Progress in the simulation of QCD at non-zero baryon density

Philippe de Forcrand ETH Zürich & CERN

YITP, HHIQCD 2015, March 4, 2015

 $\langle \Box \rangle$

∢ ┌┦ ▶ ∢ ⊑ ▶

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

S Q

Water changes its state when heated or compressed

What happens to quarks and gluons when heated or compressed?

The phase diagram of QCD according to Wikipedia

Everything in red is a conjecture

E

 \mathcal{A}

Finite μ : what is known?

Minimal, possible phase diagram

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

Finite μ : what is known?

Exploration hampered by sign problem

◆□ ▶ ◆酉 ▶ ◆ ≧ ▶ ◆ ≧ ▶

≣

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Why are we stuck at $\mu = 0$? The "sign problem"

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

Why are we stuck at $\mu=$ 0? The "sign problem"

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

• Unavoidable as soon as one integrates over fermions (hint?)

Why are we stuck at $\mu=$ 0? The "sign problem"

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

$$\det \mathcal{D}\left(\mu
ight) = \det^{*} \mathcal{D}\left(-\mu^{*}
ight)$$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)
- Measure $d\varpi \sim \det D$ must be complex to get correct physics:

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T}F_{\mathbf{q}}) = \int \text{Re Pol} \times \text{Re } d\varpi - \text{Im Pol} \times \text{Im } d\varpi$$

 $\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T}F_{\bar{\mathbf{q}}}) = \int \text{Re Pol} \times \text{Re } d\varpi + \text{Im Pol} \times \text{Im } d\varpi$ $\mu \neq 0 \Rightarrow F_q \neq F_{\bar{q}} \Rightarrow \text{Im}d\varpi \neq 0$

Why are we stuck at $\mu=$ 0? The "sign problem"

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

$$\det \mathcal{D}\left(\mu
ight) = \det^{*} \mathcal{D}\left(-\mu^{*}
ight)$$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)
- Measure $d\varpi \sim \det D$ must be complex to get correct physics:

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T}F_{\mathbf{q}}) = \int \text{Re Pol} \times \text{Re } d\varpi - \text{Im Pol} \times \text{Im } d\varpi$$

 $\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T}F_{\bar{\mathbf{q}}}) = \int \text{Re Pol} \times \text{Re } d\varpi + \text{Im Pol} \times \text{Im } d\varpi$ $\mu \neq 0 \Rightarrow F_q \neq F_{\bar{q}} \Rightarrow \text{Im}d\varpi \neq 0$

• Origin: $\mu \neq 0$ breaks charge conj. symm., ie. usually complex conj.

Why are we stuck at $\mu = 0$? The "sign problem"

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)
- Measure $d\varpi \sim \det D$ must be complex to get correct physics:

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T}F_{\mathbf{q}}) = \int \text{Re Pol} \times \text{Re } d\varpi - \text{Im Pol} \times \text{Im } d\varpi$$

 $\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T}F_{\bar{\mathbf{q}}}) = \int \text{Re Pol} \times \text{Re } d\varpi + \text{Im Pol} \times \text{Im } d\varpi$ $\mu \neq 0 \Rightarrow F_q \neq F_{\bar{q}} \Rightarrow \text{Im}d\varpi \neq 0$

• Origin: $\mu \neq 0$ breaks charge conj. symm., ie. usually complex conj.

Complex determinant \implies no probabilistic interpretation \longrightarrow Monte Carlo ??

Sampling oscillatory integrands

<ロト < 部 ト < 臣 ト < 臣 ト 三日

 \mathcal{A}

Reweighting

• How to study: $Z_f \equiv \int dx \ f(x)$, $f(x) \in \mathbf{R}$, with f(x) sometimes negative ? Reweighting: sample with |f(x)|, and "put the sign in the observable":

$$\langle W \rangle_f \equiv \frac{\int dx \ W(x)f(x)}{\int dx \ f(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(f(x))] \ |f(x)|}{\int dx \ \operatorname{sign}(f(x)) \ |f(x)|} = \left| \frac{\langle W\operatorname{sign}(f) \rangle_{|f|}}{\langle \operatorname{sign}(f) \rangle_{|f|}} \right|$$

Reweighting

• How to study: $Z_f \equiv \int dx \ f(x)$, $f(x) \in \mathbf{R}$, with f(x) sometimes negative ? Reweighting: sample with |f(x)|, and "put the sign in the observable":

$$\langle W \rangle_f \equiv \frac{\int dx \ W(x)f(x)}{\int dx \ f(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(f(x))] \ |f(x)|}{\int dx \ \operatorname{sign}(f(x)) \ |f(x)|} = \left| \frac{\langle W\operatorname{sign}(f) \rangle_{|f|}}{\langle \operatorname{sign}(f) \rangle_{|f|}} \right|$$

•
$$\langle \operatorname{sign}(f) \rangle_{|f|} = \frac{\int dx \ \operatorname{sign}(f(x))|f(x)|}{\int dx \ |f(x)|} = \boxed{\frac{Z_f}{Z_{|f|}}} = \exp(-\frac{V}{T} \Delta f(\mu^2, T))$$
, exponentially small
diff. free energy dens.
Each meas. of $\operatorname{sign}(f)$ gives value $\pm 1 \Longrightarrow$ statistical error $\approx \frac{1}{\sqrt{\# \text{ meas.}}}$.
Constant relative accuracy \Longrightarrow need statistics $\propto \exp(+2\frac{V}{T}\Delta f)$
Large V, low T inaccessible: signal/noise ratio degrades exponentially
 Δf measures severity of sign pb.

▲□▶▲□▶▲≡▶▲≡▶ ∮ = りへぐ

• QCD: sample with $|\text{Re}(\det(\mu)^{N_f})|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\det(\mu)|^{N_f}$, i.e. "phase quenched"

 $|\det(\mu)|^{N_f} = \det(+\mu)^{\frac{N_f}{2}} \det(-\mu)^{\frac{N_f}{2}}$, i.e. isospin chemical potential $\mu_u = -\mu_d$ couples to $u\bar{d}$ charged pions \Rightarrow Bose condensation of π^+ when $|\mu| > \mu_{\text{crit}}(T)$

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud̄ charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

• av. sign =
$$\frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$$
 (for $N_f = 2$)

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud̄ charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

• av. sign = $\frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$ (for $N_f = 2$)

▲□▶▲□▶▲≡▶▲≡▶ ● ● ● ●

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud̄ charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

Valuable crosschecks

$\mu/T\gtrsim \mathcal{O}(1)$: how to make the sign problem milder?

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

 $\mu/T\gtrsim \mathcal{O}(1)$: how to make the sign problem milder?

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set { $|\psi\rangle$ } will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy:

choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

 $\mu/T \gtrsim \mathcal{O}(1)$: how to make the sign problem milder?

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

 $\mu/T \gtrsim \mathcal{O}(1)$: how to make the sign problem milder?

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow det(\{U\})$ • Monte Carlo over gluon fields $\{U\}$

Reverse order: • integrate over gluons $\{U\}$ analytically

- Monte Carlo over quark color singlets (hadrons)
- Caveat: must turn off 4-link coupling

in $\beta \sum_{P} \operatorname{ReTr} U_{P}$ by setting $\beta = 0$

◆□ ▶ ◆□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\beta = 0$: strong-coupling limit \longleftrightarrow continuum limit ($\beta \rightarrow \infty$)

 $\mu/T \gtrsim \mathcal{O}(1)$: how to make the sign problem milder?

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow det(\{U\})$ • Monte Carlo over gluon fields $\{U\}$

Reverse order: • integrate over gluons $\{U\}$ analytically • Monte Carlo over guark color singlets (bac

◆□▶ ◆□▶ ▲三▶ ▲三▶ ▲□▶

$$Z(\beta = 0) = \int \prod_{x} d\bar{\psi} d\psi \quad \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_{x} U_{x,\nu} \psi_{x+\hat{\nu}} - h.c.\}} \right)$$

Product of 1-link integrals performed analytically

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over U's, then over quarks: exact rewriting of $Z(\beta = 0)$

New, discrete "dual" degrees of freedom: meson & baryon worldlines

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over U's, then over quarks: exact rewriting of $Z(\beta = 0)$

New, discrete "dual' degrees of freedom: meson & baryon worldlines

Constraint at every site: 3 blue symbols (• $\bar{\psi}\psi$, meson hop) or a baryon loop Update with worm algorithm: "diagrammatic" Monte Carlo

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over U's, then over quarks: exact rewriting of $Z(\beta = 0)$

New, discrete "dual" degrees of freedom: meson & baryon worldlines

Sign problem? Monitor $-\frac{1}{V} \log \langle \text{sign} \rangle$

• $\langle \text{sign} \rangle = \frac{Z}{Z_{||}} \sim \exp(-\frac{V}{T}\Delta f(\mu^2))$ as expected

- Determinant method $\rightarrow \Delta f \sim \mathcal{O}(1)$. Here, Gain $\mathcal{O}(10^4)$ in the exponent!
 - heuristic argument correct: color singlets closer to eigenbasis
 - negative sign? product of *local* neg. signs caused by spatial baryon hopping:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- no baryon \rightarrow no sign pb (no silver blaze pb.)
- \bullet saturated with baryons \rightarrow no sign pb

Results – Phase diagram and Polyakov loop $(m_q = 0)$ w/Unger, Langelage, Philipsen

• Chiral transition $(m_q = 0)$: 2nd \rightarrow 1rst order as μ increases: *tricritical* point

Ξ

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- finite- N_t corrections \rightarrow continuous-time. (then, no re-entrance)
- Polyakov \neq anti-Polyakov loop. Both "feel" chiral transition.

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$:

$$\exp(\frac{\beta}{N_c}\operatorname{ReTr} U_P) = \sum_{q_P = \{0,1\}} \left(\delta_{q_P,0} + \delta_{q_P,1} \frac{\beta}{N_c} \operatorname{ReTr} U_P \right) + \mathcal{O}(\beta^2)$$

- Sample $\{q_P\} \rightarrow \text{exact at } \mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg, $\bar{q}g$, from $\int dU U e^{-(\bar{\psi}U\psi h.c.)}$:
 - hadrons acquire *structure*
 - hadron interaction by *gluon exchange*

• μ = 0: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $eta \sim 1$

▲□▶ ▲圖▶ ▲壹▶ ▲壹▶

Ξ.

 \mathcal{A}

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$:

$$\exp(\frac{\beta}{N_c}\operatorname{ReTr} U_P) = \sum_{q_P = \{0,1\}} \left(\delta_{q_P,0} + \delta_{q_P,1} \frac{\beta}{N_c} \operatorname{ReTr} U_P \right) + \mathcal{O}(\beta^2)$$

- Sample $\{q_P\} \rightarrow \text{exact at } \mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg, $\bar{q}g$, from $\int dU U e^{-(\bar{\psi}U\psi h.c.)}$:
 - hadrons acquire *structure*
 - hadron interaction by *gluon exchange*

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필.

- μ = 0: crosscheck with HMC ok; linear (aT_c) extrapolation good up to β \sim 1
- $\mu \neq 0$: phase boundary more "rectangular" with TCP at corner

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$:

$$\exp(\frac{\beta}{N_c}\operatorname{ReTr} U_P) = \sum_{q_P = \{0,1\}} \left(\delta_{q_P,0} + \delta_{q_P,1} \frac{\beta}{N_c} \operatorname{ReTr} U_P \right) + \mathcal{O}(\beta^2)$$

- Sample $\{q_P\} \rightarrow \text{exact at } \mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg, $\bar{q}g$, from $\int dU U e^{-(\bar{\psi}U\psi h.c.)}$:
 - hadrons acquire *structure*
 - hadron interaction by gluon exchange

• $\mu = 0$: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $\beta \sim 1$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

µ≠0: - phase boundary more "rectangular" with TCP at corner
 - liquid-gas CEP splits and moves down ?

Going beyond $\mathcal{O}(\beta)$

▲□▶ ▲圖▶ ▲글▶ ▲글▶ 三글

• $\beta = 0$: gauge links U are not directly coupled to each other: $Z(\beta = 0) = \int \prod_{x} d\bar{\psi} d\psi \quad \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_{x}U_{x,\nu}\psi_{x+\hat{\nu}} - h.c.\}} \right)$ Product of 1-link integrals performed analytically

• $\beta \neq 0$: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformation:

Further decoupling to "1-link" action \rightarrow link integration possible $\forall \beta$

2-link action \rightarrow 1-link \rightarrow 0-link Vairinhos & PdF, 1409.8442

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

2-link action \rightarrow 1-link \rightarrow 0-link

Vairinhos & PdF, 1409.8442

- Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$
- 4 \rightarrow 2-link action:
- $Y=(U_1U_2+U_4^{\dagger}U_3^{\dagger})$, X=Q

 $S_{2-\text{link}} = \text{ReTr } Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

2-link action \rightarrow 1-link \rightarrow 0-link

Vairinhos & PdF, 1409.8442

- Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^{*} e^{-|x_{ij}|^{2}}$
- 4 \rightarrow 2-link action:
- $Y=(U_1U_2+U_4^\dagger U_3^\dagger)$, X=Q

$$S_{2-\text{link}} = \text{ReTr } Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})$$

• $2 \rightarrow 1$ -link action:

$$Y=(U_1+QU_2^\dagger)$$
, $X=R_1$

$$S_{1-\text{link}} = \text{ReTr} \longrightarrow \sum \left(\begin{array}{c} R_1 \\ + \end{array} \right)^{+}$$

<ロト < 団 > < 巨 > < 巨 > 三 三

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

2-link action \rightarrow 1-link \rightarrow 0-link

Vairinhos & PdF, 1409.8442

 U_2

 U_2

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

 U_3

 U_1

 U_3

 U_1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

 U_4

 $U_{\!\scriptscriptstyle A}$

- Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$
- 4 \rightarrow 2-link action:
- $Y=(U_1U_2+U_4^\dagger U_3^\dagger)$, X=Q

$$S_{2-\text{link}} = \text{ReTr } Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})$$

• $2 \rightarrow 1$ -link action:

$$Y=(U_1+QU_2^\dagger)$$
, $X=R_1$

$$S_{1-link} = \operatorname{ReTr}_{U} \Sigma (+)^{+}$$

• $1 \rightarrow 0$ -link action: integrate out U analytically – also with fermion sources

The road ahead w/Helvio Vairinhos

- Simulate the 1-link and 0-link YM gauge action Done! 1409.8442
- Simulate U(1) gauge + fermions (no chemical potential) at $\beta > 0$
- $U(1) \rightarrow SU(3)$
- $\mu \neq 0$

Caveat: when $\beta > 0$, the complex auxiliary fields Q & R re-introduce a sign pb In physical terms: color neutrality is only true for distances $\gtrsim 1/\Lambda_{\rm QCD}$

 \rightarrow how large can we take β before the sign pb becomes unmanageable?

Cautious optimism...

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ◆ □ ◆

Backup

Complex Langevin 80's revival Seiler, Stamatescu, Aarts, Sexty,...

- Real action S: Langevin evolution in Monte-Carlo time τ Parisi-Wu $\frac{\partial \phi}{\partial \tau} = -\frac{\delta S[\phi]}{\delta \phi} + \eta$, ie. drift force + noise Can prove: $\langle W[\phi] \rangle_{\tau} = \frac{1}{7} \int \mathcal{D}\phi \exp(-S[\phi]) W[\phi]$
- Complex action *S* ? Drift force complex \rightarrow complexify field $(\phi^R + i\phi^I)$ and simulate as before With luck: $\langle W \left[\phi^R + i\phi^I \right] \rangle_{\tau} = \frac{1}{Z} \int \mathcal{D}\phi \exp(-S \left[\phi \right]) W \left[\phi \right]$
- Only change since 1980's: adaptive stepsize \rightarrow runaway sols disappear

Complex Langevin II

Seiler, Stamatescu, Aarts, Sexty,...

Aarts & James: 1005.3468

- Control excursions in imaginary direction by gauge-cooling in SL(N, C)
 Should make no difference except for roundoff error
- Large values of μ/T explored with heavy quarks: results OK checked against static quarks
- First results for light quarks at high T (chirally symmetric phase)
 Are they correct?

• NB: complex Langevin gives wrong results in disordered phase of 3d XY model

Liquid-gas endpoint moves to lower temperatures as β increases

Jump at $\beta = 0$ becomes crossover as β grows

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$