<u>Measurement of vector mesons in</u> <u>nuclei: J-PARC E16 experiment</u>

<u>Satoshi Yokkaichi</u> (RIKEN Nishina Center)

- physics
 - dilepton spectra
- precedent experiment E325
- proposed experiment E16
- status & schedule of construction
- summary

Collaboration			
RIKEN S	Yokkaichi. H. En'vo. F. Sakuma		
KEK	K.Aoki, K.Ozawa, R. Muto, Y.Morino		
S. Sawada, M. Sekimoto			
U-Tokyo Y	'.Komatsu, S.Masumoto, K.Kanno,		
۱	V.Nakai, Y.Obara, T.Shibukawa, H.Murakami		
RCNP	T.N.Takahashi		
CNS, U-Tokyo	H. Hamagaki Kyoto-U M. Naruki		
Hiroshima-U	K. Shigaki JASRI A. Kiyomichi		

spectral change of vector mesons

- hadron as the elementary excitation of QCD vacuum
 - elementary excitation on a ground state : changed when the ground state is changed
 - change of excitation reflects the vacuum
 - condensed matter examples
 - hadroninc spectral function could be changed in the hot and/or dense matter, different vaccum on the QCD phase diagram
 - various theoretical calculations
- vector meson : dilepton decay
 - spectral function probed by virtual photon
 - experimentally, smaller final-state interaction is expected
 - many dilepton measurements have been performed in the world
 - in hot matter : high-energy HI collision
 - in dense matter (nuclei) : γ +A, p+A reactions
 - $-\phi$ meson is simple (while cross section is smaller)
 - isolated and narrow resonance unlike the ρ and ω mesons case (ρ/ω interfere, etc)
 - spectra is related $m_s < \overline{s}s >_{\rho}$

hadronic matter, changing density ρ , excited by induced proton / γ / HI, mass spectrum is measured by dilepton. Klingle, Kaiser, Weise [NPA 624(97)527] density $\rho = \rho_0/2$, ρ_0

QCD phase diagram

dilepton measurements in different vacuum

PHENIX/STAR

CERES/NA60

HADES/CBM

DLS/HADES

E325/*E16*

TAPS/CLAS

vector mesons in HI-collisions have been measured through the dilepton spectra in relation to the chiral symemtry restoration

μ

In hot and dense matter, spectral modification of vector mesons (dilepton invariant mass) are observed in many experiments

observed dilepton spectra in the world

Dilepton spectrum in Heavy Ion Collision

7

unlike-sign pairs
combinatorial background

raw data

- CERES@SPS : (PLB666(2008)425)
- S/B = 1/22 @ m_{ee} > 0.2 GeV/c²
- "cocktail" with the thermal statistical model

HADES 3.5GeV/c pp and pNb

Dilepton spectra measured at KEK-PS E325

- M. Naruki et al., PRL 96 (2006) 092301 R.Muto et al., PRL 98 (2007) 042501
- At the lower energy,
 - better S/N
 - smaller production cross section₄₀₀
 - possibly simpler environment (T=0, no time evolution)

Expected Invariant mass spectra in ee

1) decay inside nuclei

р

- smaller FSI in e⁺e⁻ decay channel
- double peak (or tail-like) structure :
 - second peak is made by inside-nucleus decay (modified meson) : amount
 depend on the nuclear size and meson velocity

11

2) decay outside nuclei

р

ሐ

E325 observed the meson modifications

- in the e⁺e⁻ channel
- below the ω and ϕ , statistically significant excesses over the known hadronic sources including experimental effects

Fitting results (ρ/ω)

To reproduce the data by the fitting, we have to exclude the excess region : 0.60-0.76 GeV

2) ρ meson component seems to be vanished. ($\rho/\omega = 1.0\pm0.2$ in a former experiment)

Discussion : modification parameter

- MC type model analysis to include the nuclear size/meson velocity effects
 - generation point : uniform for ϕ meson
 - from the measured A-dependence
 - measured momentum distribution
 - Woods-Saxon density distribution
 - decay in-flight : linearly dependent on the density of the decay point
 - dropping mass: $M(\rho)/M(0) = 1 k_1(\rho/\rho_0)$
 - width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
- consistent result with the predictions by Hatsuda & Lee (k₁), Oset & Lamos (Γ)

 $k_1 = 0.034_{-0.007}^{+0.006}$ $k_2^{\text{tot}} = 2.6_{-1.2}^{+1.8}$ For ϕ , 3.4% mass reduction (35MeV) $\frac{0}{0.007}$ 3.6 times width broadening(15MeV) at ρ_0

Modified shape of ϕ

- Cu, βγ<1.25,
- best fit values of k_1 and k_2

Free param.: - scales of background and hadron components for each C & Cu - modification parameter k for ρ and ω is common to C & Cu

Remark on the model fitting

- constraint at right side of peak
- Introducing the width broadening (x2 & x3) are rejected by this constraint
- prediction of ' ρ mass increasing' is also not allowed.
- ρ (ω) decay inside nucleus : 46%(5%) for C, 61%(10%) for Cu
- used spectrum is the sum of the modified and not-modified components.
- momentum dependence of mass shift is not included.(But typical p =1.5GeV/c)

<u>measured production CS of $\omega \& \phi$ </u>

- values for the CM backward
- consistent w/ the former measurement for ρ meson by Blobel (PLB48(1974)73)
- Nuclear dependence $\alpha_{\phi} = 0.937$ corresponds to about $\sigma_{\phi N} = 3.7$ mb (Sibirtsev et.al. EPJA 37(2008)287)
- additional Γ =12 MeV for 2 GeV/c ϕ (β =0.9) : consistent with Γ =15⁺⁸ ₋₅ MeV (i.e. k₂=2.6^{+1.8} _{-1.2})
- Remark:

 Γ_{ϕ} =15MeV at m_{ϕ}=985MeV is consistent with Oset & Ramos (NPA679(2001)616)

J-PARC E16

- Systematic measurements of the spectral change of φ (and ρ/ω) in nuclei throught the e⁺e⁻ channel with highest statistics (100000 φ) & best mass resolution (5 MeV) in the world
 - confirm the results of precedent exp. KEK-PS E325, establish the spectral change of $\phi/\rho/\omega$ in nuclei w/ higher statistics
 - nuclear matter size dependence (H, C, Cu, Pb) : double-peak shape for the very slowly-moving φ mesons in larger nuclei
 - first measurement of the momentum dependence (dispersion relation) in nuclear matter
- New spectrometer is required to collect high statistics, to cope with the 10MHz interactions at the target w/ 30 GeV primary proton beam of ~10¹⁰ pps

<u>theory: spectral modification of φ at ρ</u>

parametrize the predicted spectral change with m & Γ

	m = 1019.456 MeV	Γ= 4.26 MeV
KEK-PS E325 experiment PRL 98 (2007) 042501	∆m = −35(28~41) MeV	15 (10~23) MeV
Hatsuda & Lee PRC 46 (1992) R34	∆m = –(12-44)MeV	not estimated
Klingl, Waas, Weise PLB 431(1998) 254	∆m < - 10MeV	~45 MeV
Oset & Ramos NPA 679 (2001) 616	$\Delta m < -10 MeV$	~22 MeV @ m=1020 ~16 MeV @ m=985
Cabrera & Vacas PRC 67 (2004) 045203	$\Delta m = -8 MeV$	~30 MeV @ m=1020

<u>expected shape w/ various parameters</u>²³

expected shape w/ various parameters

velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for ϕ (slow/Cu) has significant excess

velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for φ (slow/Cu) has significant excess
- systematic study : all the data should be explained the interpretation model

velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for φ (slow/Cu) has significant excess
- systematic study : all the data should be explained the interpretation model

- current E325 analysis neglects the dispersion (limited by the statistics)

- current E325 analysis neglects the dispersion (limited by the statistics)

- current E325 analysis neglects the dispersion (limited by the statistics)
- In E16, momentumdependent k₁(p), can be deduced

30

- current E325 analysis neglects the dispersion (limited by the statistics)
- In E16, momentumdependent k₁(p), can be deduced

momentum dependence

E16 Detectors

- ~10 MHz interaction at the targets with ~5 GHz of 30GeV proton beam
- Tracking : GEM Tracker (3 layers of X&Y)
 - $5kHz/mm^2$ at the most forward, 100µm resolution(x) for $5MeV/c^2$ mass resolution
- Electron ID : Hadron Blind Detector(HBD) & lead glass EMC (LG)
- Spectrometer Magnet: 1.77 T at the center, 0.78Tm for R=600 mm

E16 : development & achieved performance

Near future of the J-PARC Hadron hall

High-p line in the J-PARC Hadron hall

• High momentum line is under consturction

High-p line in the J-PARC Hadron hall

• High momentum line is under consturction

E16 Spectrometer Magnet

additional yoke

coil

additional pole pieces

new parts are delivered in 2012 (by R. Muto)

re-assemble with new parts (2015)

<u>experimental area plan</u>

E16 preparation status

- Basic performance of GTR/HBD/LG is confirmed
 - Production of parts is started (GEM, R/O board) & LG
 - parts for 6 GTR & 2 HBD, 8 LG modules will be ready in Mar.
 - Design of support frames will be completed till Mar.
- Spectrometer magnet re-assemble
 - by KEK, started 2015 Feb., 2-3 months
 - after that, we will install LG, GTR and HBD in the magnet
 - target day is July 1st for the support structure delivery
- R/O circuits
 - GTR preamp is OK. HBD preamp w/SRS is also OK.
 - ready in Mar. for 8 modules
 - GTR/HBD trigger ASD are in the test.
 - test of trigger logic circuits is also being tested.
 - Goal : ready for production by Mar. 2015 HHIQCD2015 2015Mar05 S.Yokkaichi

- dilepton spectra in medium have been meausred, and spectral modification is observed in many experiments, including KEK-PS E325.
- J-PARC E16 will measure the spectral change of vector mesons in nuclei with the ee decay channel, using 30GeV proton beam at the newly constructed high-momentum beam line in the J-PARC hadron hall.
 - confirm the observation by E325 and provide more systematic information of the spectral modification (as nuclear-size dependence, momentum dependence, etc) of vector mesons in the finite density matter.
 - preparation is underway and detector mass-production was started.
 - Staged goal of construction : 8 modules out of 26.
 - beamline construction is also on-going, possibly delayed to JFY2016.
- calculation of spectral function of vector mesons in real nuclei (N/Z asymmetric) with finite momentum is expected.