CHIRAL EFFECTIVE FIELD THEORIES and PHASES of QCD

Wolfram Weise

ECT* Trento and Technische Universität München

- Introductory glance at the QCD phase diagram
- Chiral models and EFT of the nuclear equation of state
- Beyond mean field: fluctuations and Functional Renormalisation Group
- Symmetric and asymmetric nuclear matter
- Neutron matter and neutron stars
- Density & temperature dependence of chiral order parameter

PHASES and STRUCTURES of QCD - facts and visions -

Technische Universität München

- Chiral 1st order phase transition incl. critical point based on chiral quark models (NJL, PNJL, quark-meson models, ...)
- These models do not respect nuclear physics constraints
- Needed: systematic (EFT) approach to **nuclear** thermodynamics

NUCLEAR MATTER and QCD PHASES

- momentum scale: Fermi momentum
- NN distance:
- energy per nucleon:
- compression modulus:

$$f k_F \simeq 1.4 \ fm^{-1} \sim 2m_\pi$$

 $f d_{NN} \simeq 1.8 \ fm \simeq 1.3 \ m_\pi^{-1}$
 $E/A \simeq -16 \ MeV$
 $K = (260 \pm 30) \ MeV \sim 2m_\pi$

Nuclear Forces

Chiral EFT represents QCD at energy/momentum scales
 ${f Q} << 4\pi\,{f f}_\pi \sim\,1\,{f GeV}$

Strategies at the interface between QCD and nuclear physics :

In-medium Chiral Perturbation Theory based on non-linear sigma model (with inclusion of nucleons)

expansion of free energy density in powers of Fermi momentum Chiral Nucleon-Meson model based on linear sigma model

non-perturbative Renormalization Group approach

PART I:

In-medium Chiral Perturbation Theory and the nuclear many-body problem

CHIRAL EFFECTIVE FIELD THEORY

NUCLEAR INTERACTIONS from CHIRAL EFFECTIVE FIELD THEORY

Systematically organized HIERARCHY

IN-MEDIUM CHIRAL PERTURBATION THEORY

NUCLEAR MATTER

... satisfying Hugenholtz - van Hove and Luttinger theorems (!) I.W. Holt, N. Kaiser, W.W. Nucl. Phys. A 870 (2011) 1, Fermi Liquid Theory: Nucl. Phys. A 876 (2012) 61, Quasiparticle interaction and Landau parameters

Nuclear Energy Density Functional and finite nuclei

Recent reviews:

-75

Phys. Rev. C 87 (2013) 014338 C.Wellenhofer, J.W. Holt,

N. Kaiser, W.W. Phys. Rev. C 89 (2014) 064009

Prog. Part. Nucl. Phys. 73 (2013) 35 J.W. Holt, N. Kaiser, W.W. J.W. Holt, M. Rho, W.W. arXiv:1411.6681, to appear in Phys. Reports

. . . .

П

Technische Universität München

CHIRAL THERMODYNAMICS: PHASE DIAGRAM of NUCLEAR MATTER

Nuclear liquid - gas phase transition: Trajectory of CRITICAL POINT for asymmetric matter

as function of proton fraction Z/A

... determined almost completely by

isospin dependent (one- and two-) pion exchange dynamics

NUCLEAR LIQUID-GAS TRANSITION

from multifragmentation measurements in heavy-ion collisions

NEUTRON MATTER

In-medium chiral effective field theory (3-loop) with resummation of short distance contact terms (large nn scattering length, $a_s = 19$ fm)

agreement with sophisticated many-body calculations

(e.g. recent Quantum Monte Carlo computations)

PART II:

Chiral Nucleon-Meson Model and Functional Renormalization Group

S. Floerchinger, Ch. Wetterich : Nucl. Phys. A 890-891 (2012) 11

Mesonic and nucleonic particle-hole fluctuations treated non-perturbatively using FRG

M. Drews, T. Hell, B. Klein, W.W. Phys. Rev. D88 (2013) 096011

M. Drews, W.W. Phys. Lett. B738 (2014) 187 arXiv:1412.7838, Phys. Rev. C (in print)

CHEMICAL FREEZE-OUT

S. Floerchinger, Ch. Wetterich : Nucl. Phys. A 890-891 (2012) 11

Chemical freeze-out in baryonic matter at T < 100 MeV is not associated with (chiral) phase transition or rapid crossover

Fixing the input: some comments

Scalar ("sigma") field has mean-field (chiral order parameter) and fluctuating pieces. σ mass: NOT to be confused with pole in I = 0 s-wave pion-pion T matrix.

Nucleon mass: $m_N^2 = 2g \chi$... in vacuum: $m_N = g f_{\pi}$

Vector fields encode short-distance NN dynamics, self-consistently determined background mean fields (non-fluctuating) (NOT to be identified with physical ω and ρ mesons)

Effective chemical potentials $\mu_{n,p}^{\text{eff}} = \mu_{n,p} - g_{\omega} \,\omega_0 \,\pm g_{\rho} \,\rho_0^3$ Relevant quantities: $G_{\rho} = \frac{g_{\rho}^2}{m_V^2}$, $G_{\omega} = \frac{g_{\omega}^2}{m_V^2} \iff \text{contact terms in ChEFT}$

Parameters: 2 coefficients in U_0 , $m_\sigma \simeq 0.8 \, \text{GeV}$, $G_\rho \sim G_\omega/4 \simeq 1 \, \text{fm}^2$ determined by nuclear matter properties and symmetry energy

Chiral nucleon - meson model beyond mean-field - Renormalization Group strategies -

M. Drews, T. Hell, B. Klein, W.W.

Phys. Rev. D 88 (2013) 096011

Technische Universität München

as it in the providence of the

Flow equations in practice

ouplings is experied to be spall not be small by the spall was not be was spall of the spall the spall of the

Results : Liquid - Gas Transition

- symmetric nuclear matter -

M. Drews, T. Hell, B. Klein, W.W. Phys. Rev. D 88 (2013) 096011

close correspondence between (perturbative) in-medium ChEFT and (non-perturbative) FRG results

FRG-Nucleon-Meson-Model (solid curve) in comparison with advanced many-body (variational and QMC) computations

Coupling strength of isovector-vector field / contact term fixed by symmetry energy E(sym) = 32 MeV

Chiral Order Parameters

Comparison of chiral effective field theory and NM-FRG results

Technische Universität München

In-medium pion mass

Contact with phenomenology :

compare with s-wave pion-nuclear optical potential from pionic atoms

 Good agreement of FRG calculation with empirical in-medium pion mass shift, both in sign and magnitude

In-medium pion mass (contd.)

Non-perturbative FRG result in comparison with in-medium Chiral Pertubation Theory

3.0

TECHNIS UNIVERS DARMST

NEUTRON STARS and the **EQUATION OF STATE** of **DENSE BARYONIC MATTER**

J. Lattimer, M. Prakash: A

Astrophys. J. 550 (2001) 426 Phys. Reports 442 (2007) 109

Mass-Radius Relation

New constraints from NEUTRON STARS

PSR J1614+2230

 $\mathbf{M} = \mathbf{1.97} \pm \mathbf{0.04} \,\, \mathrm{M_{\odot}}$

J.Antoniadis et al. Science 340 (2013) 6131

PSR J0348+0432

No ultrahigh densities in the neutron star core

CONCLUSIONS

Functional Renormalization Group provides non-perturbative approachtoNuclear Chiral Thermodynamicsfrom symmetric to asymmetric nuclear matter and neutron (star) matter

- Fluctuations beyond mean field include important multi-pion exchange mechanisms and low-energy nucleonic particle-hole excitations
- Ist order phase transition: Fermi liquid + interacting Fermi gas
- **No** indication of **first-order chiral phase transition**
 - Fluctuations work against early restoration of chiral symmetry
- New constraints from neutron stars for the equation-of-state of dense & cold baryonic matter:
 - Mass radius relation: stiff equation of state required ! No ultrahigh densities $(arrho_{max}\sim 5\,arrho_0)$

Conventional (nucleon-meson, "non-exotic") EoS meets constraints (issue of strangeness: suppression of hyperons in neutron stars ?)

Appendix : NEUTRON STAR MATTER including HYPERONS

New Quantum Monte Carlo calculations using phenomenological hyperon-nucleon and hyperon-NN three-body interactions constrained by hypernuclei

with inclusion of hyperons: EoS too soft to support 2-solar-mass star unless strong short-range repulsion in YN and / or YNN interactions

Density dependence of Λ single particle potential

