇤ = U �
k,⌅(⇧) + 2⇧ U ��

k,⌅(⇧) , m2
N = 2g2

s⇧ ,
µp,e� = µp � g⇧⌃0 � g⇥⇤3

0 , µn,e� = µn � g⇧⌃0 + g⇥⇤3
0 .

The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [202]. The Yukawa
couplings gs, g⌃, and g⇤ are therefore taken to be constants. We define the following
matrix of chemical potentials

µ = µpPp + µnPn =
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The ansatz for the e�ective action ⇥k in the nucleon-meson model then is in four-
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
components in Minkowski-space. Hence, �E,4 and ⇤3

E,4 are replaced by �i�0 and �i⇤3
0,

respectively. The e�ective action simplifies to
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In analogy to the mean-field potential (4.36), the ansatz for the e�ective potential Uk
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The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is
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In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,
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The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is
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with
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [202]. The Yukawa
couplings gs, g⌃, and g⇤ are therefore taken to be constants. We define the following
matrix of chemical potentials

µ = µpPp + µnPn =

⇧

⌥µp

µn

⌃

� . (4.91)

The ansatz for the e�ective action ⇥k in the nucleon-meson model then is in four-
dimensional Euclidean space-time:
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
components in Minkowski-space. Hence, �E,4 and ⇤3

E,4 are replaced by �i�0 and �i⇤3
0,
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⇥k =
 

d4x

⇤

⌥̄
�
�µ

E 
E
µ + gs(⌅ + i�5 � · ⇤ ) + �0(µ � g⌃ �0 � g⇤ ⇤

3
0 ⇧

3)
⇥
⌥

+
1
2 

E
µ⌅  µ

E⌅ +  E
µ � ·  µ

E� + Uk(T , µp, µn, �,⌅,�0, ⇤3
0)

⌅

.
(4.93)

In analogy to the mean-field potential (4.36), the ansatz for the e�ective potential Uk
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
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In analogy to the mean-field potential (4.36), the ansatz for the e�ective potential Uk
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4.3 wetterich’s flow equation 55

The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is
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In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,
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The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [202]. The Yukawa
couplings gs, g⌃, and g⇤ are therefore taken to be constants. We define the following
matrix of chemical potentials

µ = µpPp + µnPn =

⇧

⌥µp

µn

⌃

� . (4.91)

The ansatz for the e�ective action ⇥k in the nucleon-meson model then is in four-
dimensional Euclidean space-time:
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
components in Minkowski-space. Hence, �E,4 and ⇤3

E,4 are replaced by �i�0 and �i⇤3
0,

respectively. The e�ective action simplifies to
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In analogy to the mean-field potential (4.36), the ansatz for the e�ective potential Uk
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
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4.3 wetterich’s flow equation 55

The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is
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In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,

⌥�k

⌥k
= �V · ⌥Uk,⌅(T , µp, µn, ⇧, ⌃0, ⇤3

0)
⌥k

. (4.96)

The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
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in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
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4.3 wetterich’s flow equation 55

The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is
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In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,
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The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is
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with
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),

UV scale:
Λ = 1.4GeV
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
components in Minkowski-space. Hence, �E,4 and ⇤3

E,4 are replaced by �i�0 and �i⇤3
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
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The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
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In thermodynamics, we are finally interested in homogeneous fields. The volume factors
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The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [202]. The Yukawa
couplings gs, g⌃, and g⇤ are therefore taken to be constants. We define the following
matrix of chemical potentials
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
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4.3 wetterich’s flow equation 55

The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is
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In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,
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The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is
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with
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [202]. The Yukawa
couplings gs, g⌃, and g⇤ are therefore taken to be constants. We define the following
matrix of chemical potentials
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
components in Minkowski-space. Hence, �E,4 and ⇤3

E,4 are replaced by �i�0 and �i⇤3
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.
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in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
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The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is
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In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,
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The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is

k
⌥Uk,⌅

⌥k
(T , µp, µn, ⇧, ⌃0, ⇤3

0) = fU (T , µp, µn, ⇧, ⌃0, ⇤3
0) ,

fU (T , µp, µn, ⇧, ⌃0, ⇤3
0) =

1
2 +

1
2

=
k5

12⇥2

�
⇧

⇤
1 + 2nB(E⇤)

E⇤
+

3
 
1 + 2nB(E�)

⌦

E�

�
�

i=n,p

4
 
1 �

⌥
r=±1 nF(EN � rµi,e�)

⌦

EN

⇥
⌃

⌅,

(4.97)

with

E2
� = k2 + m2

� , E2
⇤ = k2 + m2

⇤ , E2
N = k2 + m2

N ,
m2

� = U �
k,⌅(⇧) , m2

⇤ = U �
k,⌅(⇧) + 2⇧ U ��

k,⌅(⇧) , m2
N = 2g2

s⇧ ,
µp,e� = µp � g⇧⌃0 � g⇥⇤3

0 , µn,e� = µn � g⇧⌃0 + g⇥⇤3
0 .

The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [202]. The Yukawa
couplings gs, g⌃, and g⇤ are therefore taken to be constants. We define the following
matrix of chemical potentials

µ = µpPp + µnPn =
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
components in Minkowski-space. Hence, �E,4 and ⇤3

E,4 are replaced by �i�0 and �i⇤3
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
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The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is

Uk,⌅(T , µp, µn, ⇧, ⌃0, ⇤3
0) =

�

n

an,k(T , µp, µn, ⌃0, ⇤3
0)

n!
(⇧ � ⇧0)

n . (4.95)

In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,
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The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is
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with
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [202]. The Yukawa
couplings gs, g⌃, and g⇤ are therefore taken to be constants. We define the following
matrix of chemical potentials
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The ansatz for the e�ective action ⇥k in the nucleon-meson model then is in four-
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
components in Minkowski-space. Hence, �E,4 and ⇤3

E,4 are replaced by �i�0 and �i⇤3
0,

respectively. The e�ective action simplifies to
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In analogy to the mean-field potential (4.36), the ansatz for the e�ective potential Uk
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
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4.3 wetterich’s flow equation 55

The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is
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In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,
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The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [202]. The Yukawa
couplings gs, g⌃, and g⇤ are therefore taken to be constants. We define the following
matrix of chemical potentials

µ = µpPp + µnPn =
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The ansatz for the e�ective action ⇥k in the nucleon-meson model then is in four-
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
components in Minkowski-space. Hence, �E,4 and ⇤3

E,4 are replaced by �i�0 and �i⇤3
0,

respectively. The e�ective action simplifies to
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In analogy to the mean-field potential (4.36), the ansatz for the e�ective potential Uk
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
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field approximation. As discussed in App. A.1, the Euclidean expectation values of the
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4.3 wetterich’s flow equation 55

The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is
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In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,
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The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is
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The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k ⇥ 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.

The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,
in contrast, are heavier than the relevant scales. Therefore, the � and the ⇤ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-
field approximation. As discussed in App. A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to keep the real vector-field
components in Minkowski-space. Hence, �E,4 and ⇤3
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In analogy to the mean-field potential (4.36), the ansatz for the e�ective potential Uk
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Parameter a3 (MeV�2) a4(MeV�4) m⌅ (MeV) m⌃ = m⇤ (MeV) gs g⌃ g⇤

Value 6.87 · 10�2 2.05 · 10�4 880 783 10 9.5 4.12

Table 2: List of all mean-field parameters.

Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [202]. The Yukawa
couplings gs, g⌃, and g⇤ are therefore taken to be constants. We define the following
matrix of chemical potentials
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The ansatz for the e�ective action ⇥k in the nucleon-meson model then is in four-
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where Uk is the k-dependent e�ective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the e�ective action are not the quantum fields of the initial action. Instead, they are the
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the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ⇥ of Sec. 3.1, whereas the
fields in the e�ective action above correspond to the fields �. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.
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The chiral potential Uk,⌅ can be Taylor expanded around ⇧0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,⌅ is

Uk,⌅(T , µp, µn, ⇧, ⌃0, ⇤3
0) =

�

n
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n!
(⇧ � ⇧0)

n . (4.95)

In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the e�ective
potential,

⌥�k
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. (4.96)

The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in App. A.3. The Bose distribution nB and the Fermi distribution nF
are defined in App. A.1. Wetterich’s flow equation for the nucleon-meson model is
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with

E2
� = k2 + m2

� , E2
⇤ = k2 + m2

⇤ , E2
N = k2 + m2

N ,
m2

� = U �
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k,⌅(⇧) , m2
N = 2g2

s⇧ ,
µp,e� = µp � g⇧⌃0 � g⇥⇤3

0 , µn,e� = µn � g⇧⌃0 + g⇥⇤3
0 .

The di�erent contributions to the flow equation can be given a physical interpretation.
The ⌅ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with a minus sign from the trace in the fermionic loop. All particles enter
with a vacuum piece and a Bose or Fermi distribution, respectively, which vanishes in the
limit T = µ = 0. Next, we will elucidate the connection to in-medium propagators.

4.3.1 Taylor expansion

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of ⌅ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in ⌅ (or ⇧). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.95),

. . . plus vector field equations,  then full system of equations solved on a grid.

effective potential 

Flow equations in practice

fields vanish. The only components that can acquire
non-zero expectation values are ⌥0 and ⇤30. Their ef-
fect is a shift of neutron and proton chemical potentials
according to:

µeff
n,p = µn,p � g⌅ ⌥0 ± g⇥ ⇤

3
0 . (6)

The scalar boson ⌅ and the pions � are light compared
to the energy scales we are interested in and so they are
allowed to fluctuate. Similarly, the nucleons are kept
in the flow equations, thus incorporating soft nucleon-
hole excitations around the Fermi surface. Under these
conditions, the flow equations for the present model be-
come:
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The k-dependent mean fields ⌥0(k) and ⇤30(k) are de-
fined at the minima of Uk for each scale k. These fields
are thus eliminated as external parameters, simplifying
the numerical effort. Their values at k are given by the
solutions of the following equations which supplement
the FRG equation (7):
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Figure 1: Equation of state for small densities for the full FRG calcu-
lation (black line) compared with mean field results (dashed line), and
chiral Fermi liquid theory [3] (gray band).

The ultraviolet potential at k = � is fixed in such a way
as to reproduce the mean field potential from Ref. [11]
at T = 0 and µn = µp = µc. This guarantees a good
description of well-known properties of symmetric nu-
clear matter around the liquid-gas transition. In fact
all parameters apart from g⇥ and m⇥ are determined in
this way. The explicit values can be found in Ref. [11].
With ⇤30 entering as a mean field, only the ratio g2⇥/m

2
⇥

appears in the (Hartree type) self-consistent equations.
Therefore only a single additional parameter, represent-
ing the strength G⇥ ⇧ g2⇥/m

2
⇥ of an equivalent short-

distance contact term, G⇥(⌃†⇥⌃)2, is introduced when
turning from symmetric to asymmetric nuclear mat-
ter and neutron matter. The intermediate and long-
range isospin-dependent dynamics is governed entirely
by pion degrees of freedom with no additional input re-
quired. This renders the model extremely rigid.

We note that a potential source of isospin break-
ing is neglected in the present approach. Introducing
an isospin chemical potential, µI = µp � µn, the pi-
ons are no longer degenerate and SO(4) is broken to
SO(2)⇤ SO(2). As a consequence, the pion field com-
ponents ⇥+ and ⇥� experience the chemical potential
µI . The complexity of the RG equations increases sub-
stantially and the equations for the vector bosons can no
longer be integrated since they depend on the potential
Uk. However the influence of these isospin-breaking
terms on the equation of state is expected to be small as
pointed out in perturbative calculations based on chiral
effective field theory [16]. All isospin-breaking effects
are therefore considered to be absorbed by adjusting the
coupling strength G⇥ of the isovector-vector boson.

The full set of equations (7) and (10) is solved us-
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are thus eliminated as external parameters, simplifying
the numerical effort. Their values at k are given by the
solutions of the following equations which supplement
the FRG equation (7):

g⌅ ⌥0(k) =
⌃

r=±1

g2⌅
3⇥2m2

⌅

⌥ �

k
dp

p4

EN

⇤ ↵

↵µ

�
nF

�
EN � rµeff

p (k)
⇥
+ nF

�
EN � rµeff

n (k)
⇥ 

,

g⇥ ⇤
3
0(k) =

⌃

r=±1

g2⇥
3⇥2m2

⇥

⌥ �

k
dp

p4

EN

⇤ ↵

↵µ

�
nF

�
EN � rµeff

p (k)
⇥
� nF

�
EN � rµeff

n (k)
⇥ 

.

(10)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

10

20

30

40

n ! n0

E
n
er

g
y
!

p
ar

ti
cl

e

Figure 1: Equation of state for small densities for the full FRG calcu-
lation (black line) compared with mean field results (dashed line), and
chiral Fermi liquid theory [3] (gray band).

The ultraviolet potential at k = � is fixed in such a way
as to reproduce the mean field potential from Ref. [11]
at T = 0 and µn = µp = µc. This guarantees a good
description of well-known properties of symmetric nu-
clear matter around the liquid-gas transition. In fact
all parameters apart from g⇥ and m⇥ are determined in
this way. The explicit values can be found in Ref. [11].
With ⇤30 entering as a mean field, only the ratio g2⇥/m

2
⇥

appears in the (Hartree type) self-consistent equations.
Therefore only a single additional parameter, represent-
ing the strength G⇥ ⇧ g2⇥/m

2
⇥ of an equivalent short-

distance contact term, G⇥(⌃†⇥⌃)2, is introduced when
turning from symmetric to asymmetric nuclear mat-
ter and neutron matter. The intermediate and long-
range isospin-dependent dynamics is governed entirely
by pion degrees of freedom with no additional input re-
quired. This renders the model extremely rigid.

We note that a potential source of isospin break-
ing is neglected in the present approach. Introducing
an isospin chemical potential, µI = µp � µn, the pi-
ons are no longer degenerate and SO(4) is broken to
SO(2)⇤ SO(2). As a consequence, the pion field com-
ponents ⇥+ and ⇥� experience the chemical potential
µI . The complexity of the RG equations increases sub-
stantially and the equations for the vector bosons can no
longer be integrated since they depend on the potential
Uk. However the influence of these isospin-breaking
terms on the equation of state is expected to be small as
pointed out in perturbative calculations based on chiral
effective field theory [16]. All isospin-breaking effects
are therefore considered to be absorbed by adjusting the
coupling strength G⇥ of the isovector-vector boson.

The full set of equations (7) and (10) is solved us-
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The k-dependent mean fields ⌥0(k) and ⇤30(k) are de-
fined at the minima of Uk for each scale k. These fields
are thus eliminated as external parameters, simplifying
the numerical effort. Their values at k are given by the
solutions of the following equations which supplement
the FRG equation (7):
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Figure 1: Equation of state for small densities for the full FRG calcu-
lation (black line) compared with mean field results (dashed line), and
chiral Fermi liquid theory [3] (gray band).

The ultraviolet potential at k = � is fixed in such a way
as to reproduce the mean field potential from Ref. [11]
at T = 0 and µn = µp = µc. This guarantees a good
description of well-known properties of symmetric nu-
clear matter around the liquid-gas transition. In fact
all parameters apart from g⇥ and m⇥ are determined in
this way. The explicit values can be found in Ref. [11].
With ⇤30 entering as a mean field, only the ratio g2⇥/m

2
⇥

appears in the (Hartree type) self-consistent equations.
Therefore only a single additional parameter, represent-
ing the strength G⇥ ⇧ g2⇥/m

2
⇥ of an equivalent short-

distance contact term, G⇥(⌃†⇥⌃)2, is introduced when
turning from symmetric to asymmetric nuclear mat-
ter and neutron matter. The intermediate and long-
range isospin-dependent dynamics is governed entirely
by pion degrees of freedom with no additional input re-
quired. This renders the model extremely rigid.

We note that a potential source of isospin break-
ing is neglected in the present approach. Introducing
an isospin chemical potential, µI = µp � µn, the pi-
ons are no longer degenerate and SO(4) is broken to
SO(2)⇤ SO(2). As a consequence, the pion field com-
ponents ⇥+ and ⇥� experience the chemical potential
µI . The complexity of the RG equations increases sub-
stantially and the equations for the vector bosons can no
longer be integrated since they depend on the potential
Uk. However the influence of these isospin-breaking
terms on the equation of state is expected to be small as
pointed out in perturbative calculations based on chiral
effective field theory [16]. All isospin-breaking effects
are therefore considered to be absorbed by adjusting the
coupling strength G⇥ of the isovector-vector boson.

The full set of equations (7) and (10) is solved us-
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FIG. 1. Liquid-gas phase transition. Dotted curve: mean-field result
of the chiral meson-nucleon model. Solid curve: FRG calculation
including mesonic fluctuations. Dashed curve: in-medium chiral ef-
fective field theory calculation of ref. [? ? ].

temperature dependence of the chiral condensate, the order
parameter of spontaneously broken chiral symmetry.

Consider the nuclear liquid-gas phase transition in the T -µ
diagram. Figure ?? shows the first-order transition bound-
ary. The bending of this curve is understood from a Clausius-
Clapeyron type relation. Along the phase transition, the total
differentials of the effective potential must agree in the liquid
and in the gaseous phases:

⌃Uliquid

⌃µ
dµ+

⌃Uliquid

⌃T
dT =

⌃Ugas

⌃µ
dµ+

⌃Ugas

⌃T
dT . (24)

The slope of the transition line is therefore given by the ratio
of differences between baryon number densitites, nliquid�ngas,
and entropy densities, sliquid � sgas, as follows

dT

dµ
= �

nliquid � ngas

sliquid � sgas
. (25)

Comparing the mean-field result of the chiral nucleon-meson
model [? ] (short-dashed curve in Fig. ??) with the RG cal-
culation (solid curve) it is apparent that fluctuations beyond
mean field bend the phase-transition boundary towards higher
chemical potentials as the temperature increases. In the mean-
field approximation without mesonic fluctuations the entropy
is entirely determined by the nucleons. For small temperatures
and a chemical potential below µc = 923 MeV, no Fermi sea
of nucleons exists. For µ > µc the Fermi sphere is filled and
particle-hole excitations around the Fermi surface contribute
to the entropy. Therefore the entropy is larger in the liquid
phase than in the gas phase and since nliquid > ngas, the slope
of the T �µ phase boundary is negative, dT

dµ < 0, as observed.
The curvature of the boundary line is in good agreement

with the ⇥EFT results of Refs. [? ? ]. This is a non-trivial
observation since the two approaches, RG versus ⇥EFT, dif-
fer significantly in their treatment of fluctuations associated
with the pion field and its thermodynamics. The ⇥EFT cal-
culations are based on a perturbative expansion of the free-
energy density up to three-loop order, including all one- and
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two-pion exchange processes in the medium together with
three-body forces and effects from �-isobar excitations. The
RG approach involves a non-perturbative resummation of pion
loops but relegates many other effects to the parametriza-
tion of the effective potential U . The RG critical point of
the liquid-gas transition lies at slightly higher temperature
than the one in three-loop ⇥EFT: one finds a critical tem-
perature Tc = 18.3 MeV, compared to the ⇥EFT result,
Tc = 15.1 MeV [? ? ]. This is consistent with estimates from
multi-fragmentation and fission data which place the critical
temperature at Tc � 16 MeV [? ].

The liquid-gas coexistence region plotted in the
temperature-density plane is shown in Fig. 2. It fea-
tures, as in Fig.??, a calculation in mean-field approximation,
the result with fluctuations treated in the FRG framework,
and the ⇥EFT result.

A comparison between the pressure P (µ) resulting from
the model with inclusion of RG effects and from ⇥EFT is
shown in Fig. 3. Since the effective potential is adjusted to
reproduce nuclear observables at µ = µc and T = 0, the
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temperature dependence of the chiral condensate, the order
parameter of spontaneously broken chiral symmetry.

Consider the nuclear liquid-gas phase transition in the T -µ
diagram. Figure ?? shows the first-order transition bound-
ary. The bending of this curve is understood from a Clausius-
Clapeyron type relation. Along the phase transition, the total
differentials of the effective potential must agree in the liquid
and in the gaseous phases:

⌃Uliquid

⌃µ
dµ+

⌃Uliquid

⌃T
dT =

⌃Ugas

⌃µ
dµ+

⌃Ugas

⌃T
dT . (24)

The slope of the transition line is therefore given by the ratio
of differences between baryon number densitites, nliquid�ngas,
and entropy densities, sliquid � sgas, as follows

dT

dµ
= �

nliquid � ngas

sliquid � sgas
. (25)

Comparing the mean-field result of the chiral nucleon-meson
model [? ] (short-dashed curve in Fig. ??) with the RG cal-
culation (solid curve) it is apparent that fluctuations beyond
mean field bend the phase-transition boundary towards higher
chemical potentials as the temperature increases. In the mean-
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of nucleons exists. For µ > µc the Fermi sphere is filled and
particle-hole excitations around the Fermi surface contribute
to the entropy. Therefore the entropy is larger in the liquid
phase than in the gas phase and since nliquid > ngas, the slope
of the T �µ phase boundary is negative, dT

dµ < 0, as observed.
The curvature of the boundary line is in good agreement

with the ⇥EFT results of Refs. [? ? ]. This is a non-trivial
observation since the two approaches, RG versus ⇥EFT, dif-
fer significantly in their treatment of fluctuations associated
with the pion field and its thermodynamics. The ⇥EFT cal-
culations are based on a perturbative expansion of the free-
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two-pion exchange processes in the medium together with
three-body forces and effects from �-isobar excitations. The
RG approach involves a non-perturbative resummation of pion
loops but relegates many other effects to the parametriza-
tion of the effective potential U . The RG critical point of
the liquid-gas transition lies at slightly higher temperature
than the one in three-loop ⇥EFT: one finds a critical tem-
perature Tc = 18.3 MeV, compared to the ⇥EFT result,
Tc = 15.1 MeV [? ? ]. This is consistent with estimates from
multi-fragmentation and fission data which place the critical
temperature at Tc � 16 MeV [? ].

The liquid-gas coexistence region plotted in the
temperature-density plane is shown in Fig. 2. It fea-
tures, as in Fig.??, a calculation in mean-field approximation,
the result with fluctuations treated in the FRG framework,
and the ⇥EFT result.

A comparison between the pressure P (µ) resulting from
the model with inclusion of RG effects and from ⇥EFT is
shown in Fig. 3. Since the effective potential is adjusted to
reproduce nuclear observables at µ = µc and T = 0, the
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gap equations in the following form:

g⇤ ⌃0(k) =
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dp
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n (k)

⇥⌃
,

(26)

where the effective chemical potentials now depend on k in
the following form

µeff
n,p(k) = µn,p � g⇤ ⌃0(k)± g� ⇤

3
0(k) . (27)

These equations can be considered as generalizations of the
mean field equations (6) in the context of the functional renor-
malization group. After an integration by parts, the gap equa-
tions can be brought into a form similar to Eq. (7), where
the momenta of the nucleons contributing to the mean fields
⌃0(k) and ⇤30(k) at a certain step are restricted to the range
k ⇧ p ⇧ �, as is clear from the integral boundaries of (26). In
addition, boundary terms from the integration by part appear,
which vanish however in the limit k ⌃ 0 and for large cutoffs
�. In this way, it is possible to show that the flow equations
reproduce the mean field results, if the mesonic loops are dis-
carded.

Finally, the ultraviolet potential is fixed in such a way that
for T = 0 and µ = µc the mean field potential (4) is repro-
duced. This guarantees that nuclear matter is described accu-
rately. Moreover, all low-energy properties are correctly kept.

As described in [22], the parameters have to be readjusted
in order to reproduce the correct nuclear saturation density.
Again, the coupling G� is fixed as to reproduce a symmetry
energy of Esym = 32 Mev. The new parameters of the model
are

G⇤ =
g2⇤
m2

⇤

= 4.04 fm2 , G� =
g2�
m2

�

= 1.12 fm2 ,

m⇥ = 770 MeV , a3 = 5.55 · 10�3 MeV�2 ,

a4 = 8.38 · 10�5 MeV�4 .

(28)

We choose an ultraviolet cutoff � = 1.4 GeV. For given tem-
perature T and chemical potentials µn and µp, the full set
of flow equations (22) and (26) is then solved using the grid
method [38]. The potential is expanded as a function of ⇧
around grid points and then matched continuously between
any two adjacent grid points. In this way, the potential is not
Taylor expanded but kept as a general function of ⇧. In par-
ticular a first-order transition with two degenerated minima
can be easily studied. If eventually the effective potential is
expanded around its absolute minimum, meson n-point inter-
actions of all orders are generated in the effective action. In
the sense of a generalized linear sigma model, multi-pion and
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FIG. 1. The energy per particle of symmetric nuclear matter com-
puted in the FRG-nucleon-meson-model (solid line) as compared to
the Akmal-Pandharipande-Ravenhall EoS (dotted, [28]). and a QMC
computation (dashed, [39])

sigma interactions occur now to all orders. However in con-
trast to chiral effective field theory, the n-point correlators in
the effective action were computed in a fully non-perturbative
fashion.

The grandcanonical potential Ugc is finally obtained by an
evaluation of the effective potential as a function of ⌅ at its ab-
solute minimum. From the grandcanonical potential, all ther-
modynamic properties, like pressure, density, energy density,
and entropy can be derived from Eq. (9).

IV. ASYMMETRIC MATTER

Symmetric nuclear matter at vanishing temperature exhibits
a first-order phase transition between a dilute gas phase and a
nuclear-liquid phase with density n0. The absolute minimum
of the energy per particle is located at saturation density and
equals the binding energy �16 MeV. In Fig. 1, the energy
per particle at vanishing temperature T is shown as a function
of density up to three times nuclear saturation density. For
comparison, the equation of state by Akmal, Pandharipande,
and Ravenhall [28] based on realistic potentials, as well as a
quantum Monte Carlo computation [39] are shown. All results
are clearly in very good agreement, even up to high densities.

In Fig. 2 the energy per particle as a function of density is
shown for different proton fractions between symmetric nu-
clear matter (x = 0.5) and pure neutron matter (x = 0). As
the proton fraction x is lowered, the energy per particle in-
creases until for x ⌥ 0.11 the energy per particle vanishes
at the minimum (the upper endpoint of the dashed curve in
Fig. 2). For even smaller values of x the absolute minimum
occurs at zero density and nuclear matter is no longer self-
bound. However there is still a remnant of the first-order phase
transition. The coexistence region extends no longer to n = 0.
In Fig. 3, the coexistence regions in a temperature/density-plot
are shown at vanishing temperature for different proton frac-
tions. For instance, for x = 0.1, the coexistence region starts

Symmetric nuclear matter
in the chiral FRG approach

M. Drews, T. Hell, B. Klein, W. W.       
Phys. Rev. D 88 (2013) 096011

energy per
nucleon
at T = 0

FRG-Nucleon-Meson-Model (solid curve) in comparison 
with advanced many-body (variational and QMC) computations
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FRG results 
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are remarkably similar to
(perturbative) in-medium 
Chiral EFT calculations 
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FIG. 2. The equation of state for different proton fractions x at van-
ishing temperature. The dashed curve denotes the absolute minimum
of the energy per particle. The dotted line results from a Maxwell
construction.
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FIG. 3. The liquid-gas coexistence regions for different proton frac-
tions x.

at non-vanishing density, which can be obtained in a Maxwell
construction from the energy per particle, as depicted by the
dotted line in Fig. 2 for x = 0.1. Finally, for x smaller than
a critical value of x = 0.045 the energy per particle is rais-
ing monotonously as a function of density. There is no longer
a second minimum and the coexistence region vanishes alto-
gether as is seen in Fig. 3.

If the temperature is increased, the phase coexistence re-
gion melts until it disappears at a certain x-dependent crit-
ical temperature, which is characterized by a second-order
critical endpoint. From the behavior of the coexistence re-
gions one can read off the critical endpoint for symmetric
matter, which is located at a temperature T = 18.3 MeV and
a critical density n = 0.053 fm�3. These values are in ex-
cellent agreement with analyses of compound nuclear reac-
tions and multifragmentation experiments, which give criti-
cal temperatures of T = 17.9± 0.4 MeV and critical densi-
ties � = 0.06± 0.01 fm�3 [40, 41]. The fate of the critical
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FIG. 4. The equation of state for pure neutron matter with
Esym = 32 MeV. The gray band shows QMC results [11] with
32.0 MeV  Esym  33.7 MeV
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FIG. 5. The equation of state for pure neutron matter. The gray
band are our results with 29 MeV  Esym  33 MeV. For reference
predictions from ChEFT (full line, [5]), QMC based on realistic po-
tentials (dashed, [39]), QMC based on chiral potentials (dotted, [13])
as well as the Akmal-Pandharipande-Ravenhall EoS (dashed-dotted,
[28]) are shown.

endpoint as the proton fraction x is varied, is indicated by the
dotted curve. We note that our idealized model ignores surface
effects as well as Coulomb repulsion. In realistic scenarios at
low densities the effects of light clusters are not taken into ac-
count. A study in the framework of relativistic mean field and
microscopic quantum statistical models showed a moderate
influence on the position of the critical endpoint [42].

We want to study in more detail the equation of state for
pure neutron matter in comparison with the literature. First
the coupling G� is fixed to reproduce Esym = 32 MeV. The
L parameter corresponding to the slope of the symmetry en-
ergy as defined in Eq. (15) is then L = 66.3 MeV, close to the
empirical value 40 MeV ⇥ L ⇥ 62 MeV [33].

In Fig. 4 the energy per particle is shown as a function of
density (black line). In comparison, results obtained in a quan-

proton 
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at non-vanishing density, which can be obtained in a Maxwell
construction from the energy per particle, as depicted by the
dotted line in Fig. 2 for x = 0.1. Finally, for x smaller than
a critical value of x = 0.045 the energy per particle is rais-
ing monotonously as a function of density. There is no longer
a second minimum and the coexistence region vanishes alto-
gether as is seen in Fig. 3.

If the temperature is increased, the phase coexistence re-
gion melts until it disappears at a certain x-dependent crit-
ical temperature, which is characterized by a second-order
critical endpoint. From the behavior of the coexistence re-
gions one can read off the critical endpoint for symmetric
matter, which is located at a temperature T = 18.3 MeV and
a critical density n = 0.053 fm�3. These values are in ex-
cellent agreement with analyses of compound nuclear reac-
tions and multifragmentation experiments, which give criti-
cal temperatures of T = 17.9± 0.4 MeV and critical densi-
ties � = 0.06± 0.01 fm�3 [40, 41]. The fate of the critical
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Esym = 32 MeV. The gray band shows QMC results [11] with
32.0 MeV  Esym  33.7 MeV
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FIG. 5. The equation of state for pure neutron matter. The gray
band are our results with 29 MeV  Esym  33 MeV. For reference
predictions from ChEFT (full line, [5]), QMC based on realistic po-
tentials (dashed, [39]), QMC based on chiral potentials (dotted, [13])
as well as the Akmal-Pandharipande-Ravenhall EoS (dashed-dotted,
[28]) are shown.

endpoint as the proton fraction x is varied, is indicated by the
dotted curve. We note that our idealized model ignores surface
effects as well as Coulomb repulsion. In realistic scenarios at
low densities the effects of light clusters are not taken into ac-
count. A study in the framework of relativistic mean field and
microscopic quantum statistical models showed a moderate
influence on the position of the critical endpoint [42].

We want to study in more detail the equation of state for
pure neutron matter in comparison with the literature. First
the coupling G� is fixed to reproduce Esym = 32 MeV. The
L parameter corresponding to the slope of the symmetry en-
ergy as defined in Eq. (15) is then L = 66.3 MeV, close to the
empirical value 40 MeV ⇥ L ⇥ 62 MeV [33].

In Fig. 4 the energy per particle is shown as a function of
density (black line). In comparison, results obtained in a quan-
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Neutron matter in the chiral FRG approach
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FIG. 1. Equation of state for small densities for the full FRG calcula-
tion (black line) compared with mean field results (dashed line), and
chiral Fermi liquid theory [3] (gray band).
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FIG. 2. Equation of state for the full FRG calculation (black line)
compared with mean field results (dashed line), and QMC calcula-
tions [7] (gray band, with 32.0 MeV  Esym  33.7 MeV).

temperatures and varying proton-to-neutron fractions will be
investigated in forthcoming more extended work.

Results. Pure neutron matter is characterized by vanishing
proton density: np = �⌃Ugc/⌃µp = 0. The single remain-
ing parameter g2⇥/m2

⇥ is fixed by reproducing the symmetry
energy, defined as the difference between the energy per par-
ticle of symmetric and pure neutron matter at nuclear satu-
ration density. We use Esym = 32 MeV, see Ref. [15], the
value derived from a large variety of empirical data from nu-
clear physics and astrophysics. We find g2⇥/m

2
⇥ = 1.46 fm2

(as compared to g2⇤/m
2
⇤ = 3.45 fm2 in the isoscalar sector).

Add here a few sentences concerning the L - parameter.
Consider now the energy per particle, E/N , in neutron mat-

ter. At the mean-field level one encounters the typical problem
familiar from relativistic mean field models: E/N comes out
too small at low densities, while the EoS is too stiff at large
densities compared to realistic many-body calulations. How-
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FIG. 3. Chiral order parameter in neutron matter at low densities in
comparison with the leading order term using �⇡N = 45 MeV.
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FIG. 4. Chiral order parameter in neutron matter: linear approxima-
tion (dashed line), the ChEFT result [16] (gray band), the mean-field
approximation of the present model (MF - dotted curve) and the full
FRG result (solid curve).

ever, the FRG method greatly improves the behavior of the
equation of state which is bent towards the many-body results
as seen in Figs. 1 and 2. There is now much better agree-
ment with results both from chiral Fermi liquid theory [3] at
smaller densities and with QMC calculations [7] up to about
three times nuclear saturation density.

Another interesting issue is the question of chiral symmetry
restoration in dense neutron matter. The order parameter of
spontaneously broken chiral symmetry is the chiral (quark)
condensate, ⇤q̄q⌅. To leading order in the density n,

⇤q̄q⌅n
⇤q̄q⌅0

= 1� ⇥�N

f2
�m

2
�

n , (11)

where the slope is determined by the pion-nucleon sigma
term, ⇥�N = 45± 5 MeV [ref: Gasser, Leutwyler, Sainio].
In the present model the expectation value of the ⇥ field is
directly related (proportional) to the chiral condensate. A fit

mean-field

full FRG

QMC 
E(sym) = 32 - 34 MeV

Coupling strength of isovector-vector field / contact term 
          fixed by symmetry energy E(sym) = 32 MeV

M. Drews,  W. W.     
Phys. Lett. B738 (2014) 187 
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FIG. 4. Chiral order parameter versus density at T = 0. The dotted
lines obtained by applying the Maxwell construction. The renormal-
ization group (RG) result is shown in comparison with ⇥EFT [? ?
].

equations of state agree very well in both approaches. In par-
ticular, the slope of P (µ) at µc is related to the compressibilty
which is consistent with the empirical compression modulus
in both approaches. The equations of state match also for
larger chemical potentials at T = 0. As the temperature in-
creases some deviations between the RG and ⇤EFT equations
of state appear, although they remain small for temperatures
up to 15-20 MeV. These features reflect the similarity of the
first-order transition lines in the phase diagram, with the ex-
ception of the small relative displacement in the position of the
critical endpoint. Given the different treatments of the pionic
physics in the RG and ⇤EFT approaches, the close similarity
of these results is once again remarkable.

Next, consider the chiral condensate, ⇤q̄q⌅, as a function of
temperature and baryon density (or chemical potential). In
the chiral nucleon-meson model this condensate is propor-
tional to the expectation value of the ⇥ field. Quite gener-
ally, the Hellmann-Feynman theorem in combination with the
Gell-Mann–Oakes–Renner relation gives the in-medium chi-
ral condensate in the form [? ? ]

⇤q̄q⌅ (n, T )
⇤0|q̄q|0⌅ = 1� ⇧F(n, T )

f2
� ⇧m2

�

, (26)

where F is the free-energy density, F = nF̄ with F̄ the
free energy per particle. The pion-mass dependence of F̄ is
the quantity systematically accessible in ⇤EFT since this de-
pendence is explicitly given in terms of the pion propagators
present in the in-medium loop diagrams.

Figures 4 and 5 show the chiral condensate at zero temper-
ature as functions of the baryon chemical potential µ and den-
sity n, plotted as the ratio of ⇥ versus its vacuum value ⇥0 =
f� . The density dependence of the condensate at T = 0 dis-
played in Fig. 4 shows, first, (dotted) the behavior in the pres-
ence of the liquid-gas coexistence region up to the equilibrium
density of normal nuclear matter. At higher densities, correla-
tions and fluctuations beyond mean field tend to stabilize the
chiral condensate against restoration of chiral symmetry in its
Wigner-Weyl realization, at least up to about twice n0, the
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FIG. 5. Chiral order parameter for vanishing temperature T = 0 as
a function of baryon chemical potential. The ⇥EFT results are taken
from [? ? ].
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The curves at the mean-field level and with fluctuations included are
compared. The experimental freeze-out point is at T = 56+9.6

�2.0 MeV
for µ = 760+23

�23 MeV [? ].

conservative range of applicability of the present investiga-
tion. The presentation of the chiral condensate as a function
of baryon chemical potential (Fig. 5) is particularly instruc-
tive as it demonstrates the impact of the first-order liquid-gas
transition on an order parameter of completely different ori-
gin, manifest in the discontinuity at µ = µc = 923 MeV.
At larger baryon chemical potential there is clearly no ten-
dency towards rapid chiral symmetry restoration. Pionic fluc-
tuations delay the dropping of the condensate. The RG treat-
ment shows an even more pronounced effect at this point than
the 3-loop ⇤EFT calculations, though it is again remarkable
how close the (non-perturbative) RG results and the (pertur-
bative) ⇤EFT results turn out to be.

B. Chemical freeze-out and chiral phase transition

Abundances of hadronic species produced in heavy-ion col-
lisions are well described in a hadronic resonance gas pic-
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equations of state agree very well in both approaches. In par-
ticular, the slope of P (µ) at µc is related to the compressibilty
which is consistent with the empirical compression modulus
in both approaches. The equations of state match also for
larger chemical potentials at T = 0. As the temperature in-
creases some deviations between the RG and ⇤EFT equations
of state appear, although they remain small for temperatures
up to 15-20 MeV. These features reflect the similarity of the
first-order transition lines in the phase diagram, with the ex-
ception of the small relative displacement in the position of the
critical endpoint. Given the different treatments of the pionic
physics in the RG and ⇤EFT approaches, the close similarity
of these results is once again remarkable.

Next, consider the chiral condensate, ⇤q̄q⌅, as a function of
temperature and baryon density (or chemical potential). In
the chiral nucleon-meson model this condensate is propor-
tional to the expectation value of the ⇥ field. Quite gener-
ally, the Hellmann-Feynman theorem in combination with the
Gell-Mann–Oakes–Renner relation gives the in-medium chi-
ral condensate in the form [? ? ]

⇤q̄q⌅ (n, T )
⇤0|q̄q|0⌅ = 1� ⇧F(n, T )

f2
� ⇧m2

�

, (26)

where F is the free-energy density, F = nF̄ with F̄ the
free energy per particle. The pion-mass dependence of F̄ is
the quantity systematically accessible in ⇤EFT since this de-
pendence is explicitly given in terms of the pion propagators
present in the in-medium loop diagrams.

Figures 4 and 5 show the chiral condensate at zero temper-
ature as functions of the baryon chemical potential µ and den-
sity n, plotted as the ratio of ⇥ versus its vacuum value ⇥0 =
f� . The density dependence of the condensate at T = 0 dis-
played in Fig. 4 shows, first, (dotted) the behavior in the pres-
ence of the liquid-gas coexistence region up to the equilibrium
density of normal nuclear matter. At higher densities, correla-
tions and fluctuations beyond mean field tend to stabilize the
chiral condensate against restoration of chiral symmetry in its
Wigner-Weyl realization, at least up to about twice n0, the
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conservative range of applicability of the present investiga-
tion. The presentation of the chiral condensate as a function
of baryon chemical potential (Fig. 5) is particularly instruc-
tive as it demonstrates the impact of the first-order liquid-gas
transition on an order parameter of completely different ori-
gin, manifest in the discontinuity at µ = µc = 923 MeV.
At larger baryon chemical potential there is clearly no ten-
dency towards rapid chiral symmetry restoration. Pionic fluc-
tuations delay the dropping of the condensate. The RG treat-
ment shows an even more pronounced effect at this point than
the 3-loop ⇤EFT calculations, though it is again remarkable
how close the (non-perturbative) RG results and the (pertur-
bative) ⇤EFT results turn out to be.

B. Chemical freeze-out and chiral phase transition

Abundances of hadronic species produced in heavy-ion col-
lisions are well described in a hadronic resonance gas pic-
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ture. Using a statistical model a chemical freeze-out boundary
curve in the (T, µ) has been extracted [? ]. For small baryon
chemical potentials the freeze-out temperature turns out to be
very close to the transition temperature of the chiral crossover
as inferred from lattice QCD computations. If such a cor-
respondence between chemical freeze-out and chiral transi-
tion would remain valid also for large chemical potentials, one
would be tempted to conclude that the chiral phase transition
leaks well into the nuclear physics terrain that is properly de-
scribed by the present chiral chiral nucleon-meson model. It is
therefore of interest to explore whether the model as it stands
would support or disprove such an interpretation.

A partial answer has already been given in ref.[? ]. Their
mean-field analysis shows no decreasing chiral condensate
near freeze-out at large chemical potentials. Here we repeat
and extend this computation, now with the effects from ther-
mal pion loops included. As a typical example, the ⇥ field
representing the chiral condensate is plotted as a function of
temperature for a fixed chemical potential µ = 760 MeV
in Fig. 6. At this value of µ the freeze-out point derived
from the statistical model analysis is located at a tempera-
ture T = 56+9.6

�2.0 MeV. If there were a chiral phase transition
nearby, the condensate would change significantly and drop
rapidly to a small value. This is not seen in Fig. 6 where
the sigma field is plotted both at the mean-field level and
with the fluctuations taken into account using the FRG. One
observes that the magnitude of the chiral condensate is still
large up to temperatures around 100 MeV and chiral symme-
try remains spontaneously broken, as already demonstrated
in Fig. 7. Chemical freeze-out and chiral restoration are not
connected or intertwined at baryon chemical potentials char-
acteristic of the nuclear physics region and beyond.

In Fig. 7, the contours of the normalized condensate,
⇥/f� , are plotted for chemical potentials 700 MeV ⇤ µ ⇤
950 MeV. We see that the condensate stays above 2/3 of its
vacuum value throughout this region. We therefore conclude
that chiral symmetry is not restored and there is no critical
endpoint within the region 700 MeV ⇤ µ ⇤ 950 MeV and
for temperatures T ⇤ 100 MeV.

It should of course be pointed out that the chiral phase
transition or the crossover itself cannot be reliably addressed
in our model. The effective potential has been adjusted at
the liquid-gas phase transition in a Taylor expansion around
⇥ = f� . It is therefore predictive only for values of ⇥ not
too far from f� , whereas ⇥ changes rapidly in the vicinity of
the phase transition or crossover. It is nonetheless instructive
to extrapolate and examine where the phase transition actually
takes place in the model. In the mean-field approximation, the
condensate is seen to jump discontinuously to zero already at
a chemical potential of µ = 955 MeV which translates to a
density of about 1.5 times saturation density. This restricts the
applicability of the mean-field version to a relatively narrow
range around normal nuclear densities and the liquid-gas tran-
sition. Once thermal fluctuations are properly treated using
the FRG approach, the chiral condensate remains finite up to
a chemical potential µ = 1.15 MeV, or densities beyond 2.5
times nuclear saturation density. While at such large values
of the chemical potential, the field-dependence of the Yukawa

0.65

0.7

0.7

0.750.8
0.85

0.9

700 750 800 850 900 950

20

40

60

80

100

� �MeV⇥

T
�MeV

⇥

FIG. 7. Contour plots of �/f� . Within the region of applicability of
the chiral nucleon-meson model, the condensate is still non-zero and
chiral symmetry is not restored.

couplings should already be taken into account, the fact that
fluctuations tend to stabilize the hadronic phase of sponta-
neoulsly broken chiral symmetry up to quite high baryon den-
sities emerges as a robust result.

C. Fluctuation effects at the critical endpoint

The thermal fluctuation effects included in the present FRG
calculation are also important for the description of critical be-
havior in the vicinity of the endpoint of the first-order liquid-
gas transition. As already discussed in [? ] for the present
model, a mean-field calculation cannot be expected to be reli-
able close to the phase transition.

To assess the magnitude of these fluctuations, we compare
results for the chiral susceptibility (associated with the mass of
the ⇥ mode) from the FRG calculation to those from a mean-
field calculation. A technically similar calculation [? ] for
the critical region in a quark-meson model found only a rela-
tively narrow region around the critical endpoint (in this case
of the chiral phase transition) in which fluctuations dominate.
Compared to the mean-field calculation, the critical region in
those RG results was much compressed. While the calcula-
tions performed with the quark-meson model were focused
on quark-number susceptibilities, the results guide our expec-
tations also for the present model. In the PQM study [? ], a
smoothing of the observables around the chiral crossover line
appeared once fluctuations were included.

In Figs. 8 and 9, contour lines for the chiral susceptibility,
⇤⇥ = m�2

⇥ , are shown in the T �µ plane. To facilitate a com-
parison, the susceptibilities are normalized to their respective
vacuum expectation values according to ⇤⇥(µ, T ) ⇥ m2

⇥,vac.
Qualitatively similarly to the PQM results in [? ] for the chi-
ral transition, we find in the nucleon-meson model that there is
an extended region above the critical endpoint where the sus-
ceptibility in the mean-field calculation remains large. This
region is elongated along an extrapolation of the first-order
line beyond the critical endpoint. In contrast, the fluctuation-
dominated region in the RG calculation is much more concen-

Comparison of chiral effective field theory and NM-FRG results
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The potential around the minimum is not a�ected as can be seen also in the following figure, where we plot
the e�ective potential as a function of ⇥ for three di�erent chemical potentials:

65 70 75 80 85 90 95
!2

!1

0

1

2

3

Σ !MeV"

U
k
#

0
!M

e
V
#

fm
3
"

µ = 930MeV

µ = 923MeV

µ = 915MeV

The pion-decay constant is determined by the minimum of the potential, and the pion mass by the curvature
of the potential at the minimum. Therefore, for µ < µc, the physical parameters are not changed, and the
system stays in its vacuum state. For µ > µc, the true minimum is at a smaller ⇥, and the fluctuations
contribute. In particular, the compressibility, K = 9n(dn/dµ)�1 is a�ected by fluctuations, which leads to
the refitting of the parameters of the potential, as described.

An inclusion of this discussion would be beyond the scope of our present letter. We will however include
it in a more extended paper (already in preparation), which will focus on asymmetric nuclear matter. A
corresponding sentence has been added on p. 2.

We trust that the revised paper is now suitable for publication.

Sincerely,
Matthias Drews
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Dear Prof. Blaizot,

thank you for your response concerning our submission to Physics Letters B.

We thank the referee again for his helpful criticism.

First, let us present numerical studies of the pion mass after FRG evolution:
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The pion-mass (divided by its vacuum value) is plotted as a function of the chemical potential for symmetric
nuclear matter at T = 0. In the whole regime µ < µc, the pion mass is equal to its vacuum value. This
whole regime in µ corresponds to a single physical state, the vacuum, with vanishing baryon density. At µc,
the first-order liquid-gas transition sets in, and the density increases to n0, The liquid-gas coexistence region
is described by a single chemical potential.

The subtraction at µ = µc is, of course, motivated by the fact that at this point nuclear physics information
can be optimally used to specify the e�ective potential. However, vacuum properties of the pion (m⇡ and
f⇡) stay unchanged by FRG evolution over the whole interval 0  µ < µc. Concerning f⇡, the corresponding
statement is already documented in Fig. 5 of Ref. [11].

Let us give a more technical explanation. We agree that – by construction – the potential is not a�ected at
T = 0 and µ = µc. In more detail, the flow equation (7) at T = 0 for symmetric nuclear matter is given by

 Ūk(µ,⇧)

 k
=

k4

12⇤2

⇢
3q

k2 + U �
k(µc,⇧) + Ū �

k(µ,⇧)
� 3p

k2 + U �
k(µc,⇧)

�

+ sigma flow equation

+
2k4

3⇤2

�
⇣
µ� g!⌃0,k �

p
k2 + 2g2⇧

⌘
� �(µc �

p
k2 + 2g2⇧)

p
k2 + 2g2⇧

,

The main contribution to the flow equation comes from the nucleonic term. For µ < µc, the vector field ⌃0,k

vanishes. For ⌅ close to f⇡, we find
p

2g2⇧ ' mN = 939MeV. Therefore, for µ < µc the theta functions
vanish and there is no nucleonic contribution to the flow equation. The solution of the remaining flow
equation is Ūk(µ,⇧) = 0 for ⌅ close to f⇡.
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In-medium pion mass  (contd.)
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FIG. 7. The equation of state for pure neutron matter. The gray band
are the FRG results with 29 MeV  Esym  33 MeV. For reference,
predictions from ChEFT (full line, [5]), QMC based on realistic po-
tentials (dashed, [42]), QMC based on chiral potentials (dotted, [13])
as well as the Akmal-Pandharipande-Ravenhall EoS (dashed-dotted,
[27]) are shown.

dependence of the pion mass plays an important role in low-
energy pion-nuclear interactions [46], e.g., in the analysis of
deeply-bound pionic atoms based on the s-wave pion-nucleus
optical potential [47–49]. This is an interesting test case for
the role of pionic fluctuations. The threshold s-wave ⇡

� opti-
cal potential for isospin-symmetric nuclei is of the form

Vopt = � 2⇡

m⇡
b

eff
0 n , (31)

where the effective scattering length,

b

eff
0 = b0 �

�
b

2
0 + 2b

2
1

�
h1/ri , (32)

is dominated by the double scattering contribution involv-
ing the isospin-dependent s-wave parameter b1 while the
isospin-even parameter b0 is small (in fact it vanishes in
the chiral limit). The inverse correlation length associated
with the propagating pion in the double scattering process
is h1/ri = 3pF /2⇡ for a gas of nucleons with Fermi mo-
mentum pF . Thus, the change of the pion mass in medium,
�m⇡(n) ' Vopt(n), is governed almost entirely by what the
FRG scheme characterizes as pionic fluctuations, rather than
being driven by the mean-field (Hartree) term linear in the
density n and proportional to b0. Empirically, Vopt ' 0.1m⇡

at n ' n0 = 0.16 fm�3 from the analysis of pionic atoms.
The importance of the double-scattering contribution of or-

der n4/3 to the in-medium pion mass is, of course, realized
also in the chiral effective field theory approach [50–52]. In
Fig. 8 we plot the FRG-ChNM model result for the pion mass
as a function of density for symmetric nuclear matter at van-
ishing temperature. The non-trivial part of the correspond-
ing curve starts at n = n0 because of the first-order liquid-
gas transition. For comparison, the first-order (mean-field)
approximation in the density expansion is shown, together
with a recent in-medium chiral perturbation theory computa-
tion [50]. In agreement with ChEFT and phenomenology, we

ChEFT

RG

linear density

FIG. 8. The in-medium pion mass (normalized to the vacuum mass)
as a functions of density for symmetric nuclear matter at T = 0.
Solid line: FRG-ChNM calculation, dashed line: in-medium chiral
perturbation theory (ChEFT) [50]. Dash-dotted line: leading (linear)
order in the density expansion.

find an enhancement of the pion mass by about ten percent at
nuclear saturation density.

As already noted in Ref. [24], we have not explicitly in-
cluded an isospin chemical potential. Thus a potential source
of isospin breaking is absent. The effect on the equation of
state is expected to be negligible as was deduced from explicit
calculations in chiral effective field theory [53]. In contrast,
this effect cannot be ignored when computing the in-medium
pion mass for asymmetric nuclear matter. The masses of ⇡+,
⇡

� and ⇡

0 split in such a medium [54]. For example, the
mass change for a ⇡

�at leading order in the density (neglect-
ing the small b0 term) is now driven by the isospin-dependent
parameter b1: �m

�
⇡ (nn, np) ' �(2⇡/m⇡) b1 (nn�np), with

b1 ' �0.1m

�1
⇡ . In neutron matter, the mass shift is repulsive

for ⇡� and attractive for ⇡+.

VI. CHIRAL SYMMETRY RESTORATION

At low temperatures and small chemical potentials, chiral
symmetry is spontaneously broken. At vanishing chemical
potential, it is known from lattice calculations that chiral sym-
metry is restored in its Wigner–Weyl realization in a rapid
crossover at temperatures above Tc ' 155 MeV [55, 56]. It
remains an open question whether this crossover turns into a
first-order chiral phase transition for some positive chemical
potential. If this were the case, there would exist a second
order critical endpoint. Some model calculations based on ef-
fective quark degrees of freedom – such as chiral quark-meson
models or NJL type models – predict a first-order transition
at vanishing temperature for quark chemical potentials, µq ,
around 300 MeV (see e.g. [57–61]). Translated into bary-
onic chemical potentials, µB ' 3µq , chiral symmetry would
be restored very close to the equilibrium point of normal nu-
clear matter, µB = 923MeV. Nuclear physics with its well-
established empirical phenomenology teaches us that this can

FRG

ChEFT

LO (b0 term)

m⇡(n)

m⇡(vac)

density n/n0

Non-perturbative FRG result in comparison with 
in-medium Chiral Pertubation Theory
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Nature, Oct. 28, 2010

  New constraints  from  NEUTRON  STARS

M = 2.01 ± 0.04

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⇥) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⇥ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⇥ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⇥ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ⇤ 2.1 kpc. Its relatively high apparent brightness (g⌅ = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.
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PSR J0348+0432

P.B. Demorest et al. 
Nature 467 (2010) 1081

Shapiro delay measurement

Text

PSR J1614+2230

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⇥) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⇥ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⇥ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⇥ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ⇤ 2.1 kpc. Its relatively high apparent brightness (g⌅ = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.

2

M = 1.97 ± 0.04
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FIG. 11. Mass radius relation for neutron star matter. The mass-
radius constraints from reference [3], the radius constraint [37] and
the two-solar-mass neutron stars [1, 2] are shown for comparison.

Given an equation of state p(✏), the mass and radii of neu-
tron stars can be computed from the Tolman–Oppenheimer–
Volkoff (TOV) equations [65–67]

dp(r)

dr

= �G

r

2
[✏(r) + p(r)]

M(r) + 4⇡r

3
p(r)

1� 2GM(r)/r

,

dM(r)

dr

= 4⇡r

2
✏(r) .

(36)

Here G is the gravitational constant and r is a radial parameter.
The boundary conditions at r = 0 are M(0) = 0 and ✏(0) =

✏c, where the central energy density ✏c is varied to generate a
mass-radius curve.

The outer crust of the neutron star consists of an
iron lattice and hence the energy density is that of iron,
✏Fe = 4.4 · 10�12 MeV/fm3. The neutron star radius is then
implicitly defined by the relation ✏(R) = ✏Fe. Finally, the
mass is obtained from the TOV equations as

M = M(R) = 4⇡

Z R

0
dr r

2
✏(r) . (37)

Moving inwards from the crust, the nuclei become more neu-
tron rich as the density increases and electrons are captured
[68]. The inner crust contains (possibly superfluid) neutrons.
The crust is frequently parametrized by the Skyrme-Lyon
(SLy) equation of state [69, 70]. This SLy EoS is matched to
the FRG-ChNM model at the point where the energy-density
curves intersect, which happens at a density n ' 0.3n0. From
there on to higher densities the FRG-ChNM equation of state
is taken as a model for the neutron star core. We do not con-
sider a possible transition to quark matter, nor do we include
other exotic types of matter such as kaon condensates. Hyper-
ons are also not included as they would generally soften the
equation of state unless strong additional repulsion is intro-
duced for compensation [28, 29].

In Fig. 11 the mass-radius relation of the FRG-ChNM
model obtained from the TOV equations is shown. The
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FIG. 12. Density profile for a neutron star with mass M = 1.97 M�
and R = 12.2 km for G⇢ = 1.46 fm�2.

gray band of mass-radius trajectories results from us-
ing symmetry energies in an empirically acceptable range
29 MeV  Esym  37 MeV (or, correspondingly, a range of
isovector-vector couplings 0.91fm2  G⇢  1.46 fm2). For
not too small symmetry energies the equation of state is found
to be in agreement with the observed two-solar-mass neutron
stars.

Unlike the precise 2M� mass determinations, the radius
constraints for neutron stars are far less accurate. They are
subject to model dependent assumptions. Nevertheless, limits
on minimal and maximal radii can be inferred from different
sources, such as X-ray burst oscillations, thermal emission,
and stars with largest spin frequency. The result of such a de-
tailed analysis [3] is a rhomboidal region (depicted in gray in
Fig. 11), which a realistic equation of state must intersect. Our
equation of state is in agreement with all these constraints.
For comparison the acceptable radius interval according to
Ref. [37] is also shown.

Figure 12 shows a typical calculated density profile of a
neutron star with mass M = 1.97 M� using G⇢ = 1.46 fm�2

(i.e. a symmetry energy of 37 MeV). It is noteworthy that
even in the center of the neutron star the density does not ex-
ceed about five times nuclear saturation density. The required
stiffness of the EoS does not permit ultrahigh densities in the
inner core of the star. These findings are in agreement with a
corresponding ChEFT computation [5].

The question might nonetheless be raised whether ap-
proaches such as the ChNM model, based entirely on spon-
taneously broken chiral symmetry with pions and nucleons as
degrees of freedom, are still applicable at densities as high as
5n0. Clearly, the mean-field version of the ChNM model with
its first-order chiral phase transition at about 3n0 would not
qualify for such extrapolations. The FRG-improved version
of this model on the other hand, with proper non-perturbative
treatment of fluctuations and many-body correlations, is pre-
pared to deal with dense baryonic matter. Even if the nucleon
mass at n ⇠ 5n0 is reduced to less than half of its vacuum
value, chiral symmetry is still realized in the spontaneously
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FIG. 7. Mass radius relation for neutron star matter. The mass-radius
constraints from reference [3] and the two-solar-mass neutron star
[1] are shown for comparison.
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FIG. 8. Density profile for a neutron star with mass M = 1.97 M�
and R = 12.2 km for G⇢ = 1.46 fm�2.

Figure 8 shows a typical density profile of a M = 1.97 M⇥
neutron-star for a �-coupling G⇥ = 1.46 fm�2. It is notewor-
thy that even in the center of the neutron star the density does
not exceed much more than five times nuclear saturation den-
sity. These findings are in agreement with a corresponding
ChEFT computation [5].

Certainly the question might be raised whether the nucleon-
meson model, based on chiral symmetry is still applicable at
densities as large as five times saturation density. The chiral
condensate has dropped already and if the density is increased
even higher, chiral symmetry is restored. Since the mass of
the nucleon is generated by the chiral condensate, the nucleon
mass vanishes for restored symmetry. More sophisticated ex-
tensions are needed to avoid this problem, such as the par-
ity doublet model [49], which lies beyond the scope of the
present work. However, even at six times nuclear saturation
density, the expectation value of ⇥ (corresponding to the chi-
ral condensate) is still ⇥/f� � 0.4. Chiral symmetry is still
sufficiently strong broken to justify an model-analysis based

on chiral symmetry.

VI. SUMMARY AND CONCLUSIONS

An effective chiral-nucleon meson model was extended to
asymmetric nuclear matter. With the methods of the func-
tional renormalization group, fluctuations beyond the mean-
field approximation were taken into account. All parameters
were fixed to properties of symmetric nuclear matter as well
as the symmetry energy. The behavior of the liquid-gas phase
transition of nuclear matter was extensively studied. The crit-
ical endpoint is in excellent agreement with empirical data.
The equation of state of symmetric, asymmetric and pure neu-
tron matter was computed. Although there is only one addi-
tional free parameter (which is fitted to the symmetry energy),
the equation of state is in remarkable agreement with similar
computations, both for small densities and also for densities of
several times nuclear saturation density. Likewise, the equa-
tion of state of symmetric nuclear matter is nicely reproduced.
With regard to the latest constraints from neutron star obser-
vations, the equation of state for neutron star matter was taken
as a model for the complete interior of a neutron star. The
mass-radius curve was obtained from the TOV-equations in
good agreement with observational constraints.
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Fluctuations beyond mean field include important multi-pion exchange 
mechanisms and low-energy nucleonic particle-hole excitations

Functional Renormalization Group provides non-perturbative approach 
to                    Nuclear Chiral Thermodynamics 
from symmetric to asymmetric nuclear matter and neutron (star) matter

CONCLUSIONS

New constraints from neutron stars for the equation-of-state 
of dense & cold baryonic matter: 

Mass - radius relation:  stiff equation of state required ! 
No ultrahigh densities 

Conventional (nucleon-meson, “non-exotic”) EoS meets constraints
(issue of strangeness:  suppression of hyperons in neutron stars ?)

No indication of first-order chiral phase transition 

(ϱmax ∼ 5 ϱ0)

1st order phase transition:  Fermi liquid interacting Fermi gas

Fluctuations work against early restoration of chiral symmetry 
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Appendix :
NEUTRON  STAR  MATTER including HYPERONS

with inclusion of hyperons:  EoS too soft to support 2-solar-mass star
unless strong short-range repulsion in YN and / or YNN interactions

34

Topics in Low-Energy QCD with Strange Quarks 9

4

been performed. In this case the additional repulsion
provided by the model (II) pushes �th

� towards a density
region where the contribution coming from the hyperon-
nucleon potential cannot be compensated by the gain in
kinetic energy. It has to be stressed that (I) and (II) give
qualitatively similar results for hypernuclei. This clearly
shows that an EoS constrained on the available binding
energies of light hypernuclei is not sufficient to draw any
definite conclusion about the composition of the neutron
star core.

The mass-radius relations for PNM and HNM obtained
by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [47] with the EoS of Fig. 1 are shown in Fig. 2.
The onset of � particles in neutron matter sizably reduces
the predicted maximum mass with respect to the PNM
case. The attractive feature of the two-body �N interac-
tion leads to the very low maximum mass of 0.66(2)M�,
while the repulsive �NN potential increases the pre-
dicted maximum mass to 1.36(5)M�. The latter result
is compatible with Hartree-Fock and Brueckner-Hartree-
Fock calculations (see for instance Refs. [2–5]).

M
 [M

0]

R [km]

PNM

�N

�N + �NN (I)

�N + �NN (II)
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Figure 2. (Color online) Mass-radius relations. The key is
the same of Fig. 1. Full dots represent the predicted max-
imum masses. Horizontal bands at � 2M� are the ob-
served masses of the heavy pulsars PSR J1614-2230 [18] and
PSR J0348+0432 [19]. The grey shaded region is the excluded
part of the plot due to causality.

The repulsion introduced by the three-body force plays
a crucial role, substantially increasing the value of the
� threshold density. In particular, when model (II) for
the �NN force is used, the energy balance never favors
the onset of hyperons within the the density domain that
has been studied in the present work (� � 0.56 fm�3).
It is interesting to observe that the mass-radius relation
for PNM up to � = 3.5�0 already predicts a NS mass
of 2.09(1)M� (black dot-dashed curve in Fig. 2). Even
if � particles would appear at higher baryon densities,
the predicted maximum mass is consistent with present

astrophysical observations.

In this Letter we have reported on the first Quantum
Monte Carlo calculations for hyperneutron matter, in-
cluding neutrons and � particles. As already verified
in hypernuclei, we found that the three-body hyperon-
nucleon interaction dramatically affects the onset of hy-
perons in neutron matter. When using a three-body
�NN force that overbinds hypernuclei, hyperons appear
around twice saturation density and the predicted max-
imum mass is 1.36(5)M�. By employing a hyperon-
nucleon-nucleon interaction that better reproduces the
experimental separation energies of medium-light hyper-
nuclei, the presence of hyperons is disfavored in the neu-
tron bulk at least until � = 0.56 fm�3 and the lower
limit for the predicted maximum mass is 2.09(1)M�.
Therefore, within the �N model that we have consid-
ered, the presence of hyperons in the core of the neutron
stars cannot be satisfactory established and thus there is
no clear incompatibility with astrophysical observations
when lambdas are included. We conclude that in order to
discuss the role of hyperons - at least lambdas - in neu-
tron stars, the �NN interaction cannot be completely
determined by fitting the available experimental energies
in � hypernuclei. In other words, the �-neutron-neutron
component of the �NN will need additional theoret-
ical investigation and a substantial additional amount
of experimental data. In particular, there are some
features of the hyperon-nucleon interaction (�-neutron-
neutron channels, spin-orbit contributions) which might
be efficiently constrained only by experiments involving
highly asymmetric hypernuclei and/or excitation of the
hyperon. We believe that our conclusions will not change
qualitatively if other hyperons and/or a v�� are included
in the calculation.
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Fig. 5 Mass-radius relations for neutron stars. Solid black curve: ChEFT result (nucleon +
pion degrees of freedom) taken from [29]; colored curves: QMC computations [30] including
⇤ hyperons with phenomenological ⇤N forces and two versions of repulsive ⇤NN three-body
interactions. Version ⇤NN(2) reproduces the systematics of hypernuclear binding energies.

tational collapse. An EoS based on ChEFT with “conventional” nucleon and
pion degrees of freedom can produce su�cient pressure at high density, gen-
erated by repusive three-body forces and the impact of the Pauli principle on
the in-medium nucleon-nucleon e↵ective interaction [29] (see Fig. 5). However,
neutrons in the core of the star tend to be replaced by ⇤ hyperons at densities
(typically around 2-3 %0) where this becomes energetically favorable. Then
the EoS would soften too much so that maximum neutron star masses of 2M�
cannot be sustained any more.

A recent advanced quantum Monte Carlo (QMC) computation of neutron
star matter, with hyperons added [30], emphasizes this issue. While this cal-
culation still uses phenomenological ⇤N input interactions, the conclusions
are nonetheless instructive. When parametrized repulsive ⇤NN three-body
forces are added subject to the condition that the systematics of hypernuclear
binding energies be reproduced, the admixture of ⇤’s in neutron star mat-
ter gets strongly reduced such that the pressure to support a 2M� star can
be maintained as demonstrated in Fig. 5. The pending question is whether
the necessary repulsive e↵ect can be entirely relegated to a hypothetical ⇤NN
three-body force, or whether at least a large part of it comes from momentum-
dependent ⇤N two-body interactions as they appear in the SU(3) ChEFT
treatment [26] at next-to-leading order.

5 Concluding remarks and summary

Progress has been made in establishing chiral SU(3) e↵ective field theory as
the adequate realization of low-energy QCD with strange quarks. It defines a
consistent and well organized coupled-channels framework for kaon-, antikaon-
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Fig. 2. “Total” cross section σ (as defined in Eq. (24)) as a function of plab. The experimental cross sections are taken
from Refs. [54] (filled circles), [55] (open squares), [69] (open circles), and [70] (filled squares) (Λp → Λp), from [56]
(Σ−p → Λn, Σ−p → Σ0n) and from [57] (Σ−p → Σ−p, Σ+p → Σ+p). The red/dark band shows the chiral EFT
results to NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band are results to
LO for Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

also for Λp the NLO results are now well in line with the data even up to the ΣN threshold.
Furthermore, one can see that the dependence on the cutoff mass is strongly reduced in the NLO
case. We also note that in some cases the LO and the NLO bands do not overlap. This is partly
due to the fact that the description at LO is not as precise as at NLO (cf. the total χ2 values in
Table 5). Also, the error bands are just given by the cutoff variation and thus can be considered
as lower limits.

A quantitative comparison with the experiments is provided in Table 5. There we list the
obtained overall χ2 but also separate values for each data set that was included in the fitting
procedure. Obviously the best results are achieved in the range Λ = 500–650 MeV. Here, in
addition, the χ2 exhibits also a fairly weak cutoff dependence so that one can really speak of
a plateau region. For larger cutoff values the χ2 increases smoothly while it grows dramatically
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Fig. 1. Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet
baryons and pseudoscalar mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left
to right: LO contact term, one-meson exchange, NLO contact term, planar box, crossed box, left triangle, right triangle,
football diagram.

2. Chiral potential at next-to-leading order

The derivation of chiral baryon–baryon potentials for the strangeness sector at LO using the
Weinberg power counting has been outlined in Refs. [21,44–46]. The NLO contributions for the
NN case are described in detail in Ref. [33], while the extension to baryon–baryon systems with
any combination of octet baryons has been worked out in Ref. [47]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At
NLO contact terms with two derivatives arise, together with loop contributions from (irreducible)
two-pseudoscalar-meson exchanges. The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [33]

V
(0)
BB→BB = CS + CT σ 1 · σ 2, (1)

where the parameters CS and CT are low-energy constants (LECs), depending on the considered
baryon–baryon channel, which need to be determined in a fit to data. At next-to-leading order
the spin and momentum dependence of the contact terms reads

V
(2)
BB→BB = C1q2 + C2k2 +

(
C3q2 + C4k2)σ 1 · σ 2 + i

2
C5(σ 1 + σ 2) · (q × k)

+ C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2) + i
2
C8(σ 1 − σ 2) · (q × k), (2)

where Ci (i = 1, . . . ,8) are additional LECs. The transferred and average momenta, q and k,
are defined in terms of the final and initial center-of-mass momenta of the baryons, p′ and p, as
q = p′−p and k = (p′+p)/2. When performing a partial-wave projection, these terms contribute
to the two S-wave (1S0, 3S1) potentials, the four P -wave (1P1, 3P0, 3P1, 3P2) potentials, and
the 3S1–3D1 and 1P1–3P1 transition potentials in the following way [29]:

V
(1S0

)
= 4π(CS − 3CT ) + π(4C1 + C2 − 12C3 − 3C4 − 4C6 − C7)

(
p2 + p′ 2)

= C̃1S0
+ C1S0

(
p2 + p′ 2), (3)

V
(3S1

)
= 4π(CS + CT ) + π

3
(12C1 + 3C2 + 12C3 + 3C4 + 4C6 + C7)

(
p2 + p′ 2)

= C̃3S1
+ C3S1

(
p2 + p′ 2), (4)

V
(1P1

)
= 2π

3
(−4C1 + C2 + 12C3 − 3C4 + 4C6 − C7)pp′ = C1P1

pp′, (5)

V
(3P1

)
= 2π

3
(−4C1 + C2 − 4C3 + C4 + 2C5 − 8C6 + 2C7)pp′ = C3P1

pp′, (6)
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Fig. 6. The Λp 1S0 and 1P1 phase shifts δ as a function of plab. The red/dark band shows the chiral EFT results to
NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band shows results to LO for
Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

Fig. 7. The Λp phase shifts for the coupled 3S1–3D1 partial wave as a function of plab. Same description of curves as
in Fig. 6.

state in the ΣN system. It should be said, however, that the majority of the meson-exchange
potentials [36,38,39] produce an unstable bound state, similar to our NLO interaction. The only
characteristic difference of the chiral EFT interactions to the meson-exchange potentials might
be the mixing parameter ϵ1 which is fairly large in the former case and close to 45◦ at the ΣN

threshold, see Fig. 7. It is a manifestation of the fact that the pertinent Λp T -matrices (for the
3S1 → 3S1, 3D1 → 3D1, and 3S1 ↔ 3D1 transitions) are all of the same magnitude.

The strong variation of the 3S1–3D1 amplitudes around the ΣN threshold is reflected in
an impressive increase in the Λp cross section at the corresponding energy, as seen in Fig. 2.

repulsion

LO

phase shift

NLO

moderate attraction 
at low momenta
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hypernuclei

strong repulsion 
at higher momenta
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dense baryonic  
matter
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� single-particle potential with gap choice

• density dependence in symmetric nuclear matter with k
�

= 0
• phenomenological nucleon single-particle potential (from Yamamoto)
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Density dependence of     single particle potentialΛ
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Brueckner calculations 
using chiral SU(3) interaction

Brueckner theory
• potential strongly repulsive for short distances
∆ no convergence for Goldstone expansion (in H

1

)

• + + + + . . . =

∆ ladder diagram behaves well also at short distances

• general definition:
on-shell

© + + + . . .

• Bethe-Goldstone equation:

G(Ê) = V + V Q
e(Ê) + i‘G(Ê)

G : Brueckner reaction matrix Ê: starting energy
e: two-particle energy denominator Q: Pauli operator

Stefan Petschauer (TUM) G-matrix calculation of hyperon potentials in nuclear matter 4/21

Auxiliary potential U

• choose single particle potential U in a way, that
diagrams with crosses cancel diagrams from interaction

• good choice for k Æ kF :

U(km) = Re
ÿ

nÆA
Èmn|G(Ê = Em + En)|mnÍA = +

•
on-shell

∆ ∆

on-shell

E =
ÿ

nÆA
Èn|T |nÍ+ 1

2
ÿ

nÆA
Èn|U|nÍ
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