Lie 群と Lie 代数

Last update: 2023 年 5 月 3 日

目 次

1	基本	事項	7
	1.1	位相群	7
		1.1.1 基本性質	7
	1.2	Lie 代数と Lie 群の対応	7
		1.2.1 指数写像	7
		1.2.2 線形表現における Lie 代数の対応	8
	1.3	Lie 部分群の位相的特徴付け	9
2	Lie	代数と Lie 群の構造	10
	2.1	一般的定義	10
	2.2	分解定理	11
		2.2.1 Levi 分解	11
		2.2.2 Mackey 分解	12
		2.2.3 Gauss 分解	12
		2.2.4 Cartan 分解	14
		2.2.5 岩沢分解	14
	2.3	局所コンパクト群	15
	2.4	コンパクト Lie 群	16
	2.5	半単純 Lie 代数	17
		2.5.1 基本的性質	17
		2.5.2 複素半単純 Lie 代数の構造	18
		2.5.3 実単純 Lie 代数の分類	24
	2.6	命題・定理・公式の証明	25
3	Lie	代数と Lie 群の表現	27
	3.1	線形表現の一般論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
	3.2	可換群	29
	3.3	可解群	30
	3.4	半単純 Lie 群	30

	3.5	ウエイ	ト系の方法					
		3.5.1	ウェイト系 31					
		3.5.2	巡回表現					
		3.5.3	複素半単純 Lie 代数のウエイト系の性質 32					
		3.5.4	表現のテンソル積とその既約分解 35					
	3.6	誘導表	現の方法					
	3.7	コンパ	クト群の既約表現:表現環 39					
	3.8	誘導ユ	ニタリ表現					
	3.9	Poincar	re 群のユニタリ表現					
	3.10	包絡環						
		3.10.1	定義と基本性質 47					
		3.10.2	不変作用素 48					
		3.10.3	$\operatorname{GL}(n)$					
		3.10.4	SU(n)					
		3.10.5	SO(n)					
		3.10.6	Casimir 不変量の基底 52					
4	古典	5.4						
_	4.1	古典群						
		4.1.1	$\operatorname{GL}(n,F) \geq \operatorname{SL}(n,F)$					
		4.1.2	$U(n), U(p,q), SU(n), SU(p,q), SU^*(2n)$					
		4.1.3	$O(n, F), SO(n, F), O(p, q; F), SO(p, q; F), SO^*(2n) \dots 57$					
		4.1.4	$\operatorname{Sp}(n, F), \operatorname{Sp}(p, q)$					
	4.2	古典群。	の複素既約表現:誘導表現の方法					
		4.2.1	古典群の Gauss 分解 59					
		122	有限次元複素解析的既約表現の指標 60					
		4.4.4						
		4.2.3	基本表現					
	4.3	4.2.2 4.2.3 Dynkin	基本表現					
	$4.3 \\ 4.4$	4.2.2 4.2.3 Dynkin $\operatorname{GL}(n)$	基本表現					
	4.3 4.4	4.2.3 Dynkin $GL(n)$ 4.4.1	基本表現 61 基底 63					
	4.34.44.5	4.2.3 Dynkin GL (n) 4.4.1 A _r 型.	基本表現 61 基底 63					
	4.34.44.5	4.2.2 4.2.3 Dynkin GL(n) 4.4.1 A _r 型. 4.5.1	基本表現 61 基底 63					
	4.34.44.5	4.2.2 4.2.3 Dynkin GL(<i>n</i>) 4.4.1 A _r 型. 4.5.1 4.5.2	基本表現 61 基底 63					
	4.34.44.54.6	4.2.3 Dynkin GL(n) 4.4.1 A _r 型. 4.5.1 4.5.2 C _r 型.	基本表現 61 基底 63 … 64 GL(n, C) の Lie 代数の構造 64 … 67 SL(n, C) の Lie 代数の構造 67 SL(n, C) の 複素解析的既約表現 70 … 72					
	4.34.44.54.6	4.2.2 4.2.3 Dynkin GL(<i>n</i>) 4.4.1 A _r 型. 4.5.1 4.5.2 C _r 型. 4.6.1	基本表現 61 基底 63					

	4.7	B_r 型お	らよび D_r 型	7
		4.7.1	$SO(n, \mathbb{C})$ の Lie 代数の構造	7
		4.7.2	$SO(n, \mathbb{C})$ の複素解析的既約表現	3
	4.8	スピノ	ール群とスピノール表現 8	7
		4.8.1	定義と一般的性質8	7
		4.8.2	基本スピノール表現の構成9	3
		4.8.3	Majorana スピノール	7
	4.9	誘導表	現法による既約表現の具体的構成9	8
		4.9.1	$SL(2,\mathbb{C})$	8
	4.10	テンソ	ル表現	9
		4.10.1	有限群の表現	9
		4.10.2	対称群の表現	1
		4.10.3	半単純環と半単純加群10	3
		4.10.4	一般線型群のテンソル空間への表現の標準分解10	3
	4.11	実単純	Lie 群 \ldots \ldots \ldots \ldots 10	7
		4.11.1	分類	7
		4.11.2	同型関係	8
	4.12	命題·	定理・公式の証明	1
_		ти		~
5	例外	·群	11	3
5	例外 5.1	·群 G ₂	11 	3 3
5	例 外 5.1	·群 G ₂ 5.1.1	11 	3 3 3
5	例外 5.1	·群 G_2 5.1.1 5.1.2	11 	3 3 9
5	例外 5.1	群 G_2 5.1.1 5.1.2 5.1.3	11 基本事項 11 表現 11 SO(7) への埋め込み 12	3 3 3 9 0
5	例外 5.1	群 G_2 5.1.1 5.1.2 5.1.3 5.1.4	11 基本事項 11 基本事項 11 表現 11 SO(7) への埋め込み 12 部分代数 12	3 3 9 0 2
5	例外 5.1 5.2	群 G_2 5.1.1 5.1.2 5.1.3 5.1.4 F_4	11 基本事項 11 基本事項 11 表現 11 SO(7) への埋め込み 12 部分代数 12 12 12	3 3 3 9 0 2 5
5	例外 5.1 5.2	群 G_2 5.1.1 5.1.2 5.1.3 5.1.4 F_4 5.2.1	11 基本事項 11 基本事項 11 表現 11 SO(7) への埋め込み 12 部分代数 12 Lie 代数の構造 12	3 3 3 9 0 2 5 5
5	例外 5.1 5.2	群 G_2 5.1.1 5.1.2 5.1.3 5.1.4 F_4 5.2.1 5.2.2	11 基本事項 11 基本事項 11 表現 11 SO(7) への埋め込み 12 部分代数 12 Lie 代数の構造 12 表現 12 表現 12	$3 \\ 3 \\ 3 \\ 9 \\ 0 \\ 2 \\ 5 \\ 5 \\ 6$
5	例外 5.1 5.2	群 G_2 5.1.1 5.1.2 5.1.3 5.1.4 F_4 5.2.1 5.2.2 5.2.3	11 基本事項 11 基本事項 11 表現 11 SO(7) への埋め込み 12 部分代数 12 正ie 代数の構造 12 表現 12 表現 12 板大準半単純部分代数 12	3 3 3 9 0 2 5 5 6 7
5	例外 5.1 5.2 5.3	群 G_2 5.1.1 5.1.2 5.1.3 5.1.4 F_4 5.2.1 5.2.2 5.2.3 E_6	11 基本事項 11 基本事項 11 表現 11 SO(7) への埋め込み 12 部分代数 12 正ie 代数の構造 12 表現 12 板大準半単純部分代数 12	$3 \\ 3 \\ 3 \\ 9 \\ 0 \\ 2 \\ 5 \\ 5 \\ 6 \\ 7 \\ 4$
5	例外 5.1 5.2 5.3	群 G_2 5.1.1 5.1.2 5.1.3 5.1.4 F_4 5.2.1 5.2.2 5.2.3 E_6 5.3.1	11 基本事項 11 基本事項 11 表現 11 SO(7) への埋め込み 12 部分代数 12 正に代数の構造 12 表現 12 表現 12 私現 12 私現 12 私現 12 私現 12 人数の構造 13 代数の構造 13	3 3 3 9 0 2 5 5 6 7 4 4
5	例外 5.1 5.2 5.3	群 G_2 5.1.1 5.1.2 5.1.3 5.1.4 F_4 5.2.1 5.2.2 5.2.3 E_6 5.3.1 5.3.2	11 基本事項 11 基本事項 11 表現 11 SO(7) への埋め込み 12 部分代数 12 正ie 代数の構造 12 表現 12 板大準半単純部分代数 13 代数の構造 13 表現 13	3 3 3 9 0 2 5 5 6 7 4 4 5
5	例外 5.1 5.2 5.3	群 G_2 5.1.1 5.1.2 5.1.3 5.1.4 F_4 5.2.1 5.2.2 5.2.3 E_6 5.3.1 5.3.2 5.3.3	11 基本事項 11 基項 11 表現 11 SO(7) への埋め込み 12 部分代数 12 正e 代数の構造 12 表現 12 表現 12 成数の構造 13 表現 13	3 3 3 9 0 2 5 5 6 7 4 4 5 9
5	例外 5.1 5.2 5.3 5.4	群 G_2	11 基本事項 11 表現 11 SO(7) への埋め込み 12 部分代数 12 記 12 並分代数 12 上ie 代数の構造 12 表現 12 人準半単純部分代数 13 表現 13 表現 13 人数の構造 13 表現 13 表現 13 表現 13 人数の構造 13 表現 13 表現 13 人数の構造 13 表現 13 表現 13 表現 13 表現 13 新分 13 新力 13 表現 13 新力 14 5 15	333902556744597
5	例外 5.1 5.2 5.3 5.4	群 G_2 5.1.1 5.1.2 5.1.3 5.1.4 F_4 5.2.1 5.2.2 5.2.3 E_6 5.3.1 5.3.2 5.3.3 E_7 5.4.1	11 基本事項 11 表現 11 SO(7) への埋め込み 12 部分代数 12 記e 代数の構造 12 表現 12 人準半単純部分代数 13 表現 13 表現 13 大準半単純部分代数 13 上le 代数の構造 13 長現 13 長現 13 長現 13 長現 13 長現 13 人当 13 長現 13 長見 13 長見 13 長見 13 長見 15 Lle 代数の構造 15	3339025567445977

		5.4.3	<i>E</i> ₇₍₊₇₎ の56次元基本表現158
		5.4.4	極大部分代致
	5.5	E ₈ .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		5.5.1	Lie 代数の構道
		5.5.2	衣現
		5.5.3	極入部分代数
6	部分	▶群	163
	6.1	半単純	極大部分群
	6.2	部分群	による表現の既約分解164
	6.3	埋め込	.み行列の標準化
	6.4	埋め込	.み行列の例
	6.5	等方群	¹
		6.5.1	Lorentz $\ensuremath{\mathbb{H}}$ SO ₀ ($D-1,1$)
7	具体	「例	175
	7.1	SU(2)	
		7.1.1	Lie 代数 175
		7.1.2	同型対応 $\iota:\mathfrak{su}_2 \to \mathfrak{so}_3$
		7.1.3	表現
	7.2	SU(3)	
		7.2.1	Lie 代数 178
		7.2.2	表現
		7.2.3	極大半単純部分代数 180
	7.3	SU(4)	$\cong SO(6) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		7.3.1	Lie 代数の構造 183
		7.3.2	基本表現183
		7.3.3	\mathfrak{su}_4 と \mathfrak{so}_6 の同型対応184
		7.3.4	極大半単純部分代数 185
	7.4	SU(5)	
		7.4.1	Lie 代数の構造 190
		7.4.2	表現
		7.4.3	極大半単純部分代数 195
	7.5	SU(6)	
		7.5.1	Lie 代数の構造 201
		7.5.2	表現

	7.5.3	極大準半単純部分代数	202
7.6	SO(4)		211
	7.6.1	Lie 代数	211
	7.6.2	同型対応 $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \rightarrow \mathfrak{so}_4$:	212
	7.6.3	Hopf fibring:	213
7.7	SO(3, 1	1)	215
	7.7.1	Lie 代数	215
	7.7.2	2 重被覆写像 SL(2, \mathbb{C}) → SO(3, 1)	215
	7.7.3	表現の同型対応: $4_v : \mathfrak{so}(3,1) \to ([1],[1]) : \mathfrak{so}(3,\mathbb{C}) \oplus \mathfrak{so}(3,\mathbb{C})$	216
7.8	SO(5)	$\cong \operatorname{Sp}_2 \ldots \ldots$	218
	7.8.1	Lie 代数の構造	218
	7.8.2	\mathfrak{sp}_2 と \mathfrak{so}_5 の同型対応	218
	7.8.3	複素表現	219
	7.8.4	極大半単純部分代数	220
7.9	SO(7)		223
	7.9.1	Lie 代数の構造	223
	7.9.2	表現	224
	7.9.3	極大半単純部分代数	225
7.10	SO(8)		228
	7.10.1	Lie 代数の構造	228
	7.10.2	表現	228
	7.10.3	極大半単純部分代数	230
7.11	SO(9)		241
	7.11.1	Lie 代数の構造	241
	7.11.2	表現	242
	7.11.3	極大部分代数	242
7.12	SO(10))	250
	7.12.1	Lie 代数の構造	250
	7.12.2	表現	251
	7.12.3	極大部分代数	252
7.13	SO(11))	267
	7.13.1	Lie 代数の構造	267
	7.13.2	表現	267
	7.13.3	極大部分代数	268
7.14	Sp_3		269

		7.14.1	Lie 代数の構造 26	9				
		7.14.2	表現	9				
		7.14.3	極大半単純部分代数	0				
	7.15	Sp_4 .		4				
		7.15.1	Lie 代数の構造	4				
		7.15.2	表現	4				
		7.15.3	極大部分代数	5				
8	超代数と超群							
	8.1	超代数	28	0				
	8.2	Lie 超(代数	2				
		8.2.1	分類	3				
		8.2.2	表現	3				
	8.3	可解L	ie 超代数	5				
	8.4	単純複	素 Lie 超代数	7				
		8.4.1	古典 Lie 超代数 28	8				
		8.4.2	Cartan 型超代数 29	1				
	8.5	単純実	Lie 超代数	3				
		8.5.1	分類	3				
		8.5.2	単純超対称代数 29	5				
	8.6	Lie 超積	洋	7				
		8.6.1	超行列	7				
		8.6.2	超空間	9				
		8.6.3	線形超群	1				
A	Lie	群・Lie	e代数関係の表と図 30	4				

1 基本事項

1.1 位相群

1.1.1 基本性質

【**定理 1.1** (Schreier の定理)】 *G*を連結位相群, *U_e*を単位元の任意の開近傍とする. このとき,

$$U_e^{(m)} := SetDefg = g_1^{\pm 1} \cdots g_m^{\pm 1} g_i \in U_e, 1 \leq i \leq m$$

とおくと,

$$G = \bigcup_{m=1}^{\infty} U_e^{(m)}$$

が成り立つ. [From: 竹内勝・伊勢幹夫「リー群論」(岩波書店, 1992)] _____

【命題 1.2 (正規離散部分群)】 位相群 G の任意の離散的正規部分群は G の中心 に含まれる.

1.2 Lie 代数とLie 群の対応

1.2.1 指数写像

【定義 1.3 (指数写像)】 GをLie群, gをその(左不変ベクトル場の作る)Lie 代数とする.このとき, $X \in g$ は完備でその生成する変換群は, Gの1径数部分群 a(t)による右変換群 $R_{a(t)}$ と一致する.この1径数部分群a(t)を $a(t) = \exp(tX)$ とお くと,

 $\exp: X \mapsto \exp(X)$

は、 \mathfrak{g} からGへのなめらかな写像を与え、 $0 \in \mathfrak{g}$ の近傍で1対1となる.この写像 exp: $\mathfrak{g} \rightarrow G$ を指数写像という.

【命題 1.4】 指数写像 $exp: g \rightarrow G$ に対して

$$\exp tX \cdot \exp tY = \exp\left\{t(X+Y) + \frac{t^2}{2}[X,Y] + O(t^3)\right\}$$
(1.1)

が成り立つ.これより,特に

$$[[\exp tX, \exp tY]] = \exp\{t^{2}[X, Y] + O(t^{3})\}$$
(1.2)

が成り立つ.ここで、 $a, b \in G$ に対して

 $[[a, b]] := aba^{-1}b^{-1}$

である.

【定理 1.5 (Lie 群の連結 Lie 部分群と Lie 環の部分環の対応)】
 Lie 群 G の Lie 代数をg とする.このとき,g の任意の部分代数りに対して,りを G 上のベクトル場の包合系と見なし,単位元 e を含むその極大積分多様体を H とすると,H は G の連結 Lie 部分群となる.逆に,G の任意の連結 Lie 部分群 H に対して,その Lie 代数りは (左不変ベクトル場の線形集合として)一意的にg の部分代数と見なされる.g の部分代数と G の Lie 部分群との対応は 1 対 1 で次の関係にある:

i) 連結 Lie 部分群 H に対応する部分 Lie 代数 h は

$$\mathfrak{h} = \{ X \in \mathfrak{g} \mid \operatorname{Exp}(X) \subset H \}.$$

 $\mathcal{Z}\mathcal{C}, \ \operatorname{Exp}(X) = \{ \exp tX \mid t \in \mathbb{R} \}.$

ii) 部分 Lie 代数 h に対応する連結 Lie 部分群 H は,

$$H = \{ \exp X \cdot \exp Y \cdots \exp Z \mid X, Y, \cdots, Z \in \mathfrak{h} \}.$$

[From: 竹内勝・伊勢幹夫「リー群論」(岩波書店, 1992)] _____□

1.2.2 線形表現における Lie 代数の対応

【命題 1.6 (線形表現における Lie 代数の対応)】 $\rho: G \to GL(\mathscr{V})$ を Lie 群 Gの \mathscr{V} 上への線形表現とする.このとき、 $\xi, \eta \in G$ の左不変ベクトル場、 $d\rho \in \rho$ の微分 写像とすると

$$d\rho_g(\xi) = \rho(g)d\rho_e(\xi),$$

$$d\rho_g([\xi,\eta]) = \rho(g)[d\rho_e(\xi), d\rho_e(\eta)]$$

が成り立つ.これより, Gの Lie 代数から $GL(\mathscr{V})$ の Lie 代数への線形写像 $\rho_* : \mathfrak{g} \rightarrow \mathfrak{gl}(\mathscr{V})$ を

 $\rho_*(\xi) := d\rho_e(\xi)$

により定義すると, ρ* は Lie 代数の同型を与える:

$$\rho_*([\xi,\eta]) = [\rho_*(\xi), \rho_*(\eta)].$$

目次へ

1.3 Lie部分群の位相的特徴付け

【定理 1.7 (Cartan の定理)】 Lie 群 G の閉部分群 H は常に Lie 部分群の構造を もち,それは一意的である. □

【**定理 1.8** (山辺の定理)】 Lie 群*G*の部分群*H* が*G*の位相に関して弧状連結であることと*H* が*G*の連結 Lie 部分群となることは同等である. _____□

 \square

2 Lie 代数とLie 群の構造

2.1 一般的定義

【定義 2.1 (Lie 代数の可解性とベキ零性)】 Lie 代数 g に対して,

- i) $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}], \mathfrak{g}'' = [\mathfrak{g}', \mathfrak{g}'], \cdots, \mathfrak{g}^{(i+1)} = [\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}]$ とおく. このとき, $\mathfrak{g}' = 0$ なら ば \mathfrak{g} は可換, $\mathfrak{g}^{(k)} = 0$ となる自然数 k が存在するならば可解という.
- ii) $\mathfrak{g}^1 = \mathfrak{g}, \mathfrak{g}^2 = [\mathfrak{g}, \mathfrak{g}^1], \cdots, \mathfrak{g}^{i+1} = [\mathfrak{g}, \mathfrak{g}^i]$ とおく. このとき, $\mathfrak{g}^k = 0$ となる自然数 *k* が存在するならば \mathfrak{g} はべキ零であるという.

【定理 2.2 (Engel の定理)】 gを体 K 上の Lie 代数とする.g が可解であれば, [g,g] はべキ零である. _____□

【定義 2.3 (根基)】

- 1. Lie 代数 \mathfrak{g} の可解イデアル全部の和 \mathfrak{r} は可解イデアルで,最大可解イデアルとなる.これを \mathfrak{g} の根基 (radical) という.
- 2. Lie 代数 g のベキ零イデアル全部の和 n はベキ零イデアルで,最大のベキ零イ デアルとなる.これを g の最大ベキ零イデアル (largest nilpotent ideal) という.

[From: 岩波数学事典(第4版)] _____□

【定義 2.4 (Lie 代数の半単純性)】 根基が 0, すんなわち 0 以外に可解イデアル を持たない Lie 代数を半単純 (semisimple) という.gが半単純であって,さらに,0 とg以外にイデアルを持たないとき単純 (simple) であるという. _____□

【注 2.5】

- 半単純性を0以外に可換イデアルを持たないという条件により定義することもできる。
- • 1次元複素 Lie 代数 C(および実 Lie 代数 ℝ) は0と自分自身以外にイデアルを持たないが、単純ではない。

【定義 2.6】 連結 Lie 群は,その Lie 代数が半単純,単純,可解,ベキ零,可換でるとき,それぞれ半単純,単純,可解,ベキ零,可換であるという.可解性,ベキ零性,可換性は群論的な定義と一致する. _____□

【定義 2.7 (Killing 形式)】 Lie 代数 \mathfrak{g} の随伴表現 $X \mapsto \operatorname{ad}(X) : \operatorname{ad}(X)Y = [X, Y]$ に対して,

$$K(X,Y) \equiv \operatorname{tr}(\operatorname{ad}(X)\operatorname{ad}(Y)) \tag{2.1}$$

は、gの基底の取り方に依存せず、g上の双一次形式を定義する.この双一次形式を Killing形式と呼ぶ.Killing形式に対して、

$$K([Z,X],Y) + K(X,[Z,Y]) = 0, \quad \forall Z \in \mathfrak{g}$$

が成り立つ.

【定義 2.8 (Lie 代数の微分)】 体 $K \perp o$ Lie 代数 \mathfrak{g} の自己準同型 $\delta \in End(\mathfrak{g}) = M(\mathfrak{g}, K)$ が,条件

$$\delta([X,Y]) = [\delta(X),Y] + [X,\delta(Y)], \quad \forall X,Y \in \mathfrak{g}$$

$$(2.2)$$

を満たす時, 微分 (derivation) という. 微分の全体 $\mathfrak{D}(\mathfrak{g})$ は, $\mathfrak{gl}(\mathfrak{g})$ の Lie 部分代数と なり微分の Lie 代数という. 特に, \mathfrak{g} の随伴リー代数 $\mathrm{ad}(\mathfrak{g})$ は $\mathfrak{D}(\mathfrak{g})$ のイデアルとな り, $\mathrm{ad}(\mathfrak{g})$ の元は \mathfrak{g} の内部微分 (inner derivation) と呼ばれる.

【命題 2.9 (半単純 Lie 代数の微分の代数)】 \mathfrak{g} が半単純であるとき、 $\mathfrak{D}(\mathfrak{g}) \cong \mathfrak{g}$ が成り立つ.

【定義 2.10 (自己同型群)】 $K = \mathbb{R}, \mathbb{C}$ 上のLie代数gに対し,その自己同型の 全体Aut(g)(\subset GL(g,K))はLie群となり,そのLie代数は $\mathfrak{D}(g)$ と一致する.また, $\{\exp(\delta) \mid \delta \in \operatorname{ad}(\mathfrak{g})\}$ から生成されるAut(g)の連結正規部分Lie群をgの内部自己同 型群と呼び,Int(g)と表す.Int(g)のLie代数はad(g)と一致する.

また, Aut(g)/Int(g) を**外部自己同型群**という. g が半単純な時には, Int(g) は Aut(g) の単位元を含む連結成分と一致する. □

2.2 分解定理

2.2.1 Levi 分解

【定理 2.11 (Lie 代数の Levi 分解)】 Lie 代数 \mathfrak{g} の根基を \mathfrak{r} とするとき, \mathfrak{g} の半単純部分代数 \mathfrak{f} が存在して, $\mathfrak{g} = \mathfrak{f} + \mathfrak{r}$ が成り立つ.

【定理 2.12 (Levi 分解の同型性 (Malcev の定理))】 $g = f + r = f' + r \& g & 0 \\ 2 & 0 \\ Levi 分解 & 2 \\ 5 & A(f) = f' & 2 \\ 5 & C & 0 \\ 1$

2.2.2 Mackey 分解

【定理 2.13 (Mackey 分解 [Macky(1952)])】 *G*を可分局所コンパクト群, *K*をその閉部分群とする.このとき, *G*の Borel 集合 *S* が存在し, *G*の任意の元 *g* は一意的な次の分解をもつ:

$$q = ks, \quad k \in K, \ s \in S.$$

[Ref. A. Barut and R. Raczka (1986)]

2.2.3 Gauss 分解

【定義 2.14 (Gauss 分解:位相群)】 位相群 G は,次の性質を持つ部分群 *2*, D, Z を用いて

 $G = \overline{\mathscr{Z}DZ}$

と表されるとき,Gauss 分解を持つという.

i) $\mathscr{Z}D \ge DZ$ は連結可解部分群で、 $[\mathscr{Z}D, \mathscr{Z}D] = \mathscr{Z}, [DZ, DZ] = Z.$

ii) $\mathscr{Z} \cap DZ = \{e\}$ and $D \cap Z = \{e\}$.

[From A. Barut and R. Raczka (1986)]

【定理 2.15 (Gauss 分解:複素半単純 Lie 代数)】 gを複素半単純 Lie 代数, \mathfrak{h} を Cartan 部分代数, Δ^{\pm} を正(負)ルートの集合, $\Delta = \Delta^{+} \cup \Delta^{-}$, E_{α} を

 $[X, E_{\alpha}] = \alpha(X)E_{\alpha}, \quad \alpha \in \Delta, X \in \mathfrak{h},$

を満たす \mathfrak{g} の元, \mathfrak{g}^{\pm} を $\{E_{\alpha} | \alpha \in \Delta \pm\}$ の線形包とする.このとき,次が成立する:

- 1. g⁺ と g⁻ は 巾ゼロ 部分代数.
- 2. 部分代数 g⁺ + h, g⁻ + h は可解.
- 3. $\mathfrak{g} = \mathfrak{g}^+ + \mathfrak{h} + \mathfrak{g}^-$.

【定理 2.16 (極大可解部分代数)】 複素半単純 Lie 代数の Gauss 分解 $g = g^+ + h + g^-$ において,可解部分 Lie 代数 $g^+ + h \delta$ Borel 部分代数という. Borel 部分代数は,極大可解部分代数であり,任意の極大可解部分代数は互いに内部自己同型で 共役である.

【定義 2.17 (放物型部分代数)】 Lie 代数 g に対し,その Borel 部分代数を含む任意の部分代数を放物型部分代数 parabolic subalgebra という. _____□

【命題 2.18 (放物型部分代数の分類)】 複素半単純 Lie 代数 g の基本ルート系を $\Pi = \{\alpha_1, \dots, \alpha_r\}$ として、その勝手な部分集合 S に対し、S の線形結合で表される 負フート α に対する g_{α} の全体を Borel 部分代数に加えて得られる部分代数は、放物 型部分代数となる.任意の放物型部分代数は、このようにして得られる部分代数と 共役である.また、互いに共役でない放物型部分代数の個数は 2^r 個である.

【定理 2.19 (Gauss 分解:複素半単純 Lie 群)】 すべての連結複素半単純 Lie 群 G は, G の自己同型の自由度を除いて一意的な Gauss 分解を持つ:

$$G = \overline{\mathscr{Z}DZ}.$$

ここで、*D*は連結可換部分群、 *2*と*Z*は単連結、連結巾ゼロ部分群、*2D*と*DZ*は *G*の極大連結可解部分群.また、*G* – *2DZ*は*G*より低次元の閉集合.さらに、正 則点 $g \in 2DZ$ に対して、分解 $g = \zeta \delta z$ ($\zeta \in 2, \delta \in \Delta, z \in Z$)により決まる元、 ζ 、 δ 、*z*は gの連続関数. [Ref. Zeloenko (1963); From A. Barut and R. Raczka (1986)]

【定理 2.20 (Gauss 分解:実半単純 Lie 群)】 すべての連結実半単純 Lie 群 G は次の分解を持つ:

$$G = \overline{\mathscr{Z}DZ}.$$

ここで, D は単連結可換部分群 A と連結半単純コンパクト群 K の直積

$$D = A \times K.$$

 $\mathscr{Z} \ge Z$ は単連結かつ連結巾ゼロ部分群で、 $\mathscr{Z} \cap DZ = \{e\}$ かつ $D \cap Z = \{e\}$.また、 $G - \mathscr{D}DZ$ はGより低次元の閉集合.さらに、正則点 $g \in \mathscr{D}DZ$ に対して、分解 $g = \zeta \delta z \ (\zeta \in \mathscr{Z}, \delta \in \Delta, z \in Z)$ により決まる元、 ζ, δ, z はgの連続関数. [Ref. Zeloenko (1963); From A. Barut and R. Raczka (1986)]

目次へ

2.2.4 Cartan 分解

【定理 2.21 (Cartan 分解:実半単純 Lie 代数)】 実半単純 Lie 代数 g は次の形の分 解を持つ:

$$\mathfrak{g} = \mathfrak{k} \stackrel{.}{+} \mathfrak{p}.$$

ここで, tとpは次の性質を持つ:

$$[\mathfrak{k},\mathfrak{k}] \subset \mathfrak{k}, \quad [\mathfrak{k},\mathfrak{p}] \subset \mathfrak{p}, \quad [\mathfrak{p},\mathfrak{p}] \subset \mathfrak{k},$$

また, K(X,Y)をKilling形式として,

$$\begin{split} K(X,X) &< 0 \quad \text{for} \quad X \neq 0 \in \mathfrak{k}, \\ K(Y,Y) &> 0 \quad \text{for} \quad Y \neq 0 \in \mathfrak{p}, \\ K(X,Y) &= 0 \quad \text{for} \ X \in \mathfrak{k}, \ Y \in \mathfrak{p}. \end{split}$$

ŧはgの極大コンパクト部分代数である. [Ref. Helgason (1962); From A. Barut and R. Raczka (1986)] _____

【定理 2.22 (Cartan 分解:実半単純 Lie 群)】 Gを中心有限な連結実半単純 Lie 群 とし、その Lie 代数 \mathfrak{g} の Cartain 分解を $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ とする. このとき、 \mathscr{K} を Lie 代数 \mathfrak{k} に対応する G の連結部分群、 \mathscr{P} を指数写像による線形空間 \mathfrak{p} の像とすると、 G は 次のように表される:

$$G = \overline{\mathscr{PK}}.$$

[Ref. Cartan (1929); From A. Barut and R. Raczka (1986)]

2.2.5 岩沢分解

【定理 2.23 (Iwazawa 分解:実半単純 Lie 代数)】 実半単純 Lie 代数 \mathfrak{g} の Cartan 分 解を $\mathfrak{g} = \mathfrak{t} + \mathfrak{p}$, \mathfrak{h}_P を \mathfrak{p} の極大可換部分代数とする. このとき, $\mathfrak{h}_P + \mathfrak{n}_0$ が可解とな る 巾 ゼロ部分代数 \mathfrak{n}_0 が存在し, \mathfrak{g} は次のように分解される:

$$\mathfrak{g} = \mathfrak{k} + \mathfrak{h}_P + \mathfrak{n}_0.$$

[Ref. Helgason (1962); From A. Barut and R. Raczka (1986)]

【定理 2.24 (Iwazawa 分解:実半単純 Lie 群)】 中心有限な連結実半単純 Lie 群 *G* に対して,その Lie 代数の岩沢分解を $\mathfrak{g} = \mathfrak{k} + \mathfrak{h}_P + \mathfrak{n}_0$, $\mathscr{K}, \mathscr{A}_P$, \mathscr{N} を対応する *G* の連結部分群とする.このとき

$$G = \mathscr{K} \mathscr{A}_P \mathscr{N}$$

が成り立ち,各元 $g \in G$ は $\mathcal{K}, \mathscr{A}_P$, N に属する元を用いて一意的に表される. \mathscr{A}_P と \mathcal{N} は単連結となる. [Ref. Helgason (1962); From A. Barut and R. Raczka (1986)]

2.3 局所コンパクト群

【定義 2.25 (局所コンパクト群)】 局所コンパクトな位相群を,局所コンパクト 群という. 位相群が局所コンパクトであるためには,単位元 *e* がコンパクト近傍を 持つことが必要十分である. _____

【命題 2.26 (局所コンパクト群の性質)】 局所コンパクト群は次の性質を持つ:

- i) 局所コンパクト群の閉部分群は,局所コンパクトである.
- ii) 局所コンパクト群はσ-コンパクトな開部分群をもつ.
- ii) 局所コンパクト群Gの閉部分群 H による商空間 G/H は, 局所コンパクトかつ パラコンパクトである.
- iii) 局所コンパクトな群の族 $\{G_{\alpha}\}(\alpha \in A)$ の直積 $\prod_{\alpha} G_{\alpha}$ が局所コンパクトとなる ためには, $\{G_{\alpha}\}$ が有限個を除きコンパクトとなることが必要十分である.

【定理 2.27 (R.Baire's Category Theorem)】 σ -コンパクトな局所コンパクト群 Gが,局所コンパクト空間 X に推移的に作用し,任意の $x \in X$ に対して $g \mapsto gx$ に より定義される写像 $\phi_x : G \to X$ が連続であるとする.このとき,任意の点 $x_0 \in X$ に対してその点の等方群を H_0 とすると, ϕ_{x_0} は同相写像 $\phi_{x_0}^* : G/H_0 \to X$ を引き起 こす.特に, σ -コンパクトな局所コンパクト群 G から別の局所コンパク群 K の上へ の連続な代数的同型写像は同相写像である.

【定義 2.28 (Haar measure)】 位相群 G 上の正の正則 Borel 測度 μ が、Gの右作 用(左作用)に対して不変であるとき、右(左)不変測度ないし右(左) Haar 測度 という.

【定理 2.29 (A.Weyl:Haar measure の存在)】 任意の局所コンパクト群上には, ゼロでない右不変測度および左不変測度が,定数倍の自由度を除いて一意的に存在 する. _____

【定義 2.30 (Modular function)】 群Gの任意の元gに対して、右不変測度 μ の 左移動は再び右不変測度となる:

$$(L_{q^{-1}}\mu)(E) := \mu(gE) = \Delta(g)\mu(E).$$

このとき,比例係数 $\Delta(g)$ は, $\Delta(g_1g_2) = \Delta(g_1)\Delta(g_2)$ より群 G の正実表現となり,モ ジュラー関数とよばれる.特に, $\Delta(g) \equiv 1$ となる群は,ユニモジュラー群とよぶ.

【定理 2.31】 可換な局所コンパクト群およびコンパクト群は,ユニモジュラー 群である.すなわち,両側不変な Haar 測度を持つ. _____□

【**定理 2.32** (Mackey の分解定理)】 *G*を可分な局所コンパクト群, *K*をその閉 部分群とする.このとき, *G*の Borel 集合 *S* が存在して, *G*の任意の元 *g* は一意的 な次の分解を持つ:

$$g = ks, \ k \in K, \ s \in S.$$

[Mackey, G.W. (1952) Ann. Math. 55: 101-139]

2.4 コンパクト Lie 群

【**定義 2.33** (コンパクト Lie 代数)】 Lie 代数 *L* に正定値の内積 < *X*,*Y* > で

 $\langle [X,Y], Z \rangle + \langle Y, [X,Z] \rangle = 0 \quad \forall X, Y, Z \in L$

となるものが存在するとき,gはコンパクトであるという. _____

【定理 2.34】 コンパクト Lie 代数 g は、中心 N および単純イデアル S_1, \dots, S_n をもちいて次のように直和分解される:

$$\mathfrak{g}=N\oplus S_1\oplus\cdots S_n.$$

_

【定理 2.35】 コンパクト Lie 群の Lie 代数はコンパクトである.特に連結コンパ クト Lie 群 G は,連結な中心 G₀ および連結な単純 Lie 部分群 G₁,...,G_n の直積と して表される:

$$G = G_0 \times G_1 \times \cdots \times G_n.$$

【定理 2.36】 任意の複素半単純 Lie 代数 g はコンパクトな実型をもつ. すなわち, g はあるコンパクトな実 Lie 代数の複素化と同型である. _____□

2.5 半単純 Lie 代数

2.5.1 基本的性質

【定理 2.37 (Cartan の判定条件)】 Lie 代数が半単純であるための必要十分条件 は, その Killing 形式が非退化となることである. _____□

【定理 2.38 (構造定数の対称性)】 半単純 Lie 代数の構造定数を c^i_{jk} , Killing 形式の対応する成分表示を g_{ij} とするとき, $c_{ijk} := g_{il}c^l_{jk}$ は完全反対称テンソルとなる.

【定理 2.39 (不変計量の一意性)】

1) Lie 代数 \mathfrak{g} の線形表現 $\rho: \mathfrak{g} \to \operatorname{End}(V)$ に対して,

$$x, y \in \mathfrak{g} \mapsto N(x, y) = \operatorname{Tr}(\rho(x)\rho(y))$$

によりg上の内積を定義すると、Nはgの随伴変換群 Ad(G) で不変となる:

$$N([z.x], y) + N(x, [z, y]) = 0, \quad \forall x, y, z \in \mathfrak{g}.$$

- g が単純 Lie 代数のとき, Ad(G) で不変な任意の内積 N(x, y) はゼロでなけれ ば非退化で, Killing 形式に比例する.
- 3) $\mathfrak{h} \mathfrak{e} \mathfrak{g} \mathfrak{o}$ 単純部分 Lie 代数とする. このとき, $K_{\mathfrak{h}} \mathfrak{e} \mathfrak{h} \mathfrak{o}$ Killing 形式, $K'_{\mathfrak{h}} \mathfrak{e} \mathfrak{t}$ め込み $j: \mathfrak{h} \to \mathfrak{g}$ により, \mathfrak{g} の Killing 形式 $K_{\mathfrak{g}}$ から誘導され \mathfrak{h} の内積とすると き, $K'_{\mathfrak{h}}$ は $K_{\mathfrak{h}}$ の定数倍となる,

 $-\Box$

【証明へ】

【定理 2.40 (自己同型群)】 半単純 Lie 代数 \mathfrak{g} の微分作用素 D は常に適当な $X \in \mathfrak{g}$ を用いて $D = \operatorname{ad}(X)$ と表される.したがって, \mathfrak{g} の自己同型群 $\operatorname{Aut}(\mathfrak{g})$ の単位元を含む連結成分は、内部自己同型群 $I(\mathfrak{g})$ と一致する.

2.5.2 複素半単純 Lie 代数の構造

【定義 2.41 (Cartan 部分代数:一般)】 体*K*上のLie代数 g の部分代数 h が, i) h は ベキ零であって, ii) h の g における正規化部分代数が h と一致するとき, h を Cartan 部分代数という. _____□

【定義 2.42 (正則元)】 Lie 代数 \mathfrak{g} の元 X に対して, $\mathfrak{g}(X) := \bigcup_{n \in \mathbb{N}} \ker(\operatorname{ad}(X))^n$ とおくとき, dim $\mathfrak{g}(X)$ が最小となる \mathfrak{g} の元 X を \mathfrak{g} の正則元という.

【定理 2.43 (Cartan 部分代数の存在と一意性 [松島 65])】

- i) X_0 をLie代数 \mathfrak{g} の正則元とするとき、 $\mathfrak{g}(X_0)$ は \mathfrak{g} のCartan部分代数である.
- ii) gを代数的閉体 K 上の Lie 代数とする. このとき, gの任意の Cartan 部分代数は正則元を含む. さらに, h, h' を g の 2 つの Cartan 部分代数とするとき, h' = σ(h) となる g の自己同型 σ が存在する. σは, g の適当な元 A₁,..., A_r を 用いて,

 $\sigma = \exp(\operatorname{ad}(A_1)) \cdots \exp(\operatorname{ad}(A_r))$

と表される.

【注 2.45 (複素半単純 Lie 代数の Cartan 部分代数)】 \mathfrak{g} を複素半単純 Lie 代数と すると、その任意の Cartan 部分代数 \mathfrak{h} は、 $Ann(X) := \{Y \in \mathfrak{g} \mid [X, Y] = 0\}$ の次元 が最小となり、 $ker(ad(X)^2) = ker(ad(X)$ となる適当な元 X を用いて $\mathfrak{h} = Ann(X)$ と表される.

目次へ

【定義 2.46 (ルート)】 Lie 代数 g の Cartan 部分代数を h とするとき, ad(h) の 固有値

$$[X, E_{\alpha}] = \alpha(X)E_{\alpha}, \quad \forall X \in \mathfrak{h}$$

により決まる、 \mathfrak{h} の双対空間 \mathfrak{h}^* の元 α をルートと呼び、対応する固有空間を \mathfrak{g}_{α} と表 す.また、ゼロでないルートの全体を $\Delta(\subset \mathfrak{h}^*)$ と表す.

【定理 2.47 (ルート分解の性質)】 gを複素半単純 Lie 代数とする.このとき,次 が成り立つ:

- i) $\alpha \in \Delta$ なら, \mathfrak{g}_{α} は1 次元である.
- ii) gは

$$\mathfrak{g}=\mathfrak{h}\oplus\sum_{\alpha\in\Delta}\mathfrak{g}_{\alpha}$$

と直和分解される.

- iii) gのキリング形式 κ は h 上で非退化である.
- iv) Δ は \mathfrak{h}^* を張る. Δ により生成される実線形部分空間を \mathfrak{h}_R^* とすると、キリング 形式 κ は \mathfrak{h}_R^* 上で正定値である.
- v) $\alpha, \beta \in \Delta$ に対して, $\alpha + \beta \notin \Delta$ ならば, $\mathfrak{g}_{\alpha} \geq \mathfrak{g}_{\beta}$ はキリング形式 κ に関して直 交する.また, $\mathfrak{h} \geq \mathfrak{g}_{\alpha}$ も直交する.

【定義 2.48 (Cartan 計量)】 複素半単純 Lie 代数 g に対して, \mathfrak{h} 上のキリング形 式 κ から誘導される \mathfrak{h}^* 上の内積を (α, β) として, $\alpha, \beta \in \mathfrak{h}^*$ に対して,

$$<\beta, \alpha>:=2\frac{(\beta,\alpha)}{(\alpha,\alpha)}$$

とおく. また, \mathfrak{h}^* から \mathfrak{h} への線形写像 $\alpha \mapsto H_{\alpha}$ を

$$\beta(H_{\alpha}) = (\beta, \alpha) \quad \forall \beta \in \mathfrak{h}^*$$

により定義する.このとき、定義より $(\alpha,\beta) = (H_{\alpha},H_{\beta})$ がなりたつ.

【定理 2.49 (ルート系の性質と Weyl 基底)】 複素半単純 Lie 代数 g に対して,次 が成り立つ:

目次へ

- i) $\alpha \in \Delta$ なら $-\alpha \in \Delta$, かつ $m \neq \pm 1$ に対して, $m\alpha \notin \Delta$.
- ii) $\beta \neq \pm \alpha$ となる $\alpha, \beta \in \Delta$ に対して, p, q をそれぞれ $\beta p\alpha, \beta + q\alpha \in \Delta$ となる 最大の非負整数とする. このとき, $-p \leq m \leq q$ となる任意の整数 m に対して $\beta + m\alpha \in \Delta$, かつ $p - q = < \beta, \alpha >$ が成り立つ.
- iii) (Weyl 基底) \mathfrak{g}_{α} の基底 E_{α} として,

$$[E_{\alpha}, E_{\beta}] = \begin{cases} H_{\alpha} & (\beta = -\alpha) \\ N_{\alpha,\beta} E_{\alpha+\beta} & (\alpha + \beta \in \Delta) \\ 0 & (\alpha + \beta \notin \Delta, \neq 0) \end{cases}$$

となるものが取れる.ここで, $p,q \in ii$)の非負整数として, $N_{\alpha,\beta}$ は次の条件を満たす数である:

$$N_{\alpha,\beta}^2 = \frac{q(p+1)}{2}(\alpha,\alpha), \quad N_{\alpha,\beta} = -N_{-\alpha,-\beta}.$$

iv) $\alpha, \beta \in \Delta$ に対して, $< \alpha, \beta >$ は $0, \pm 1, \pm 2, \pm 3$ のいずれかの整数である.

【定義 2.50 (ν ート系の公理)】 ユークリッド空間 *E* とそのベクトルの有限集合 Δ の組 (Δ , *E*) が次の性質をもつとき, Δ を(抽象) ν ート系という.

0) Δ は *E* を張る.

- i) $\alpha, \beta \in \Delta$ なら, $2(\alpha, \beta)/(\alpha, \alpha) \in \mathbb{Z}$.
- ii) Eのベクトル α に対して、その法平面に関する反転写像を w_{α} とする:

$$w_{\alpha}: \ \lambda \mapsto \lambda - \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha.$$

このとき,任意の $\alpha \in \Delta$ に対し, $w_{\alpha}(\Delta) = \Delta$.

iii) $\alpha \in \Delta, x \in \Delta$ に対して, $x \alpha \in \Delta$ なら $x = \pm 1$.

また, w_{α} 全体の生成する E の等長変換群の有限部分群は,ルート系 Δ の Weyl 群 と呼ばれる.

公理 ii), iii) より次の性質が導かれる:

目次へ

 \square

- iv) $\alpha, \beta \in \Delta, \alpha \neq \pm \beta$ ならば. $\alpha \geq \beta$ のなす角度 θ は, 30, 45°, 60, 90, 120 , 135, 150 のいずれかに等しい. さらに, $(\alpha, \alpha) \leq (\beta, \beta)$ なら,
 - $$\begin{split} \theta &= 30^{\circ}, 150^{\circ} \quad \Leftrightarrow \quad 3(\alpha, \alpha) = (\beta, \beta), \\ \theta &= 45^{\circ}, 135^{\circ} \quad \Leftrightarrow \quad 2(\alpha, \alpha) = (\beta, \beta), \\ \theta &= 60^{\circ}, 120^{\circ} \quad \Leftrightarrow \quad (\alpha, \alpha) = (\beta, \beta). \end{split}$$

【定義 2.51 (基本ルート系)】 ルート系 (Δ, E)の部分集合 $\Pi \subset \Delta$ が次の性質を 持つとき, $\Pi \varepsilon \Delta$ の基本ルート系 (fundamental root system) と呼ぶ:

- i) Пは*E*の基底となっている.
- ii) どのルートも Πの元の整数係数の一次結合で表される.しかも,その係数はす べて非負か,すべて非正である.

基本ルート系が存在するとき, Π に関する展開係数がすべて非負のものを正ルート, すべて非正のものを負ルートとよび,その集合をそれぞれ Δ^+ , Δ^- と表す ($\Delta = \Delta^+ \cup \Delta^-$).

基本ルート系の任意の2つのルートの間のなす角は, 90°, 120°, 135°, 150° のいず れかである. _____

【定義 2.52 (辞書式順序と単純ルート)】 ルート系 (Δ, E) において, Eの基底 e_1, \dots, e_l を勝手に取る. このとき, $\alpha \in \Delta$ の成分表示 $\alpha = \sum_i a_i e_i \mapsto (a_1, \dots, a_l)$ を 用いて, Δ に全順序 > を次のように定義する:

$$\alpha > \beta \iff a_1 = b_1, \cdots, a_{k-1} = b_{k-1}, a_k > b_k \ (\exists \ 1 \le k \le l)$$

この全順序は、基底 (e_i)の定める Eの辞書式順序 (lexicographic ordering) という. この辞書式順序により、 Δ は2つの部分集合 Δ^{\pm} に分割される:

$$\Delta = \Delta^+ \cup \Delta^-; \quad \Delta^\pm = \{ \alpha \in \Delta \mid \alpha \ge 0 \}$$

 Δ^+ と Δ^- は, $\alpha \mapsto -\alpha$ により1対1に対応する.

 Δ^+ に属するルートで Δ^+ の 2 つのルートの和で表されないものは, Δ^+ に関する 単純ルート (simple root) と呼ばれる.

この定義とルート系の公理より、 Δ^+ の単純ルートの全体 $\Pi = \{\alpha_i, i = 1, \cdots, l\}$ は ルート系 (Δ, E)の基本ルート系となる.また、ルート系 (Δ, E)の任意の基本ルート 系は、適当な基底に関する辞書的順序により得られる単純ルート系により得られる.

【定義 2.53 (ルート系の既約性)】 2つのルート系 (Δ_1, E_1), (Δ_2, E_2) が与えられたとき, 直和 ($\Delta_1 \cup \Delta_2, E_1 + E_2$) もルート系の公理を満たす.

逆に, ルート系 (Δ , E) がこのような 2 つのルート系の直和に分解できないとき, 既約であるという.

【定理 2.54 (ルート系と複素単純 Lie 代数の対応)】 複素単純 Lie 代数 (\mathfrak{g} , \mathfrak{h}) のルート系 ($\Delta(\mathfrak{g}, \mathfrak{h}), \mathfrak{h}_{\mathbb{R}}^{*}$) は既約なルート系となる.また,逆に,任意の既約(抽象)ルート系 Δ が与えられたとき,ルート系が Δ と相似になる複素単純 Lie 代数が同型を除いて一意的に存在する.

[Serreの関係式を用いた構成的証明: J. E. Humphreys, Introduction to Lie Algebras and Representation Theory (Springer, 1972)] _____□

【定理 2.55 (複素半単純 Lie 代数の分類定理)】 複素半単純 Lie 代数 g のルート 系 Δ は基本系を持つ.g が既約であための必要十分条件は、Δ が既約であることで ある.複素単純 Lie 代数の同値類は、既約なルートの基本系に対する次の Dynkin 図 式で分類される.この図で、線で結ばれていない単純ルートは互いに直交し、1本 線、2本線、3本線で結ばれている2つのルートのなす角は、順に 120°, 135°, 150° である.また、矢印は長いルートから短いルートに向かう.対応するルートベクト ルの長さの比は,順に1:1, $\sqrt{2}$:1, $\sqrt{3}$:1となる.

【定理 2.56 (複素半単純 Lie 代数の自己同型群の構造定理)】 複素数体上の半単純 Lie 代数 \mathfrak{g} の自己同型群を $\mathfrak{a}(\mathfrak{g})$, 内部自己同型群を $\mathfrak{i}(\mathfrak{g})$ とする. ルートの集合 Δ を 不変とするルート空間 \mathfrak{h}^* の 1 次変換全体の作る有限群を \mathcal{T} , Weyl 群を \mathscr{W} とすると,

$$\mathfrak{a}(\mathfrak{g})/\mathfrak{i}(\mathfrak{g})\cong \mathscr{T}/\mathscr{W}$$

が成り立つ.

目次へ

一定のルートの基本系 Π (または、Weyl 領域)を不変にする \mathfrak{h}^* の直交変換全体 \mathscr{T}_1 は、 \mathscr{T} の部分群で、

$$\mathscr{T} = \mathscr{T}_1 \cdot \mathscr{W}, \quad \mathscr{T}_1 \cap \mathscr{W} = 1 \implies \mathscr{T}_1 \cong \mathscr{T}/\mathscr{W}$$

が成り立つ.

[From: リー環論 (松島与三 1956)] _____□

- $A_n(n \ge 2), D_n(n \ge 5), E_6: 2 次の巡回群 \mathfrak{S}_2.$
- *D*₄: 3次の対称群 𝔅₃.
- その他: 𝒴 = 𝒴

[From: リー環論 (松島与三 1956)] _____□

2.5.3 実単純 Lie 代数の分類

【定理 2.58】 すべての実単純 Lie 代数 *L*_r は,共通部分を持たない次の 2 つのク ラスに分類される:

- A. \mathcal{L}_r の複素化 $\mathcal{L} = (\mathcal{L}_r)^{\mathbb{C}}$ が複素単純 Lie 代数となるもの. すなわち, 複素単純 Lie 代数の実型.
- B. 複素単純 Lie 代数 ℒと実 Lie 代数と見なしたもの.

クラスBの実単純 Lie 代数 $\mathcal{L}_r \simeq_{\mathbb{R}} \mathcal{L}$ の複素化は単純でなく, $(\mathcal{L}_r)^{\mathbb{C}} \simeq \mathcal{L} \oplus \overline{\mathcal{L}}$ と直 和分解される.ここで, $\overline{\mathcal{L}}$ は $(\mathcal{L}_r)^{\mathbb{C}}$ における複素共役である. \mathcal{L}_r の元は $X + \overline{X}$ と 表される.[BR86] _____

【定理 2.59】 すべての複素半単純 Lie 代数はコンパクトな実型をもつ. [BR86]

【定理 2.60】 複素半単純 Lie 代数 *2* の互いに同型でないすべての実型は次の手 続きで得られる. [BR86]

- 1. $\mathcal{L}_k & \mathcal{L} \\$ のコンパクトな実型として、その同値でない involutive automorphism S &をすべて求める.
- 2. 各Sに対して, $P^{\pm} = (1 \pm S)/2$ とおくと, $(P^+ + iP^-) \mathscr{L}_k$ がSに対応する実型 を与える.

2.6 命題・定理・公式の証明

定理 2.39 の証明.

1) 定義より

$$N([z, x], y) = \text{Tr}(\rho([z, x])\rho(y)) = \text{Tr}([\rho(z), \rho(x)]\rho(y)) = \text{Tr}(\rho(z)[\rho(x), \rho(y)])$$

となることより明らか.

2) 内積 N(x,y) を用いて, gの線形部分空間 h を

$$\mathfrak{h} = \{ x \in \mathfrak{g} \mid N(x, y) = 0, \quad \forall y \in \mathfrak{g} \}$$

により定義する.このとき,任意の元 z ∈ g に対し,

 $x \in \mathfrak{h} \Rightarrow N([z, x], y) = -N(x, [z, y]) = 0 \forall y \in g \Rightarrow [z, x] \in \mathfrak{h}$

より、 \mathfrak{h} は \mathfrak{g} のイデアルとなる.したがって、 \mathfrak{g} が単純である事より、 $\mathfrak{h} \neq \mathfrak{g}$ なら $\mathfrak{h} = 0$.

次に, *N*が非退化なので,同型線形写像 $f_N: \mathfrak{g} \to \mathfrak{g}^*$ が自然に定義される.同 様に, \mathfrak{g} の Killing 形式 *K*も非退化で,同駅線形写像 $f_K: \mathfrak{g} \to \mathfrak{g}^*$ を定義する. このとき, *N* と *K* の *G* 不変性より,合成写像 $f_K^{-1} \circ f_N: \mathfrak{g} \to \mathfrak{g}$ は*G* の随伴表現 Ad と可換になる.よって,Schur の補題より, $f_K^{-1} \circ f_N$ は恒等写像の定数倍と なる.これは, *N* = *cK* を意味する.

3) gの随伴表現をりに制限して得られるりのgへの表現は、可約で

$$\operatorname{ad}_{\mathfrak{g}}|_{\mathfrak{h}} = \rho_0(=\operatorname{ad}_{\mathfrak{h}}) \oplus \rho_1 \oplus \cdots \oplus \rho_m$$

と既約分解される.このとき, $x, y \in \mathfrak{h}$ に対し,

$$K'_{\mathfrak{h}}(x,y) = \sum_{j=0}^{m} \operatorname{Tr}(\rho_j(x)\rho_j(y)) = \sum_{j=0}^{m} N_j(x,y)$$

となる.ところが、1)、2)より、 N_j はすべて $K_{\mathfrak{h}}$ の定数倍となるので、結局、 $K'_{\mathfrak{h}}$ も $K_{\mathfrak{h}}$ の定数倍となる.

Q.E.D.

【定理 2.39 に戻る】

3 Lie 代数とLie 群の表現

3.1 線形表現の一般論

【定義 3.1 (線形表現)】 局所凸複素線形位相空間 V の有界作用素の全体を $\mathscr{B}(V)$, その可逆元の作る部分集合を $\mathscr{B}^{\times}(V)$. また, V が Banach 空間のとき, ユニタリ作 用素の全体を $\mathscr{U}(V)$ とする. 位相群 G から $\mathscr{B}^{\times}(V)$ への代数的準同型 $g \mapsto T_g$ が強連 続, すなわち任意の $v \in V$ に対して $G \to T_g v$ が連続なとき, 組 R = (V,T) を G の V への線形表現という. 特に, V が Hilbert 空間のとき, $T_g \in \mathscr{U}(V)(\forall g \in G)$ となる 線形表現をユニタリ表現という.

【定義 3.2 (既約表現)】 局所凸線形位相空間 \mathscr{V} の有界作用素の族 $\mathfrak{A}(\subset \mathscr{B}(\mathscr{V})$ に 対して、 \mathscr{V} の線形部分空間 \mathscr{L} に対して $\mathfrak{A}\mathscr{L} \subset \mathscr{L}$ となるとき、 \mathfrak{A} 不変空間という. 特に、群 G の線形表現 (\mathscr{V}, T) に対して、 $\{T_g \mid g \in G\}$ の不変空間を G 不変空間とい う. さらに、有界作用素の族 \mathfrak{A} が既約とは、 \mathscr{V} の閉 \mathfrak{A} 不変空間が $\{0\}$ と \mathscr{V} 以外の存 在しないことをいう.特に、 $\{T_g\}$ が既約なとき、G の表現 (\mathscr{V}, T) が既約であるとい う.

【定理 3.3 (実代数とその複素化の複素解析的表現の関係)】 実代数 & の複素表現が複素既約であることと、それから誘導される & の複素化 & Cの複素解析的表現が複素既約であることは同値である.

【定理 3.4 (実代数の実既約表現と複素既約表現の関係:有限次元)】 実代数 \mathscr{A} の有限次元実線形空間 \mathscr{V} への表現 $\rho: \mathscr{A} \triangleright \mathscr{V}$ が実表現として既約の時 \mathbb{R} -既約、 \mathscr{V} が複素構造 Jをもち $J\rho(a) = \rho(a)J \forall a \in \mathscr{A}$ が成り立ち、 \mathscr{V} が自明なものを除いて J不変な ρ -不変部分空間を持たないとき J-既約と呼ぶことにする.

- 1) \mathcal{V} が複素構造 Jをもち, $\rho: \mathscr{A} \triangleright \mathcal{V}$ が J-表現とする.このとき, ρ の複素化 $\rho^{\mathbb{C}}$: $\mathscr{A} \triangleright \mathcal{V}^{\mathbb{C}}$ は *i*-可約かつ J-可約で,2つの表現 ρ_{\pm} の直和となる: $\rho^{\mathbb{C}} \cong_{\mathbb{R}} \rho_{+} \oplus \rho_{-}$. ρ, ρ_{\pm} の間には, $\rho_{+} \cong_{\mathbb{R}} \rho_{-} \cong_{\mathbb{R}} \rho$ および $\rho_{+} \cong_{\mathbb{C}} \rho, \bar{\rho}_{-} \cong_{\mathbb{C}} \rho$ が成り立つ.
- 3) 𝔄 の ℝ-既約表現は、その複素化が ℂ-可約なものと ℂ-既約なものの2つのクラ スに分類される.前者は、すべて 𝔄 の ℂ-既約のうち ℝ-既約なものを ℝ-表現 と見なしたものとして得られ、同じ ℝ-既約表現に対応する ℂ-表現は ℂ-同値で

なければ互いに複素共役である.一方,後者はすべて 𝖉 の ℂ-既約のうち ℝ-可 約なものの ℝ-既約成分として得られ,もとの ℂ-既約表現はその複素化と ℂ 同 値である.

【定理 3.5 (複素 Lie 群とその実型の複素表現)】 複素 Lie 群 G の複素解析表現が 既約であるための必要十分条件は, G の実型への制限が既約であることである. □

【定理 3.6 (実 Lie 群の実表現と複素表現の関係)】 実 Lie 群 G の実線形表現を (ρ ,V), それから誘導される複素表現を (ρ , $V^{\mathbb{C}}$) とする. (ρ , $V^{\mathbb{C}}$) が既約なら, (ρ ,V) は既約である. 逆に, (ρ ,V) が既約であるとき, (ρ , $V^{\mathbb{C}}$) が既約であるための必要十 分条件は, (ρ ,V) 自身が複素表現の構造を持たないこと, すなわちV の複素構造Jで ρ と可換なものが存在しないことである. (ρ ,V) が既約複素表現 (ρ' ,W) と実表現 として同型であるとき, (ρ , $V^{\mathbb{C}}$) は (ρ' ,W) と同型な複素表現とその複素共役表現の 直和となる.

【定理 3.7 (実 Lie 群の実既約表現)】 実 Lie 群 G の複素既約表現が実表現として可約なら,実表現として同型な既約表現の直和に分解され,もとの複素表現は実既約成分の複素化と同型である.このようにして得られる実既約表現はもとの複素既約表現が複素同型なら実同型である.したがって,実 Lie 群 G のすべての実既約表現は互いに同値でないつぎの2つのクラスに分類される.

- 1) Gの複素既約表現で実表現としても既約なもの.互いに複素同型でない複素既 約表現からこのようにして得られる実表現が同値となることがある.
- 2) 実表現として可約な G の複素既約表現の実既約成分.

【注 3.8 (実 Lie 群の複素既約表現の分類)】 上記の定理より,実 Lie 群の複素既約表現はその複素化の複素既約表現と一対一に対応する.まず,実単純 Lie 群 G_r が 複素単純 Lie 群 G の実型の場合, G_r の複素既約表現は G の複素解析的既約表現の G_r への制限と一対一に対応する.一方, G_r が複素単純 Lie 群 G を実 Lie 群と見なし たものの場合は, G_r の複素化は G と同型な複素単純 Lie 群 G_1 と G_2 の直積となり, G_r のその複素化へ自然な埋め込みは, G_r と G の同型対応に,G から G_1 への複素同 型と G_2 への複素反同型の積を合成した写像で与えられる.したがって, G_r の複素 既約表現は,G の複素解析的既約表現と複素反解析的既約表現のテンソル積で与え られる.

目次へ

 \square

【定義 3.9 (自己共役表現,複素表現,実表現,擬実表現)】 実Lie 群 Gの複素表現 $\rho: G \rightarrow GL(V, \mathbb{C})$ において,その複素共役表現を ρ^* とするとき, $\rho \geq \rho^*$ がGL(V, \mathbb{C}) において相似となるとき, ρ は複素自己共役表現 (complex self-conjugate rep),非複 素自己共役表現を単に複素表現 (complex rep)という.また,複素非自己共役表現 ρ が,Vの適当な基底の下で常に実行列で表されるとき実表現 (real rep),そのような 基底が存在しないとき擬実表現 (pseudoreal rep)という.

特に, Gがコンパクト群のとき,その表現 ρ の基底を ρ がユニタリとなるように 取るとき, ρ の複素共役表現は,反傾表現 (contravariant rep) $T_{\rho^{-1}}$ と一致する.

【定理 3.10】 Gを単連結 Lie 群, TをGの有限次元既約表現, NをGの連結可 解正規部分群とする.このとき, Nの任意の元nに対して

 $T_n = \chi(n)I$

が成り立つ.ここで、 $\chi(n)$ は次の性質をもつ N の指標である.

$$\chi(g^{-1}ng) = \chi(n).$$

【定理 3.11】 単連結 Lie 群 G の極大可解正規部分群を R, G の半単純 Levi 因子 を G_s とする (G = R × G_s). このとき,G の任意の有限次元既約表現 T は,G_s 上で 恒等的に 1 となり $\chi(g^{-1}rg) = \chi(r)(\forall g \in G, \forall r \in R)$ を満たす G の指標 χ と半単純群 G_s のある既約表現 T_s を用いて,T = $\chi \otimes T_s$ と表される.

3.2 可換群

【定理 3.12】 可換群の複素既約ユニタリ表現はすべて1次元である. ____

【定義 3.13 (可換群の指標)】 可換な局所コンパクト群Gに対して,G上の複素 連続関数 χ で

$$\chi(g_1g_2) = \chi(g_1)\chi(g_2), \quad |\chi(g)| = 1$$

を満たすものを指標という.指標の全体 Ĝ は再び局所コンパクト可換群とり,指標 群と呼ばれる. _____

【定理 3.14 (Stone, Naimark, Ambrose, Godement の定理)】 T_g を局所コンパクト可換群Gのユニタリ表現とすると、 T_g は指標群 \hat{G} 上の適当なスペクトル測度Eを用いて

$$T_g = \int_{\hat{G}} \chi(g) dE(\chi)$$

と表される. _____

3.3 可解群

【定理 3.15 (Lie)】 連結可解位相群の有限次元既約複素表現は1次元表現のみである.[BR86] _____□

【定理 3.16】 連結可解位相群の有限次元表現 (T, V) は、 $\dim V = r$ とするとき、 指標列 χ_1, \dots, χ_r を対角成分とする下方三角型行列による成分表示を持つ: [BR86]

3.4 半単純 Lie 群

【定理 3.17】 連結非コンパクト半単純 Lie 群は自明なものを除いて,有限次元ユニタリ表現を持たない. □

【定理 3.18】 連結半単純 Lie 群の有限次元表現は完全可約である. _____

3.5 ウエイト系の方法

3.5.1 ウェイト系

以下,gを複素半単純Lie代数,△をルート系,Пをその基本系,gのルート分解を

$$\mathfrak{g} = \mathfrak{h} \oplus \sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha},$$

とする.

【定義 3.19 (ウエイト)】 (ρ, V) を \mathfrak{g} の線形表現とする. $\lambda \in \mathfrak{h}^*$ に対して, Vの 線形部分空間 V_{λ} を

$$V_{\lambda} = \{ v \in V \mid \rho(X)v = \lambda(X)v \quad \forall X \in \mathfrak{h} \}$$

で定義し、 $V_{\lambda} \neq 0$ のとき λ を表現 ρ のウエイトという. ρ のウエイトの全体を Λ_{ρ} と書く.

【定理 3.20】 (ρ, V) をgの線形表現とするとき、 $\alpha \in \Delta$ 、 $\lambda \in \Lambda_{\rho}$ に対して、

$$\rho(\mathfrak{g}_{\alpha})V_{\lambda} \subseteq V_{\lambda+\alpha}.$$

特に, V が有限次元のとき, $\lambda + \alpha \in \Lambda_{\rho}$ ならば, $\rho(\mathfrak{g}_{\alpha})V_{\lambda} \neq 0$. _____

【定義 3.21 (最高ウエイト)】 gの Cartan 部分代数 hの双対空間 h* に,

$$\mu \ge \nu \iff \mu - \nu = \sum_{\alpha_i \in \Pi} k_i \alpha_i, k_i \ge 0$$

により半順序を定義する.ことのき、線形表現 (ρ, V) のウエイト系 Λ_{ρ} において、 に関する最大ウェイト λ が存在するとき、 λ を最高ウエイトという.

3.5.2 巡回表現

【定義 3.22 (巡回表現と原始ベクトル)】 複素半単純 Lie 代数 \mathfrak{g} の線形表現 (ρ, V) に対して,あるウェイト $\lambda \in \Lambda_{\rho}$ とベクトル $v \in V_{\lambda}$ が存在して,

$$\rho(\mathfrak{g}_{\alpha})v = 0, \quad \forall \alpha \in \Delta^+$$

が成り立ち、かつvを含む ρ 不変なVの真部分空間が存在しないとき、(ρ ,V)を(λ ,v)-巡回表現、vを原始ベクトルと呼ぶ.

【定理 3.23 (巡回表現の性質)】 (ρ, V) を \mathfrak{g} の(有限ないし無限次元の) (λ, v) -巡回表現とする.このとき,次の性質が成り立つ:

- i) λ は最高ウエイトで, $\Pi = \{\alpha_1, \dots, \alpha_l\}$ とするとき, 任意のウエイト $\omega \in \Lambda_\rho$ は 非負の整数 m_1, \dots, m_l を用いて, $\omega = \lambda - m_1\alpha_1 - \dots - m_l\alpha_l$ と表される.
- ii) すべてのウエイト $\omega \in \Lambda_{\rho}$ に対して, V_{ω} は有限次元である. さらに, dim $V_{\lambda} = 1$ である.
- iii) $\Delta^- = \{\beta_1, \dots, \beta_N\}$ とするとき, Vは, k_1, \dots, k_N を非負整数として, $\rho(E_{\beta_1})^{k_1} \cdots \rho(E_{\beta_N})^{k_N} v$ の形の元で生成される.特に, Vは $V_{\omega}(\omega \in \Lambda_{\rho})$ の直和である.
- iv) $V \circ \rho$ 不変部分空間 $U \circ \sigma$, $\rho \circ V/U$ 上既約となるものが一意的に存在する.

【定理 3.24 (既約巡回表現の存在および最高ウエイトとの対応)】 任意の $\lambda \in \mathfrak{h}^*$ に対して、 λ を最高ウエイトとする \mathfrak{g} の既約巡回表現が存在する.さらに、 \mathfrak{g} の2つの(有限ないし無限次元)既約巡回表現が同値であるための必要十分は、最高ウエイトが一致することである.

【定理 3.25 (既約表現と巡回表現の対応)】 gの(有限ないし無限次元の)既約表現 (ρ, V) が最高ウエイトを持てば, (ρ, V) は巡回表現である.とくに,有限次元 既約表現は必ず巡回表現である.

3.5.3 複素半単純 Lie 代数のウエイト系の性質

【定理 3.26 (ウエイト系の性質)】 (ρ, V) をgの有限次元表現とするとき, $\alpha \in \Delta$, $\lambda \in \Lambda_{\rho}$ に対して, $\lambda + m\alpha \in \Lambda_{\rho}$ となる最大の整数 m & q, 最小の整数を -pとする と, $-p \leq m \leq q$ となる任意の整数 m に対して $\lambda + m\alpha \in \Lambda_{\rho}$ で, しかも次の式が成 り立つ:

$$p-q = <\lambda, \alpha > .$$

特に, $<\lambda, \alpha >$ は整数で, $\lambda - <\lambda, \alpha > \alpha \in \Lambda_{\rho}$.

【公式 3.27 (既約表現におけるウエイト多重度に対する Freudenthal の漸化式)】 単純 Lie 代数 \mathfrak{g} の正ルート全体の集合を Δ^+ , その既約表現 ρ の最高ウエイトを λ

とする.このとき, ρ の各ウエイトwの多重度 $m(w; \lambda)$ は,次の公式により $m(\lambda) = 1$ より逐次的に決定される:

$$m(w;\lambda) = \sum_{\alpha \in \Delta^+, k=1,2,\cdots} \frac{2(w+k\alpha,\alpha)m(w+k\alpha;\lambda)}{(\lambda+w_t,\lambda+w_t) - (w+w_t,w+w_t)},$$
(3.1)

$$w_t = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha. \tag{3.2}$$

【定義 3.28 (基本整ウエイト, 支配的整ウエイト)】 ルートの基本系 $\Pi = \{\alpha_1, \cdots, \alpha_l\}$ に対して, Cartan 行列 $C_{ij} := < \alpha_i, \alpha_j >$ を用いて

$$\lambda^i := \sum_j (C^{-1})^{ij} \alpha_j$$

により定義される \mathfrak{h}^* の基底 λ^i ($i = 1, \dots, l$)を基本整ウエイトと呼ぶ. さらに, $\lambda \in \mathfrak{h}^*$ が非負整数 m_1, \dots, m_l を用いて $\lambda = m_1\lambda^1 + \dots + m_l\lambda^l$ と表されるとき, λ を支配的 整ウエイトと呼び, その全体を Λ^+ と表す. $\lambda \in \Lambda^+$ は, すべての単純ルートに対し て < $\lambda, \alpha_i >$ が非負整数となることと同等である.

【定理 3.29 (有限次元既約表現と支配的整ウエイトの対応)】 $\lambda \in \mathfrak{h}^*$ に対して, \mathcal{L} の任意の有

【定義 3.30 (Weyl 群)】 ルート $\alpha \in \Delta$ から定義される \mathfrak{h}^* の変換

$$\sigma_{\alpha}: \lambda \mapsto \lambda - < \lambda, \alpha > \alpha$$

は、 α に垂直な平面に対する反転となる.変換 $\sigma_{\alpha}(\alpha \in \Delta)$ の全体で生成される \mathfrak{h}^* の有限変換群を Δ の Weyl 群 \mathscr{W} と呼ぶ.

Weyl 群は有限集合 △ に有効に作用するので、有限群となる. _____

【定理 3.31 (ウエイト系の Weyl 群に対する不変性)】 $\lambda \in \Lambda^+$ を最高ウエイトと する既約表現 (ρ, V) に対して, Λ_{ρ} は Weyl 群 \mathscr{W} で不変であり, $\sigma \in \mathscr{W}$, $\mu \in \Lambda_{\rho}$ に対 して,

$$\dim V_{\mu} = \dim V_{\sigma\mu}.$$

【公式 3.32 (既約表現のウエイト多重度に対する Konstant の公式 (1958))】 Lie 代数 \mathfrak{g} の正ルート全体の集合を Δ^+ , Weyl 群を \mathscr{W} , 既約表現 ρ の最高ウエイト を λ とするとき, ρ のウエイト w の多重度 $m(w; \lambda)$ は

$$m(w;\lambda) = \sum_{\sigma \in \mathscr{W}} (-1)^{\ell(\sigma)} \mathfrak{P}\left(\sigma(\lambda + w_t) - (w + w_t)\right), \qquad (3.3)$$

$$w_t = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha. \tag{3.4}$$

ここで、 $\ell(\sigma)$ はWeyl変換 σ の長さ、すなわち σ を反転の積で表したとき、その数の 最小値である.また、 $\mathfrak{P}(\mu)$ はウエイト μ を1組以上の正ルートの和に分割する方法 の数で、Konstantの分割数関数と呼ばれる.この分割数関数は次の漸化式を満たす:

$$\mathfrak{P}(\mu) = -\sum_{\sigma \in \mathscr{W}, \sigma \neq 1} \det(\sigma) \mathfrak{P}\left(\mu - (\rho - \sigma(\rho))\right).$$
(3.5)

 $-\Box$

【命題 3.33 (各 Dynkin タイプで許される表現のタイプ)】

- 1. 複素表現をもつのは、Dynkin 図式が非自明な対称性を持つA型、D型(ラン $p_r = 2m + 1$)、 E_6 型に限る.
- A 型では、Dynkin ラベル [a₁a₂…a_r] の表現と [a_ra_{r-1}…a₁] の表現は互いに 複素共役である.
- 3. $D_r (r = 2m + 1)$ 型では, $[a_1 a_2 \cdots a_{r-2} a_{r-1} a_r] \neq [a_1 a_2 \cdots a_{r-2} a_r a_{r-1}]$ となるこ とが複素表現であるための必要十分条件である. 一方, D_{2m} 型のLie 代数の表 現はすべて複素自己共役である.
- *E*₆では、Dynkin ラベル [*a*₁*a*₂*a*₃*a*₄*a*₅*a*₆]の表現と [*a*₅*a*₄*a*₃*a*₂*a*₁*a*₆]の表現が互い に複素共役となる.
- 5. B型
- 6. C_r型では,合同数 c ≡ a₁+a₃+… (mod 2) が0のとき実表現,1のとき擬実表現なる.特に,2r次元の基本ベクトル表現[10…0]はすべて擬実表現である.
- 7. E_7 では, 合同数 $c \equiv a_5 + a_6 + a_7 \pmod{2}$ が0のとき実表現, 1のとき擬実表現なる.特に, **56** [0000010] は擬実表現である.

_

3.5.4 表現のテンソル積とその既約分解

【公式 3.34 (Steinberg の公式)】 半単純 Lie 代数 g の 2 つの既約表現 ρ_1 , ρ_2 の 最高ウエイトを λ_1 , λ_2 とする. 2 つの表現のテンソル積 $\rho_1 \otimes \rho_2$ を既約分解して得 られる各既約表現 ρ (最高ウエイト μ)の多重度 $m(\mu)$ は次式で与えられる :

$$m(\mu) = \sum_{\sigma, \sigma' \in \mathscr{W}} \det(\sigma \sigma') \mathfrak{P} \left(\sigma(\lambda_1 + \rho) + \sigma'(\lambda_2 + \rho) - (\mu + 2\rho) \right)$$
(3.6)

ここで、 $\mathfrak{P}(w)$ はウエイトwに対する Konstant の分割数関数、 $\rho = (1/2) \sum_{\alpha \in \Delta^+} \alpha$ である.

【命題 3.35 (表現のテンソル積の既約分解により得られる1次元表現)】 単純複 素 Lie 代数 g の 2 つの既約表現 ρ, ρ' に対して,テンソル積 $\rho \otimes \rho'$ の既約分解が1次 元表現を含むためには, ρ' が ρ の複素共役表現 ($\rho' = \rho^*$)となることが必要である. また, $\rho \otimes \rho^*$ は,常に,1個の1次元表現を既約成分としてもつ..

Proof. $\rho \otimes \rho'$ が1次元既約表現を含むとすると、 $\rho \geq \rho'$ のウエイト系を Λ , $\Lambda' \geq b$ て、生成ベクトル*e*は

$$e = \sum_{w \in \Lambda \cap (-\Lambda')} \sum_{a,b} C(w)_{ab} v_a(w) \otimes v'_b(-w)$$

と表される.ここで、 $v_a(w), v'_b(w)$ の添え字a, bは同じウエイトをもつ表現空間ベクトルを区別する添え字である.eを決定する条件は、

 $(\sharp) \qquad E_{\alpha_i}e = E_{-\alpha_i}e = 0, \quad i = 1, \cdots, r$

で与えられる (rはgのランク).

 Λ の最高ウエイトと最低ウエイトを λ , $-\tilde{\lambda}$ ($\tilde{\lambda}$ は λ の共役ウエイト), Λ' の対応す るウエイトを λ' , $-\tilde{\lambda}'$ とする.いま,ウエイトの大小関係についての標準的な半順序 > に関する $\Lambda \cap (-\Lambda')$ の極大ウエイトの一つを λ_1 とすると, $E_{\alpha_i}e$ の基底による表示 において,ρに関してウエイト $\lambda_1 + \alpha_i$ を持つのは

$$E_{\alpha_i}e = \sum_{a,b} C(\lambda_1)_{ab} E_{\alpha_i} v_a(\lambda_1) \otimes v'_b(-\lambda_1) + \cdots$$

の第1項のみ.したがって, $E_{\alpha_i}\tilde{v}_a = 0$ ($\tilde{v}_a \equiv \sum_b C_{ba}v_b(\lambda_1)$)が任意のi, aについて成 り立つことになる.これは, \tilde{v}_a が ρ の最高ウエイトベクトル $v(\lambda)$ に比例することを 意味する.したがって, $\lambda_1 = \lambda$ かつ, $-\lambda \ge -\tilde{\lambda}' \Leftrightarrow \lambda \le \tilde{\lambda}'$ となる.($-\Lambda$) $\cap \Lambda'$ の極

大ウエイト $-\lambda'_1$ について同様の議論を行うと、 $\lambda'_1 = \lambda'$ および、 $\lambda' \leq \tilde{\lambda}$ を得る. 両者を合わせると、

$$\lambda \leqslant \hat{\lambda}' \leqslant \lambda \implies \lambda' = \hat{\lambda}$$

を得る.

つぎに、1次元既約成分の多重度を決定する.そのために、(#)より、ウエイトの レベルについての $C_{ab}(w)$ に関する漸化式を求める.まず、最低ウエイト $w = -\tilde{\lambda}$ は 多重度1なので、添え字a,bは不要である.そこで、 $C(-\tilde{\lambda}) = 1$ という規格化条件 を課す. λ のレベルを l_h として、最低ウエイトに対応する最低レベル $-l_h$ から出発 して、レベルl以下の $C_{ab}(w)$ が決まったとする.このとき、レベルl+1の任意のウ エイト $w \in \Lambda(\rho)$ に対し、 $w = w' + \alpha_i$ となるレベルlのウエイトと基本ルート α_i が 存在する.すると、 $E_{-\alpha_i}e = 0$ において、第1因子のウエイトが $w' = w - \alpha_i$ に等し い項を取り出すと、

$$\sum_{a,b} C_{ab}(w) E_{-\alpha_i} v_a(w) \otimes v'_b(-w) + \sum_{cd} (w') v_c(w') \otimes E_{-\alpha_i} v'_d(-w') = 0.$$

よって,

$$E_{-\alpha_{i}}v_{a}(w) = \sum_{c} A_{a}^{c,i}(w)v_{c}(w-\alpha_{i}),$$

$$E_{-\alpha_{i}}v_{d}'(-w') = \sum_{b} B_{d}^{b,i}(-w')v_{b}'(-w'-\alpha_{i})$$

おくと、(#)より、

$$\sum_{a} C_{ab}(w) A_a^{c,i}(w) = -\sum_{d} C_{cd}(w') B^{b,i}(-w'), \quad \forall c, i$$

 $v_a(w)$ は最低レベルのベクトルでないので, $A_a^{c,i}(w)$ により決まる線形写像 $a \to (c,i)$ は単射.よって,この式は, $C_{ab}(w)$ がレベル l 以下のウエイト w'に対応する係数 $C_{cd}(w')$ から一意的に決まることを示している.したがって,(\sharp)が整合的な解を持 っときには,すべての $C_{ab}(w)$ は $C(-\tilde{\lambda}) = 1$ から一意的に定まる.すなわち,1次元 既約成分は高々1個である.

次に、1次元既約成分が存在することを示す.そのために、Lie 代数 \mathfrak{g} のコンパクト実型を \mathfrak{g}_c 、対応するコンパクトLie 群を G_c 、 \mathfrak{g} の表現 ρ から誘導される G_c の表現を同じ記号 ρ で表す. G_c 上のHaar 測度 $d\mu_g$ を用いて、

$$e \equiv \int_{M_c} d\mu_g \rho(g) v(\lambda) \otimes \rho^*(g) v'(-\lambda)$$
とおくと,明らかに *e* は *G_c* の作用で不変となる.表現空間 *V* の基底は, ρ がユニ タリー表現となるよう取ることができる.ここで, $\rho^*(g)$ が行列表示で複素共役行列 ($\rho(g)$)* となるように, ρ の表現空間の基底をとると,この基底に関する行列表示で, ρ に関する最高ウエイトベクトル $v(\lambda) \ge \rho^*$ に関する最高ウエイトベクトルは,複素 共役の関係にある: $v'(-\lambda) = v(\lambda)^*$.したがって,この基底のもとで,(,)を標準的 なエルミート内積として,

$$(v(\lambda) \otimes v'(-\lambda), e) = \int d\mu_g \left(v(\lambda)^{\dagger} \rho(g) v(\lambda) \right) \left(v'(-\lambda)^{\dagger} \rho(g)^* v'(-\lambda) \right)$$

$$= \int d\mu_g |v(\lambda)^{\dagger} \rho(g) v(\lambda)|^2 > 0$$

が得られる.よって、 $e \neq 0$ で、eが1次元既約表現の生成ベクトルとなる.Q.E.D.

3.6 誘導表現の方法

【定義 3.36 (右正則表現)】 群 Gに対して、その上の関数の集合を $\mathscr{F}(G)$ とする. このとき、 $g \in G$ に $\mathscr{F}(G)$ の線形変換

$$R: f \mapsto R_q f; \quad f \in \mathscr{F}(G), (R_q f)(x) = f(xg)(x \in G)$$

を対応されることにより得られる表現を, Gの右正則表現と呼ぶ. _____□

【命題 3.37 (既約表現の正則表現への埋め込み)】 Gを位相群, $g \mapsto T_g \& G & O$ 位相線形空間 V 上への既約表現とする. V の双対空間 V*の勝手な元 v を用いて, V から C(G) への写像 $\Phi: u \mapsto f_u \& F_u$

$$f_u(g) = \langle T_g u, v \rangle$$

により定義する.このとき次の定理が成り立つ.[BR86]

- 2. *V*が有限次元*n*を持つとき、その基底*u_i*および*V**の双対基底*vⁱ*に関する*T_g*の成分を $D_i^l(g) = \langle T_g u_i, v^l \rangle$ とする、このとき、固定した*l*に対して、 $e_i(g) = D_i^l(g)$ (*i* = 1, · · · , *n*) は $\Phi(V)$ の基底となる、

目次へ

【定義 3.38 (Gauss 分解の対角因子の指標から誘導される既約表現)】 Lie 群 G が Gauss 分解

 $G = \overline{\mathscr{Z}DZ}$

を持つとする. χ を可解群 $K = \mathscr{D} O 1$ 次元表現, すなわち指標関数とし, V^{χ} を 次のような C(G) の線形集合とする:

$$V^{\chi} = \{ f \in C(G) \mid f(kg) = \chi(k)f(g) \forall k \in K, \forall g \in G \}.$$

このとき、 V^{χ} はGのC(G)上への右正則表現の不変部分空間となり、 $g \in G$ の Gauss 分解を $g = \zeta \delta z$ とすると、 $f \in V^{\chi}$ に対して

$$f(g) = f(\zeta \delta z) = \chi(\delta) f(z)$$

が成り立つ.逆に,任意の $f(z) \in C(Z)$ に対して,この式により定義された $G \perp o$ 関数 f(g) は V^{χ} に属する.したがって, $V^{\chi} \geq C(Z)$ は一対一に対応する.この対応 により得られる G o C(Z) (ないし V^{χ}) の上への表現 $R^{\chi} \geq \chi$ から誘導された表現 と呼ぶ. $z \in Z$, $g \in G$ に対して, zg o Gauss 分解を $zg = \tilde{\zeta}\delta\tilde{z}$ とおくと, R^{χ} は具体 的に

 $(R^{\chi}(g)f)(z) = \chi(\tilde{\delta})f(\tilde{z})$

と表される. さらに, R^{χ} の既約成分のうち, $f(z) \equiv 1$ を含む部分空間 V_0^{χ} への既約 表現を, χ から誘導される既約表現と呼ぶ.

【定理 3.39 (有限次元既約表現に対する Gauss 分解の対角因子の指標と最高ウエイトの対応)】 Gを Gauss 分解 $\overline{\mathscr{D}DZ}$ を持つ Lie 群とする.このとき,Gの任意の有限次元既約表現 ρ は,任意の $z \in Z$ に対して $\rho(z)$ で不変となベクトル (highest vector) u_0 をただ一つ持ち,任意の $\delta \in D$ に対して $\rho(\delta)u_0 = \chi(\delta)u_0$ となる.この指標関数 χ (highest weight) から誘導される既約表現は ρ と同型となる.二つの既約表現は,対応する最高の重みが一致するとき,かつそのときにのみ同型となる.最高の重みが χ のとき,既約誘導表現の表現空間 V_0^{χ} は

$$f_g(z) = \chi(\tilde{\delta}); zg = \tilde{\zeta}\tilde{\delta}\tilde{z}$$

により張られる C(Z) の部分空間となる. [BR86] _____

【命題 3.40 (有限次元既約に対する指標の部分群への制限)】 Lie 群 G が Gauss 分解 $G = \mathscr{D} D Z$ をもち,その部分 Lie 群 G_0 の Gauss 分解が $G_0 = \mathscr{D}_0 D_0 Z_0$ ($\mathscr{D}_0 = \mathscr{D} \cap G_0, D_0 = D \cap G_0, Z_0 = Z \cap G$)で与えられるとする.このとき,Dの指標 χ が G の有限次元既約表現を誘導するならば, χ の D_0 への制限 χ_0 は G_0 の有限次元既 約表現を誘導する.[BR86] ______

目次へ

3.7 コンパクト群の既約表現:表現環

【定義 3.41】 群 *G*,体 *K* に対して,*G*-*K*-加群の *G*-*K*-同値類の全体 *M_K(G)* は [*K*]を単位元とする可換半環となる。その Grothendieck 環を ($R_K(G), \phi_G$) とすると き, $R_K(G)$ を *G* の体 *K* 上の表現環と呼ぶ。*K* = ℝのとき, $R_K(G)$ を *RO*(*G*) と,ま た,*K* = ℂのとき, $R_K(G)$ を単に *R*(*G*) と表す。

【定義 3.42】 群 G に対して, G 上の K に値を取る連続関数全体の作る可換環 $C_K(G)$ において, K-指標全体の生成する部分環 $ch_K(G)$ をG の K-指標環と呼ぶ.

【**命題 3.43】** コンパクト群*G*に対して,表現環 *R_K(G)* は *K*-指標環 *ch_K(G)* に 同型で,既約*G*-*K*-加群の同値類,あるいは対応する指標を基底とする自由加群とな る. _____

【命題 3.44】 コンパクト群 G に対して、複素化写像 $c: RO(G) \rightarrow R(G)$ は単射である.

【定義 3.45】 位相群 G の閉部分群 T がトーラスで,

$$G = \bigcup_{x \in G} xTx^{-1}$$

となるとき,Tを極大トーラスと呼ぶ. _____

【命題 3.46】 極大トーラスは、トーラス部分群の包含関係に関して極大である. 群 G が弧状連結コンパクト Lie 群の時、この逆が成り立つ.特に、弧状連結コンパ クト Lie 群は極大トーラスを持つ. _____□

【定義 3.47】 位相群 G が極大トーラス T を持つとき, T の G における正規化群 N_T(G) の T による剰余群

$$W(G) = N_T(G)/T$$

を Weyl 群という.

【定理 3.48】 Gを極大トーラスTを持つコンパクト群とする. このとき, 包含 写像 $j: T \to G$ から誘導される環準同型

$$j^*: R_K(G) \to R_K(T)$$

は単射である. さらに, Weyl 群 W(G) の定義する T の同型

$$h_{\omega}t = w^{-1}tw \quad \omega = [w](w \in N_T(G)), t \in T$$

目次へ

 \Box

から誘導される,W(G)の $R_K(T)$ への作用 h^*_{ω} に対して不変な $R_K(T)$ の元の集合を $R_K(T)^{W(G)}$ とすると, $j^*(R_K(G))$ は $R_K(T)^{W(G)}$ に含まれる.弧状連結なコンパクトLie群に対しては

$$j^*(R(G)) = R(T)^{W(G)}$$

である.

3.8 誘導ユニタリ表現

【定義 3.49 (準不変測度)】 *G*を局所コンパクト群, *X*を局所コンパクト空間と し, *G*が*X*に右から作用するとする.このとき, *X*のBorel 測度 μ が,任意の $g \in G$ に対して $\mu_g := R_g d\mu \sim d\mu$ (同値)となるとき, μ を準不変測度という.

【定理 3.50 (準不変測度の存在)】 $G を局所コンパクト群, H を G の閉部分群, X = H \ G とする.$

- i) X 上には準不変測度で, Radon-Nikodym 微分 $d\mu_g(x)/d\mu(x) = d\mu(xg)/d\mu(x)$ が $G \times X$ 上の連続関数となるものが存在する.
- ii) 任意の2つの準不変測度は同値である.
- iii) 任意の準不変測度 μ は、 $\Delta_G \geq \Delta_H$ をそれぞれ $G \geq H$ のモジュラー関数として、条件

$$\rho(hg) = \frac{\Delta_H(h)}{\Delta_G(h)}\rho(g) \quad \forall h \in H$$

を満たす適当な正値局所可積分 Borel 関数 ρ(g) を用いて

$$\int_{G} f(g)\rho(g)dg = \int_{X} d\mu(\dot{g}) \int_{H} f(hg)dh, \quad \dot{g} \equiv Hg,$$

と表される. ここで f は任意の G 上のコンパクト台の関数である. μ は ρ により定数倍を除いて一意的に決まり,次の条件を満たす.

$$d\mu(\dot{g}a) = \omega_a(\dot{g})d\mu(\dot{g}); \ \omega_a(\dot{g}) = \frac{\rho(ga)}{\rho(g)}.$$

目次へ

 \Box

【定義 3.51 (誘導表現)】 Gを局所コンパクト群, Kをその閉部分群, $\tau = (\mathcal{H}, L_k)$ を K の \mathcal{H} 上へのユニタリ表現とする. 右 G 空間 $X = K \setminus G$ 上の準不変計量を μ と して, G 上の \mathcal{H} に値を取る関数 u(g) で次の条件を満たすものの全体を \mathcal{H}^{τ} とする:

- i) 任意の $v \in \mathcal{H}$ に対して, (u(g), v)はG上の関数として Borel 可測.
- ii) $u(kg) = L_k u(g), \quad \forall k \in K, \forall g \in G.$
- iii) $||u(g)|| \in L^2(X, \mu).$

このとき, $u, v \in \mathcal{H}^{\tau}$ に対して, (u(g), v(g))は $g \in X$ にのみ依存し μ 可積となる. そこで,

$$(u,v) := \int_X (u(g), v(g)) d\mu(\dot{g})$$

により内積を定義すると、 \mathscr{H}^{τ} は Hilbert 空間となる.このとき、Gの右作用に対する μ の Radon-Nikodym 微分を

$$\omega_g(x) := d\mu(xg)/d\mu(x), \quad x \in X, g \in G$$

とおくと,

$$(U_g u)(h) := \omega_q^{1/2}(\dot{h})u(hg)$$

により定義される U_g はGの \mathscr{H}^{τ} 上へのユニタリ表現 $(\mathscr{H}^{\tau}, U_g)$ を与える.これをKのユニタリ表現 τ から誘導されたGのユニタリ表現といい, $\operatorname{ind}_{K^{\tau}}^{G}$ と表す.

同様に、 E G 空間 Y = G/K とその準不変計量 ν に対して、 上記の条件で ii) を

ii)' $u(gk) = L_k^{-1}u(g)$

で置き換えて得られる Hilbert 空間 \hat{H}^{τ} に対して,

$$\hat{\omega}_g(y) := d\mu(g^{-1}y)/d\mu(y), \quad y \in Y, g \in G, (\hat{U}_g \hat{u})(h) := \hat{\omega}_g^{1/2}(\dot{h})\hat{u}(g^{-1}h)$$

とおくと、左正則表現に対応する誘導表現 $\operatorname{ind}_{K}^{G}\hat{\tau}$ が得られる. Gがユニモジュラーのとき、右誘導表現と左誘導表現はユニタリ同値で、

$$(Ju)(g) = u(g^{-1})$$

により定義される包合的ユニタリ写像 J により

$$J\hat{U}J^{-1} = U$$

で結ばれる.

目次へ

【注 3.52】 誘導表現 ind^G_K τ は, K のユニタリ表現 $\tau = (\mathcal{H}, L_k)$ から主ファイバー 束 $(G, K \setminus G, K)$ に随伴した \mathcal{H} をファイバーとするベクトルバンドル $\mathcal{H} \times_{\tau} G$ の大 域断面の空間 $\Gamma(\mathcal{H} \times_{\tau} G)$ に G の右作用から自然に誘導される表現である.

【定理 3.53 (等質空間上の関数空間での表示)】 $G \circ Mackey 分解を G = K \times S \Rightarrow g = k_g s_g とおくと、対応$

$$u \in \mathscr{H}^{\tau} \mapsto \tilde{u}(\dot{g}) := L_{k_{\tau}}^{-1} u(g)$$

により、 \mathscr{H}^{τ} は $L^{2}(X,\mu,\mathscr{H})$ と同型となる. $\operatorname{ind}_{G}^{K}\tau$ は $L^{2}(X,\mu,\mathscr{H})$ 上で,

$$(U_g \tilde{u})(x) = \omega_q^{1/2}(x) L(x, g) \tilde{u}(xg)$$

と表される. ここで,

$$L(x,g) := L_{k_h}^{-1} L_{k_{hg}}, \quad x = \dot{h} \in X = K \backslash G$$

である.

同様に, Mackey 分解 $G = S \times K$ に対して, 対応

$$u \in \hat{\mathscr{H}}^{\tau} \mapsto \tilde{u}(\dot{g}) := L_{k_g} u(g)$$

により, $\hat{\mathscr{H}}^{\tau}$ は $L^2(Y, \nu, \mathscr{H})$ と同型となる. $\operatorname{ind}_G^K \hat{\tau}$ は $L^2(Y, \nu, \mathscr{H})$ 上で,

$$(U_g \tilde{u})(y) = \hat{\omega}_g^{1/2}(y)\hat{L}(y,g)\tilde{u}(g^{-1}y)$$

と表される. ここで,

$$\hat{L}(y,g) := L_{k_h} L_{k_g - 1_h}^{-1}, \quad y = \dot{h} \in Y = G/K$$

である.

【定理 3.54 (基本性質)】 誘導表現に対して次が成り立つ.

- i) $\overline{\operatorname{ind}_{K}^{G}\tau} = \operatorname{ind}_{K}^{G}\overline{\tau}$ (共役表現).
- ii) $\operatorname{ind}_{K}^{G}(\tau_{1} \oplus \tau_{2}) = \operatorname{ind}_{K}^{G}\tau_{1} \oplus \operatorname{ind}_{K}^{G}\tau_{2}$. さらに, 一般に $\tau = \int \tau(s)d\mu(s)$ のとき, $\operatorname{ind}_{K}^{G}\tau = \int \operatorname{ind}_{K}^{G}\tau(s)d\mu(s)$.
- iii) $H \subset K \subset G$ に対して, $\operatorname{ind}_{K}^{G}(\operatorname{ind}_{H}^{K}\tau) = \operatorname{ind}_{H}^{G}\tau$.
- iv) $\operatorname{ind}_{K_1 \otimes K_2}^{G_1 \otimes G_2} \tau_1 \otimes \tau_2 = \operatorname{ind}_{K_1}^{G_1} \tau_1 \otimes \operatorname{ind}_{K_2}^{G_2} \tau_2$

目次へ

【定義 3.55 (imprimitivity)】 $\rho = (\mathcal{H}, U_g) \& G @ \square \square \land g \cup B$ 、 $E \& A \square B$ 、 $E \& B \land B$ 、 $E \& A \square B$. $E \& A \square B$.

$$U_q E(Z) U_q^{-1} = E(Zg^{-1}), \quad \forall g \in G$$

と変換するとき, $E \in X$ を底空間とする ρ の imprimitivity 系という. 一般に, ユニ タリ表現が imprimitivity 系を持つとき, imprimitive という.

局所コンパクト群 *G* とその閉部分群 *K* に対して,その右誘導表現 $\operatorname{ind}_{K^{\tau}}^{G}$ から *X* = *K**G* 上の imprimitivity 系 *E^τ* が

$$(E^{\tau}(Z)u)(g) := \chi_Z([g])u(g)$$

により定義される. これを標準 imprimitivity 系とよぶ. _____

【定義 3.56 (Gøarding domain)】 $U: G \to \mathscr{B}(\mathscr{H})$ を局所コンパクト群のユニタリ表現とするとき,

$$D_G = \operatorname{span}\left\{ u(\phi) = \int_G \phi(g) U_g u \, \middle| \, u \in \mathscr{H}, \phi \in C_0(G) \right\}$$

で定義される \mathcal{H} の線形集合を Gøarding domain という. D_G は \mathcal{H} で密であり、か つ G の作用で不変である.

【定理 3.57 (Imprimitivity 定理)】 Gを局所コンパクト群, Kをその閉部分群, X = K\Gとする. Gのユニタリ表現 $\rho = (\mathcal{H}, U_g)$ と*線形写像 E: $C_0(X) \rightarrow \mathcal{B}(\mathcal{H})$ が存在して, E[$C_0(X)$] \mathcal{H} は \mathcal{H} において密で,かつ次が成り立つとする:

$$U_g E(\phi) U_q^{-1} = E(T_q^R \phi), \quad g \in G, \phi \in C_0(X).$$

このとき, 適当な Kのユニタリ表現 τ が存在して, $(\rho, E) \cong (\operatorname{ind}_{K}^{G}\tau, E^{\tau})$ となる. ここで, E^{τ} は標準 imprimitivity 系である.

また, Kの二つのユニタリ表現 τ, τ' に対して次が成り立つ:

$$\tau \cong \tau' \iff (\operatorname{ind}_K^G \tau, E^{\tau}) \cong (\operatorname{ind}_K^G \tau', E^{\tau'}).$$

目次へ

【定義 3.58 (正則半直積)】 N, Sは局所コンパクト群でNは可換群とする.半直 積 $G = N \rtimes S$ において,Nの指標群 \hat{N} をGの共役変換によりG空間とみなす.こ のとき, \hat{N} のG軌道の合併からなる \hat{N} のBorel 集合の列 Z_1, Z_2, \cdots が存在して,各 G軌道が常にそれらの部分族の共通部分として表されるとき,GはN とSの正則半 直積であるという.

【定理 3.59】 N, Sは可分局所コンパクト群でNは可換群とする. このとき, それらの正則半直積 $G = N \rtimes S$ の任意の既約ユニタリ表現は次のようにして得られる. まず, \hat{N} のG軌道 \hat{O} とその元 χ を一つずつ取る. 次に, Gの共役変換に対する χ での等方群を $N \rtimes S_{\hat{O}}$ として($\hat{O} \approx S/S_{\hat{O}}$), $S_{\hat{O}}$ の既約ユニタリ表現 $\tau = (\mathcal{H}, L_s)$ を一つ取り, それから誘導されるSの $\mathcal{H}^{\chi L} = L^2(\hat{O}, \mu; \mathcal{H})$ 上のユニタリ表現を ind $_{S_{\hat{O}}}^{S} \tau = (\mathcal{H}^{\chi L}, U_s^L)$ とする. このとき,

$$U_{(n,s)}u(\hat{n}) := \langle \hat{n}, n \rangle U_s^L u(\hat{n}), \quad \hat{n} \in \hat{N}$$

とおくことにより, *G*の ℋ^{*xL*}上への既約ユニタリ表現が得られる.ここで,同じ軌 道 Ô 上の異なるベクトル χ から得られる表現は互いにユニタリ同値であるが,異な る軌道に対応する表現は同値でない. _____□

3.9 Poincare 群のユニタリ表現

【定理 3.60】

1) 固有 Poincare 群の普遍被覆群 $G = \mathbb{R}^4 \rtimes SL(2, \mathbb{C})$ は、Gの部分群 \mathbb{R}^4 の既約ユ ニタリ表現の空間 $\hat{\mathbb{R}}^4 \cong \mathbb{R}^4$ に自然に左から作用する:

$$G \ni (a, V) \triangleright \mathbb{R}^4$$
: $(a, V)p = \Lambda(V)p, \quad V\sigma_a V^{\dagger} = \sigma_b \Lambda^b{}_a.$

この作用に関する軌道を \hat{O} , \hat{O} の点 \hat{p}_0 における等方群を $H = \mathbb{R}^4 \ltimes K(K \subset SL(2,\mathbb{C}))$ とする.このとき,Gの既約ユニタリ表現は、軌道 \hat{O} およびKの既約ユニタリ表現の組と一対一に対応する.Kの既約ユニタリを $L: K \triangleright \hat{\mathcal{H}}$, $\hat{\mathcal{H}}$ に値を取り、 $\hat{O} \cong G/K$ の普遍測度 μ に関して2乗可積分可能な関数の集合 を $\mathcal{H} = L_2(\hat{O}, \hat{H}; \mu)$,KのMackey分解を $SL(2, \mathbb{C}) = SK \ni g = s_g k_g$ とする とき、対応するGの既約ユニタリ表現 $U: G \triangleright \mathcal{H}$ の具体的な表式は

$$(U_g v)(p) = e^{ip \cdot a} L_{k_h} L_{k_{g^{-1}h}}^{-1} v(g^{-1}p)$$

で与えられる.ここで、hは $p = \dot{h} \in SL(2, \mathbb{C})/K \cong \hat{O}$ となる $SL(2, \mathbb{C})$ の元である.

2) 具体的な G の既約ユニタリ表現の表現は、軌道 \hat{O} のタイプに応じて次の 7 つ のファミリーに分類される: $(p \in \hat{O})$

1°
$$\hat{O}_m^+$$
: $p^2 = -m^2(m > 0), p^0 > 0$; $K = \operatorname{SU}(2)$.
 $U^{m,+;j} \triangleright \mathbb{C}^{2j} \otimes L_2(\hat{O}_m^+; \mu) \ (m > 0, j = 0, 1/2, 1, \cdots) : V \in \operatorname{SL}(2, \mathbb{C})$ は一意的に

$$V = V_p W; \ W \in \mathrm{SU}(2),$$
$$V_p = \left(\frac{\gamma + 1}{2}\right)^{1/2} \left(1 + \frac{\gamma}{\gamma + 1}\beta^j \sigma_j\right); \ p = (m\gamma, m\gamma\beta)$$

と分解される. SU(2)の既約表現を D^j として,

$$(U_{(a,V)}^{m,+;j}v)(p) = e^{-ip \cdot a} D^{j}(W) v(\Lambda^{-1}(V)p); \ W = V_{p}^{-1} V V_{\Lambda(V)p} \in \mathrm{SU}(2).$$

 $D^{(j,0)}$ を D^{j} に対応するスピノール表現として

$$\psi(p) := D^{(j,0)}(V_p)u(p)$$

とおくと,

$$(U_{(a,V)}^{m,+;j}\psi)(p) = e^{-ip \cdot a} D^{(j,0)}(V)\psi(\Lambda^{-1}(V)p).$$

2°
$$\hat{O}_m^-$$
: $p^2 = -m^2(m > 0), p^0 < 0$; $K = \operatorname{SU}(2)$.
 $U^{m,-;j} \triangleright \mathbb{C}^{2j} \otimes L_2(\hat{O}_m^+;\mu) \quad (m > 0, j = 0, 1/2, 1, \cdots)$: 表現の表式は $U^{m,+;j}$ と同じ.

3° \hat{O}_{im} : $p^2 = m^2(m > 0)$; $K = SL(2, \mathbb{R})$: 表現空間は, $\hat{H} \otimes L_2(\hat{O}_{im}; \mu)$. ここで, \hat{H} は Kの表現空間で, 一般にある空間上の関数空間として表される. $V \in SL(2, \mathbb{C})$ は

$$V = V_p W; \ W \in \mathrm{SL}(2, \mathbb{R}),$$
$$V_p = \left[\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}(\sin\phi\sigma_1 - \cos\phi\sigma_2)\right] \left(\cosh\frac{\psi}{2} + \sinh\frac{\psi}{2}\right);$$
$$p/m = (\sinh\psi, \cosh\psi\sin\theta\cos\phi, \cosh\psi\sin\theta\sin\phi, \cosh\psi\cos\theta)$$

$$V_p \sigma_3 V_p^{\dagger} = (1/m) p^a \sigma_a; p^2 = m^2.$$

この分解を用いて,

$$(U_{(a,V)}v)(p,x) = e^{-ip \cdot a} D(W)v(W * x, \Lambda^{-1}p);$$
$$W = V_p^{-1}VV_{\Lambda(V)p} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathrm{SL}(2,\mathbb{R}),$$
$$W * x = \frac{\alpha x + \gamma}{\beta x + \delta}.$$

 $K = SL(2, \mathbb{R})$ の既約表現に対応して、3種類の既約表現が存在する. i) $U^{im;i\sigma,\epsilon}$ ($m > 0, \sigma \ge 0, \epsilon = 0, 1$): Kの表現空間は

$$\hat{H} = L_2(\mathbb{R}; dx),$$

D(W)は

$$D^{i\sigma,\epsilon}(W) = |\beta x + \delta|^{-i\sigma-1} \left(\frac{\beta x + \delta}{|\beta x + \delta|}\right)^{\epsilon}.$$

ii) $U^{im;n,\pm}(m > 0, n = 0, 1, 2, \cdots)$: Kの表現空間 $\hat{\mathscr{H}}$ は複素上半平面上の複素関数の空間で、内積は

$$(u,v) = \frac{i}{2\pi\Gamma(n)} \int_{\operatorname{Im} z>0} \overline{u(z)} v(z) (\operatorname{Im} z)^{n-1} dz d\bar{z}.$$

D(W)は

$$D^n(W) = (\beta z + \delta)^{-n-1}.$$

iii) U^{im;ρ}(m > 0, −1 < ρ < 1, ρ ≠ 0): K の表現空間 ℋ は ℝ 上の関数の
 空間で,内積は

$$(u,v) = \frac{1}{\Gamma(-\rho)} \int_{\mathbb{R}^2} |x_1 - x_1|^{-1-\rho} \overline{u(x_1)} v(x_2) dx^1 dx^2.$$

D(W)は

$$D^{\rho}(W) = |\beta x + \delta|^{\rho-1}.$$

4° \hat{O}_0^+ : $p^2 = 0, p^0 > 0$. $K = \mathbb{R}^2 \ltimes S^1$ (2次元 Euclide 群の連結成分の2重被覆). このとき, $V \in SL(2, \mathbb{C})$ は次のように分解される:

$$V = V_p W; \ W = \begin{pmatrix} e^{i\theta/2} & e^{-i\theta/2}z \\ 0 & e^{-i\theta/2} \end{pmatrix} \in K, \ (0 \le \theta < 4\pi)$$
$$V_p = \begin{pmatrix} x & 0 \\ w & 1/x \end{pmatrix}; \ p^0 + p^3 = x^2, \ p^0 - p^3 = |w|^2, \ p^1 + ip^2 = x\bar{w},$$
$$V_p (1 + \sigma_3) V_p^{\dagger} = 2p^a \sigma_a.$$

i)
$$U^{0,+;j} \triangleright L_2(\hat{O}_0^+; d\mu) \ (j = 0, 1/2, 1, \cdots):$$

 $(U^{0,+;j}_{(a,V)}u)(p) = e^{-ip \cdot a} e^{ij\theta(W)} u(\Lambda^{-1}p);$
 $W = V_p^{-1} V V_{\Lambda^{-1}p} \in K.$

ii) $U^{0,+;r,\epsilon} \triangleright L_2(S^1; d\phi) \otimes L_2(\hat{O}_0^+; d\mu) \ (r > 0, \epsilon = 0, 1).$

$$\begin{aligned} (U_{(a,V)}^{0,+;r,\epsilon}u)(p,\hat{z}) &= e^{-ip\cdot a}e^{i\hat{z}\cdot z(W)}(-1)^{\epsilon*f(W,\hat{z})}(\Lambda^{-1}p,e^{-i\theta(W)}\hat{z}); \ (|\hat{z}|=r),\\ f(W,\hat{z}) &= 0(0 \le \theta(W) - \arg(\hat{z}) < 2\pi, \ f(W,\hat{z}) = 1(2\pi \le \theta(W) - \arg(\hat{z}) < 4\pi). \end{aligned}$$

- 5° \hat{O}_0^- : $p^2 = 0, p^0 < 0$. $K = \mathbb{R}^2 \ltimes S^1$
- i) $U^{0,-;j} \triangleright L_2(\hat{O}_0^-;d\mu) \ (j=0,1/2,1,\cdots):$
- ii) $U^{0,-;r,\epsilon} \triangleright L_2(S^1; d\phi) \otimes L_2(\hat{O}_0^-; d\mu) \ (r > 0, \epsilon = 0, 1).$
- \hat{O}_0^0 : p = 0. $K = SL(2, \mathbb{C})$. この場合は, $SL(2, \mathbb{C})$ の既約ユニタリ表現に 帰着される:
- i) $U^{0,0;i\rho,j}$ $(m = 0, p^0 = 0, \rho \ge 0, j = 0, 1/2, 1, \cdots).$
- i) $U^{0,0;\rho}$ $(m = 0, p^0 = 0, -1 < \rho < 1, \rho \neq 0).$

3.10 包絡環

3.10.1 定義と基本性質

【定義 3.61 (包絡環)】 体 K 上の Lie 代数 g に対して, g の体 K 上のテンソル代数を T とする. $X \otimes Y - Y \otimes X - [X,Y]$ ($X, Y \in \mathfrak{g}$)の形の元から生成される T の 両側イデアルを J として, $U(\mathfrak{g}) := T/J$ により定義される K 上の代数を g の包絡環 (universal enveloping algebra) という.

【命題 3.62 (包絡環の基本性質)】 体 *K* 上の Lie 代数 g に対して,その包絡環を *U*(g) と表す.

- i) gの部分代数 hの包絡環は、1 と h から生成される U(g) の部分代数に同型である.
- ii) 体 $K \perp o 2$ つの Lie 代数 $\mathfrak{g}_1, \mathfrak{g}_2$ の直和 $\mathfrak{g}_1 + \mathfrak{g}_2$ の包絡環は、テンソル積 $U(\mathfrak{g}_1) \otimes_K U(\mathfrak{g}_2)$ と同型である.

iii) \mathfrak{g} のイデアル \mathfrak{a} に対し、 \mathfrak{a} が生成する $U(\mathfrak{g})$ の両側イデアルを \mathfrak{A} とすると、 $U(\mathfrak{g})/\mathfrak{A} \cong U(\mathfrak{g}/\mathfrak{a})$ が成り立つ.

[From 数学事典]

【定理 3.63 (Poincaré-Birkhoff-Wittの定理)】 Lie 代数 \mathfrak{g} の包絡環を $U(\mathfrak{g})$ とする. \mathfrak{g} の基底 X_1, \dots, X_n に対し,その単項式の全体

$$\left\{X_1^{i_1}\cdots X_n^{i_n} \mid i_1,\cdots,i_n \ge 0\right\}$$

は、U(g)の基底となる.また、その対称化の全体

$$\left\{ e_{\{i_1\cdots i_r\}} := \frac{1}{r!} \sum_{\sigma \in S(r)} X_{i_{\sigma(1)}} \cdots X_{i_{\sigma(r)}} \middle| r = 0, 1, \cdots, 1 \leq i_1, \cdots, i_r \leq n \right\}$$

も基底となる. [From 数学事典, A. Burut and R. Raczka (1986)] _____

【命題 3.64 (Lie 代数の表現と包絡環の表現の対応)】 Lie 代数 \mathfrak{g} の体 $K \pm \mathfrak{o}$ 任 意の表現 (ρ, V) は、その包絡環の表現 $(\tilde{\rho}, V)$ に一意的に拡張され、 ρ が既約(完全可約)であることと $\tilde{\rho}$ が既約(完全可約)であることとは同等である。また、 \mathfrak{g} の 2 つ の表現 ρ_1, ρ_2 が同値であることと $\tilde{\rho}_1$ と $\tilde{\rho}_2$ が同値であることは同等である。[From 数 学事典]

3.10.2 不変作用素

【定義 3.65 (不変作用素)】 Lie 代数 g に対し,その包絡環の中心に属する元を 不変作用素という. _____□

【定義 3.66 (不変テンソル)】 Lie 群 G の有限次元線形表現 (ρ, V) に対して、V の反変テンソル $g^{i_1 \cdots i_r}$ が

$$\rho(h)_{j_1}^{i_1} \cdots \rho(h)_{j_r}^{i_r} g^{j_1 \cdots j_r} = g^{i_1 \cdots i_r}, \quad \forall h \in G$$

を満たすとき、 $g^{i_1\cdots i_r}$ を ρ に対するr 階(反変)不変テンソルという. 同様に、共変 テンソル $g_{i_1\cdots i_r}$ が

$$g_{j_1\cdots j_r}\rho(h)_{i_1}^{j_1}\cdots\rho(h)_{i_r}^{j_r}=g_{i_1\ldots i_r},\quad\forall h\in G$$

を満たすとき、 $g_{i_1\cdots i_r}$ を ρ に対するr 階(共変)不変テンソルという.

【定理 3.67 (不変作用素と不変テンソルの対応 [Gel'fand])】 Lie 代数 g の包絡環 U(g) の要素 P

$$P = cI + \sum_{i} g^{i}X_{i} + \sum_{ij} g^{ij}X_{i}X_{j} + \cdots$$

が $U(\mathfrak{g})$ の中心に属するための十分条件は、 g^i, g^{ij}, \cdots が \mathfrak{g} の随伴群(の随伴表現)に 対する不変テンソルとなることである. さらに、これらの係数テンソルが対称テンソ ルのときには、この条件は必要十分である. [From A. Burut and R. Raczka (1986)]

【定理 3.68 (不変作用素の生成元:半単純 Lie 代数)】 ランクrの半単純 Lie 代数 g に対して, r 個の多項式型不変作用素が存在し, その固有値の組により g のすべ ての有限次元既約表現が完全に分類される. [Ref. Chevalley (1955); From A. Burut and R. Raczka (1986)] _____□

3.10.3 GL(*n*)

【**命題 3.69** (GL(*n*)の不変テンソル)】 GL(*n*, C) およびその任意の実型の随伴表 現に対する不変テンソルは

$$g_{i_1}{}^{j_1}\cdots{}_{i_p}{}^{j_p}=\delta_{i_1}{}^{j_1}\cdots\delta_{i_p}{}^{j_p}$$

に比例する.

【証明あり】

【定理 3.70 (不変テンソルの値)】 最高ウエイト *m* をもつ U(*n*) の既約表現の表 現空間を *H_m* とする.このとき,不変テンソル

$$C_p = E_{i_2 i_1} E_{i_3 i_2} \cdots E_{i_1 i_p} \tag{3.7}$$

の*H_m*上での値は

$$C_p(m_1, \cdots, m_n) = \operatorname{Tr}(a^p E) \tag{3.8}$$

と表される.ここで、 $a = (a_{ij})$ および $E = (E_{ij})$ は次のn次正方行列である:

$$a_{ij} = (m_i + n - i)\delta_{ij} - Q_{ij}, (3.9)$$

$$Q_{ij} = \begin{cases} 1 & \text{for } i < j, \\ 0 & \text{for } i \ge j. \end{cases},$$
(3.10)

$$E_{ij} = 1.$$
 (3.11)

49

目次へ

また, mの関数として, C_1, C_2, \dots, C_n は独立であり, 任意の C_p はこれらの関数に 従属する. [From A. Burut and R. Raczka (1986)]

【定理 3.71 (不変作用素の生成母関数)】 複素関数

$$\Pi(z) := \prod_{i=1}^{n} \left(1 - \frac{z}{1 - \lambda_i z} \right); \quad \lambda_i = m_i + n - i$$
(3.12)

により定義される関数

$$G(z) := z^{-1} \left(1 - \Pi(z) \right) \tag{3.13}$$

は,不変作用素の既約表現上での値に対する生成母関数となる:

$$G(z) = \sum_{p=0}^{\infty} C_p(m_1, \cdots, m_n) z^p.$$
 (3.14)

[From A. Burut and R. Raczka (1986)]

3.10.4 SU(*n*)

【定理 3.72 (SU(*n*)の不変作用素とスペクトル)】 SU(*n*)のLie代数の標準基底 $h_i (i = 1, \dots, n-1), E_a^{\ b} (1 \leq a \neq b \leq n)$ に対して

$$\tilde{E}_{i}^{i} = h_{i} - \frac{1}{n} \sum_{j=1}^{n-1} h_{j}, \quad \tilde{E}_{n}^{n} = -\frac{1}{n} \sum_{j=1}^{n-1} h_{j}, \quad (3.15a)$$

$$\tilde{E}_a^{\ b} = E_a^{\ b} \left(1 \leqslant a \neq b \leqslant n \right) \tag{3.15b}$$

とおくとき, SU(n)の不変作用素は

$$C_p := \tilde{E}_{i_2 i_1} \tilde{E}_{i_3 i_2} \cdots \tilde{E}_{i_1 i_{p-1}}$$

$$(3.16)$$

の線形結合で表される ($C_1 \equiv 0$). さらに,最高ウエイトm ($m_1 \ge m_2 \ge \cdots m_{n-1} \ge 0$)の既約表現に対するその固有値は,GL(n)に対する不変作用素 $C_p^{GL(n)}$ を用いて

$$C_p(m) = C_p^{\mathrm{GL}(n)}(\tilde{m}_1, \cdots, \tilde{m}_n)$$
(3.17)

とあらわされる.ここで,

$$\tilde{m}_i = m_i - \frac{1}{n} \sum_{j=1}^{n-1} m_j, \quad \tilde{m}_n = -\frac{1}{n} \sum_{j=1}^{n-1} m_j.$$
(3.18)

 C_2, \cdots, C_n は互いに独立で、SU(n)の不変作用素を生成する.

3.10.5 SO(*n*)

ここでは、4.7.1 で説明した方法で SO(*n*) を SL(*n*) に埋め込んで考える($\tilde{SO}(n)$ と表す). さらに、添え字を SO(2r + 1) に対して $I = 1, 2, \dots, r, 0, -r, \dots, -2, -1$, SO(2r) に対して $I = 1, 2, \dots, r, -r, \dots, -2, -1$ と取ることにし、この添え字の元で E_{ab} に対応する行列(ないし GL(*n*) の Lie 代数の基底)を \tilde{E}_{IJ} と書くことにすると, SO(*n*) の Lie 代数は

$$X_{JI} = \tilde{E}_{JI} - \tilde{E}_{-I-J} \tag{3.19}$$

により生成される.ただし、X_{JI}は独立でなく関係式

$$X_{JI} = -X_{-I-J} (3.20)$$

を満たす. この記法を用いると, SO(2r) および SO(2r + 1) の Lie 代数の標準基底は 次のように表される:

$$H_{j} = X_{jj}, \qquad (3.21a)$$

$$E_{j+k+} = X_{j}^{-k}, \quad E_{j+k-} = X_{j}^{k}, \quad E_{j-k+} = X_{k}^{j}, \quad E_{j-k-} = X_{-k}^{j}, (3.21b)$$

$$E_{j+} = iX_{j}^{0}, \quad E_{j-} = -iX_{0}^{j}. \qquad (3.21c)$$

また, X_I^J は $\tilde{SO}(n)$ のベクトル表現に対する (1,1) 型のテンソル作用素となる. 交換関係は

$$[X_{I}^{J}, X_{K}^{L}] = \delta_{K}^{J} X_{I}^{L} - \delta_{L}^{i} X_{K}^{J} - \delta_{K}^{-I} X_{-J}^{L} + \delta_{-L}^{J} X_{K}^{-I}.$$
 (3.22)

【定理 3.73 (SO(n)の不変作用素とスペクトル)】 SO(n) に対して,

$$C_p := X_{I_2}^{I_1} X_{I_3}^{I_2} \cdots X_{I_1}^{I_p}$$
(3.23)

は不変作用素となり、その最高ウエイト $m = (m_1, \cdots, m_r)$ の既約表現に対する値は、

$$a_{IJ} = (m_I + r_I + \alpha)\delta_{IJ} + \frac{\beta}{2}(1 + \epsilon_I)\delta_{I,-J} - \theta_{JI}, \qquad (3.24)$$

$$\theta_{JI} = \begin{cases} 1 & \text{for } J < I, \\ 0 & \text{for } J \ge I \end{cases}$$
(3.25)

により定義される行列 $a = (a_{IJ})$ を用いて

$$C_p(m_1, \cdots, m_r) = \operatorname{Tr}(a^p E)$$
(3.26)

と表される. ただし, $\epsilon_{r,r-1,\dots,-r+1,-r} = -1$, α, β, r_I は表1に示された値である. また, $m_{-i} = -m_i (i = 1, \dots, r), \epsilon_I = 0 (I = 0), 1 (I > 0), -1 (I < 0)$ である. SO(2r + 1) に

$$C'_r := \sum \epsilon_{I_1 J_1 \cdots I_r J_r} X^{I_1 J_1} \cdots X^{I_r J_r}$$

$$(3.27)$$

も不変作用素となり、その値は

$$C'_{r}(m_{1},\cdots,m_{r}) = (-1)^{r(r-1)/2} 2^{r} r! (m_{1}+r_{1})\cdots(m_{r}+r_{r}).$$
(3.28)

ここで、
$$X^{IJ} = X_{-I}^{J}$$
. $C_2, \cdots, C_{2r-2}, C'_r$ はSO(2r)の生成元となる.

群	α	β	r_I	Iのレンジ
SU(n)	$\frac{n-1}{2}$	0	$\frac{n+1}{2} - I$	$1, 2, \cdots, n$
$\mathcal{O}(2r+1)$	$n-\frac{1}{2}$	1	$\left(r + \frac{1}{2}\right)\epsilon_I - I$	$1, \cdots, r, 0, -r, \cdots, -1$
$\operatorname{Sp}(2r)$	r	-1	$(r+1)\epsilon_I - 1$	$1, \cdots, r, -r, \cdots, -1$
O(2r)	n-1	1	$r\epsilon_I - I$	$1, \cdots, r, -r, \cdots, -1$

表 1: 不変作用素のスペクトルバラメーター

3.10.6 Casimir 不変量の基底

【定理 3.74 (Casimir 不変量の基底)】 Lie 代数 \mathfrak{g} の基底 X_a に対して, $\operatorname{ad}(X_a)X_b = X_c C^c{}_{ab}$, Killing 計量を K_{ab} , $X^a = \sum_b K^{ab} X_b$ とするとき,

$$C_p \equiv \sum_{a_1,\cdots,a_p} \operatorname{Tr}(\operatorname{ad}(X_{a_1})\cdots\operatorname{ad}(X_{a_p}))X^{a_1}\cdots X^{a_p}$$
$$= \sum_{a_1,\cdots,a_p} \sum_{b_1,\cdots,b_p} \left(C^{b_1}{}_{a_1b_2}C^{b_2}{}_{a_2b_3}\cdots C^{b_p}{}_{a_pb_1}\right)X^{a_1}\cdots X^{a_p}$$

は Casimir 不変量となる.特に,独立な Casimir 不変量は以下で与えられる:

 $SU(l+1) : C_{2}, C_{3}, \cdots, C_{l+1},$ $SO(2l+1) : C_{2}, C_{4}, \cdots, C_{2l},$ $Sp(l) : C_{2}, C_{4}, \cdots, C_{2l},$ $SO(2l) : C_{2}, \cdots, C_{2l-2}, C'_{l},$ $G_{2} : C_{2}, C_{6},$ $F_{4} : C_{2}, C_{6}, C_{8}, C_{12},$ $E_{6} : C_{2}, C_{5}, C_{6}, C_{8}, C_{9}, C_{12},$ $E_{7} : C_{2}, C_{6}, C_{8}, C_{10}, C_{12}, C_{14}, C_{18},$ $E_{8} : C_{2}, C_{8}, C_{12}, C_{14}, C_{18}, C_{20}, C_{24}, C_{30}$

また, 例外 Lie 代数に対しては

$$C_3 \equiv 0, \quad C_4 \equiv 0$$

となる. _____

4 古典群

n次正方行列代数M(n)の基底 $E_a{}^b(a, b = 1, \dots, n)$ を

$$(E_a{}^b)^i{}_j = \delta^i_a \delta^b_j \tag{4.1}$$

により定義する.このとき,

$$E_a^{\ b}E_c^{\ d} = \delta_c^b E_a^{\ d} \tag{4.2}$$

が成り立つ.また、任意の $M = (M^{i}_{j}) \in GL(n)$ に対して,

$$M^{-1}E_a^{\ b}M = (M^{-1})^c{}_aM^b{}_dE_c^{\ d}$$
(4.3)

と変換する。すなわち、 E_a^b はGL(n)の自然な F^n 表現 ($F = \mathbb{R}, \mathbb{C}$)に対して (1,1)型 テンソル作用素となっている.

注: 対応

$$Z = X_0 + iX_1 \in M(n, \mathbb{C}) \mapsto X = \begin{pmatrix} X_0 & -X_1 \\ X_1 & X_0 \end{pmatrix} \in M(2n, \mathbb{R})$$
(4.4)

は ℝ-代数としての同型対応を与える.この対応において,

$$\det X = |\det Z|^2. \tag{4.5}$$

同様に

$$X = Z_0 + jZ_1 \in M(n, \mathbb{H}) \mapsto Z = \begin{pmatrix} Z_0 & -\bar{Z}_1 \\ Z_1 & \bar{Z}_0 \end{pmatrix} \in M(2n, \mathbb{C})$$
(4.6)

は ℝ-代数としての同型対応を与える.この対応の像 Z は、次の条件により特徴づけられる:

$$ZJ = J\bar{Z}; \ Z \in M(2n, \mathbb{C})$$

$$(4.7)$$

ここで,

$$J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \in GL(2n).$$
(4.8)

これより,

$$\det Z \in \mathbb{R}.\tag{4.9}$$

【命題 4.1】
$$Z \in GL(2n, \mathbb{C})$$
 が $JZ = \overline{Z}J$ を満たすなら、 $\det Z \ge 0$ となる。特に、
GL $(n, \mathbb{H}) \cong \mathbb{R}_+ \times SL(n, \mathbb{H})$ (4.10)

が成り立つ. _____

目次へ

4.1 古典群の定義

4.1.1 GL $(n, F) \geq$ SL(n, F)

可換体 F を係数とする n 次正方行列の全体を M(n, F) として, 一般線形群は

$$GL(n, F) = \{X \in M(n, F) \mid \det X \neq 0\}$$
(4.11)

で定義される.この群の中心 Z は

$$Z = \{kI_n \mid k \in F^*\} \cong F^*$$
(4.12)

で、GL(n, F)から $\mathbb{F}P^{n-1}$ に誘導される変換群は

$$GSL(n, F) = GL(n, F)/Z.$$
(4.13)

また,特殊線形群は

$$SL(n, F) = \{X \in GL(n, F) \mid \det X = 1\}$$
 (4.14)

で定義され,その中心 Z₀ は

$$Z_0 = Z \cap SL(n, F) = \{kI_n \mid k^n = 1\}.$$
(4.15)

特に, SL(*n*, ℂ) は単純かつ半単純な複素 Lie 群, SL(*n*, ℝ) はその非コンパクト実型 を与える.

SL(n, F)から $\mathbb{F}P^{n-1}$ に誘導される変換群は

$$PSL(n, F) = SL(n, F)/Z_0.$$
(4.16)

n = 2 で $F = \mathbb{F}_2, \mathbb{F}_3$ の場合,

$$\operatorname{PSL}(2, \mathbb{F}_2) \cong \mathfrak{S}_3, \quad \operatorname{PSL}(2, \mathbb{F}_3) \cong \mathfrak{A}_4$$

$$(4.17)$$

を除くと、 $PSL(n, F)(n \ge 2)$ は非可換な単純群である.また、Fが代数的閉体の時、GSL(n, F) = PSL(n, F)となる.

同様に, $F = \mathbb{H}$ に対して,標準対応 $M(n, \mathbb{H}) \ni X \mapsto Z \in M(2n, \mathbb{C})$ のもとで,

$$\operatorname{GL}(n, \mathbb{H}) = \{ X \in M(n, \mathbb{H}) \mid \det Z > 0 \}$$

$$(4.18)$$

により、Ⅲ係数の一般線形群 GL(n,Ⅲ) が定義される. この群に対して

$$\operatorname{GL}(n,\mathbb{H}) \cong \left\{ Z \in GL(2n,\mathbb{C}) \mid JZ = \overline{Z}J \right\},$$
(4.19)

$$\dim_{\mathbb{R}} \operatorname{GL}(n, \mathbb{H}) = 4n^2, \tag{4.20}$$

が成り立つ.また,特殊線形群 SL(n,Ⅲ) を

$$SL(n, \mathbb{H}) = \{ X \in GL(n, \mathbb{H}) \mid \det Z = 1 \}$$

$$(4.21)$$

により定義する.

4.1.2 $U(n), U(p,q), SU(n), SU(p,q), SU^{*}(2n)$

*I_{p,q}*を対角型行列

$$I_{p,q} = \operatorname{diag}\left[\underbrace{+1, \cdots, +1}_{p}, \underbrace{-1, \cdots, -1}_{q}\right]$$
(4.22)

とする. このとき, 体 F(= C, Ⅲ) に対して, ユニタリ群および特殊ユニタリ群を

$$U(p,q;F) = \{ X \in GL(p+q,F) \mid {}^{T} \bar{X} I_{p,q} X = I_{p,q} \}, \qquad (4.23)$$

$$SU(p,q;F) = U(p,q;F) \cap SL(p+q,F), \qquad (4.24)$$

$$U(n, F) = U(n, 0; F), \quad SU(n, F) = SU(n, 0; F)$$
(4.25)

と定義する. ただし, $x = x_0 + ix_1 + jx_2 + kx_3 \in \mathbb{H}$ に対して, $\bar{x} = x_0 - ix_1 - jx_2 - kx_3$ で,

$$U(p,q;\mathbb{H}) = SU(p,q;\mathbb{H})$$
(4.26)

となる.

特に, $F = \mathbb{C}$ に対しては

$$U(p,q) = U(p,q;\mathbb{C}), \quad SU(p,q) = SU(p,q;\mathbb{C})$$
(4.27)

と表す. SU(p,q) は単純かつ半単純な実 Lie 群で,特に SU(n) はコンパクトかつ単連 結である.また,U(p,q) および SU(p,q) の中心 Z, Z₀ は,n = p + q として

$$Z = \{ zI_n \mid |z| = 1 \} \cong U(1), \tag{4.28a}$$

$$Z_0 = \{ zI_n \mid z^n = 1 \} \cong \mathbb{Z}_n \tag{4.28b}$$

となり, 射影ユニタリ群は

$$PU(n) = U(n)/Z \cong SU(n)/Z_0$$
(4.29)

により定義される.

最後に,

$$J_n = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \tag{4.30}$$

として,実Lie 群 SU*(2n)を

$$SU^*(2n) = \left\{ X \in SL(2n, \mathbb{C}) \mid J\bar{X} = XJ \right\}$$

$$(4.31)$$

56

により定義する. $Z \in SU^*(2n)$ は

$$Z = \begin{pmatrix} A & B \\ -\bar{B} & \bar{A} \end{pmatrix}; \quad \det Z = 1, \ A, B \in M(n, \mathbb{C})$$
(4.32)

と表され,

$$\operatorname{SU}^*(2n) \cong \operatorname{SL}(n, \mathbb{H}),$$
(4.33)

$$\dim_{\mathbb{R}} \mathrm{SU}^*(2n) = 4n^2 - 1. \tag{4.34}$$

 $SU^*(2n)$ は $SL(2n, \mathbb{C})$ の非コンパクト実型の一つを与える.

4.1.3 $O(n, F), SO(n, F), O(p, q; F), SO(p, q; F), SO^{*}(2n)$

 $F = \mathbb{R}, \mathbb{C}, \Pi$ に対して, $I_{p,q} \in (p,q)$ 型の単位対角行列として, (p,q)型直交群を

$$O(p,q;F) = \{ X \in GL(p+q,F) \mid {}^{T}X^*I_{p,q}X = I_{p,q} \}, \qquad (4.35a)$$

$$SO(p,q;F) = O(p,q;F) \cap SL(p+q,F), \qquad (4.35b)$$

$$O(n, F) = O(n, 0; F), \quad SO(n, F) = SO(n, 0; F)$$
 (4.35c)

により定義する.ただし, $x = x_0 + ix_1 + jx_2 + kx_3 \in \mathbb{H}$ に対して, $x^* = x_0 + ix_1 - jx_2 + kx_3$ である.

特に, $F = \mathbb{C}$ に対して,

$$O(p,q;\mathbb{C}) = O(p+q,\mathbb{C}), \quad SO(p,q;\mathbb{C}) = SO(p+q,\mathbb{C})$$
(4.36)

で、SO (n, \mathbb{C}) $(n \ge 3, \ne 4)$ は単純かつ半単純な複素 Lie 群である.また、 $F = \mathbb{H}$ に対しては、

$$O(p,q;\mathbb{H}) = SO(p,q;\mathbb{H}) = SO(p+q,\mathbb{H})$$
(4.37)

となる(SLの定義の特殊性により).

一方, $F = \mathbb{R}$ に対しては,

$$O(p,q;\mathbb{R}) = O(p,q), SO(p,q;\mathbb{R}) = SO(p,q), O(n,\mathbb{R}) = O(n), SO(n,\mathbb{R}) = SO(n)$$

(4.38)
と表記する. $SO(p,q)(p+q>2)$ は半単純な実Lie 群である. また, $SO(n)$ はコンパ
クトとなる.

最後に,

$$SO^*(2n) = \left\{ Z \in SO(2n, \mathbb{C}) \mid Z^{\dagger}JZ = J \right\}$$

$$(4.39)$$

と定義すと,標準対応 SL $(n, \mathbb{H}) \ni X \rightarrow Z \in SL(2n, \mathbb{C})$ は同型対応

$$SO(n, \mathbb{H}) \cong SO^*(2n)$$
 (4.40)

を誘導する. SO*(2n)はSO $(2n, \mathbb{C})$ の非コンパクト実型の一つを与える.

4.1.4 $\operatorname{Sp}(n, F), \operatorname{Sp}(p, q)$ $J_{p,q} \in \operatorname{GL}(2p + 2q, F) を$ $J_{p,q} = \begin{pmatrix} 0 & I_{p,q} \\ -I_{p,q} & 0 \end{pmatrix}$ (4.41) とおく、このとき、 $F = \mathbb{R}, \mathbb{C}, \mathbb{H}$ に対して、

$$\operatorname{Sp}(n, F) = \operatorname{Sp}(n, 0; F) \tag{4.42b}$$

と定義する.

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M(2p + 2q, F)$$
(4.43)

i Sp(p,q;F)に属する条件は、 $A, B, C, D \in M(p+q,F)$ を用いて

$${}^{T}\!CI_{p,q}A = {}^{T}\!AI_{p,q}C, \qquad (4.44a)$$

$${}^{T}\!BI_{p,q}D = {}^{T}\!DI_{p,q}B, \qquad (4.44b)$$

$${}^{T}\!AI_{p,q}D - {}^{T}\!CI_{p,q}B = I_{p,q}$$
(4.44c)

と表される.これより, $F = \mathbb{C}, \mathbb{H}$ に対しては, $\operatorname{Sp}(p,q;F) \cong \operatorname{Sp}(p+q,F)$ となる. $\operatorname{Sp}(n,\mathbb{C})(n \ge 1)$ は単純複素 Lie 群を, $\operatorname{Sp}(n,\mathbb{R})$ はその非コンパクト実型を与える.群の次元は

$$\dim_F \operatorname{Sp}(n, F) = n(2n+1).$$
 (4.45)

また, *I*_{*p*,*q*,*p*,*q*} を対角型行列

$$I_{p,q,p,q} = \operatorname{diag}[I_{p,q}, I_{p,q}] \in \operatorname{GL}(2p + 2q, \mathbb{R})$$
(4.46)

として,実Lie 群Sp(p,q)を

$$\operatorname{Sp}(p,q) = \left\{ X \in \operatorname{Sp}(p,q;\mathbb{C}) \mid X^{\dagger} I_{p,q,p,q} X = I_{p,q,p,q} \right\},$$
(4.47)

$$\operatorname{Sp}(n) = \operatorname{Sp}(n, 0) = \operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{U}(2n)$$
(4.48)

により定義する. これらも $Sp(n, \mathbb{C})$ の実型を与え, Sp(n) はコンパクトで,

$$\dim_{\mathbb{R}} \operatorname{Sp}(n) = n(2n+1). \tag{4.49}$$

【命題 4.2 (Sp(p, q) とU(p, q; \mathbb{H})の同型性)】 $X = X_0 + iX_1 + jX_2 + kX_3 \in U(p, q; \mathbb{H})$ を

$$X = Z_0 + jZ_1; \quad Z_0, Z_1 \in M(p+q, \mathbb{C})$$
(4.50)

と表すとき,

$$X \mapsto Y = \begin{pmatrix} Z_0 & -\bar{Z}_1 \\ Z_1 & \bar{Z}_0 \end{pmatrix} \in M(2p + 2q; \mathbb{C})$$

$$(4.51)$$

により、同型対応 $U(p,q; \mathbb{H}) \cong Sp(p,q)$ が得られる.

4.2 古典群の複素既約表現:誘導表現の方法

4.2.1 古典群の Gauss 分解

【命題 4.3】

 2 を対角成分がすべて1のn次上方三角型行列の全体,Zを対角成分がすべて1のn次下方三角型行列の全体,Dをn次対角型正則行列の全体とすると, *2*DZはGL(n, C)のGauss分解を与える.以下,Dの元を次のように表す.

$$D = \left\{ \left[\delta_1, \cdots, \delta_n \right] \middle| \ \delta_j \in \mathbb{C}^{\times} \right\}.$$

$$(4.52)$$

2. $D_0 = D \cap SL(n, \mathbb{C})$ とすると、 $\mathscr{D}_0 Z$ は $SL(n, \mathbb{C})$ の Gauss 分解を与える. D_0 の元は次のように表される.

$$D_0 = \{ [\delta_1, \cdots, \delta_n] \mid \delta_1 \cdots \delta_n = 1 \}.$$

$$(4.53)$$

3. $J_n \epsilon$

$$J_n = (\delta_{i+j,n+1}) = \begin{pmatrix} & & & & ^{1} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

で定義される n 次正方正則行列とする.このとき,

$$\operatorname{SO}(n,\mathbb{C}) \cong \left\{ g \in \operatorname{GL}(n,\mathbb{C}) \mid J_n^{-1}gJ_n = {}^{T}\!\!\left(g^{-1}\right) \right\}.$$

$$(4.55)$$

この同一視のもとで、GL(n, \mathbb{C})のGauss分解 $\mathscr{D}Z$ のSO(n, \mathbb{C})への制限 $\mathscr{L}_0 D_0 Z_0$ はSO(n, \mathbb{C})のGauss分解を与える. D_0 の元は、 $n = 2\nu$ のとき、.

$$D_0 = \left\{ \left[\delta_1, \cdots, \delta_\nu, \delta_\nu^{-1}, \cdots, \delta_1^{-1} \right] \middle| \ \delta_j \in \mathbb{C}^{\times} \right\},$$
(4.56)

 $n = 2\nu + 1 のとき$

$$D_0 = \left\{ \left[\delta_1, \cdots, \delta_{\nu}, 1, \delta_{\nu}^{-1}, \cdots, \delta_1^{-1} \right] \middle| \delta_j \in \mathbb{C}^{\times} \right\}.$$

$$(4.57)$$

と表される.

4. σを

$$\sigma = \begin{pmatrix} 0 & -J_n \\ J_n & 0 \end{pmatrix} \tag{4.58}$$

で定義される 2n 次正方正則行列とする.このとき,

$$\operatorname{Sp}(n, \mathbb{C}) \cong \left\{ g \in \operatorname{GL}(2n, \mathbb{C}) \mid \sigma^{-1}g\sigma = {}^{T}\!\!(g^{-1}) \right\}.$$
 (4.59)

この同一視のもとで、GL($2n, \mathbb{C}$)のGauss分解 $\mathscr{D}Z$ のSp(n, \mathbb{C})への制限 $\mathscr{L}_0 D_0 Z_0$ はSp(n, \mathbb{C})のGauss分解を与える. D_0 の元は、

$$D_0 = \left\{ \left[\delta_1, \cdots, \delta_n, \delta_n^{-1}, \cdots, \delta_1^{-1} \right] \middle| \ \delta_j \in \mathbb{C}^{\times} \right\}$$
(4.60)

と表される.

4.2.2 有限次元複素解析的既約表現の指標

【定理 4.4】 GL(n, C) の一価複素解析的有限次元既約表現は,指標は

 $\chi = \delta_1^{m_1} \cdots \delta_n^{m_n} : \quad m_1 \ge m_2 \ge \cdots \ge m_n, \ m_j \in \mathbb{Z}$

から誘導される既約表現と一対一に対応する. _____

【定理 4.5】 SL(n, C)の有限次元複素既約表現は,指標は

$$\chi = \delta_1^{m_1} \cdots \delta_{n-1}^{m_{n-1}} : \quad m_1 \ge m_2 \ge \cdots \ge m_{n-1} \ge 0, \ m_j \in \mathbb{Z}$$

から誘導される既約表現と一対一に対応する.

【**定理 4.6**】 Sp(*n*, C) の有限次元複素既約表現は,指標は

$$\chi = \delta_1^{m_1} \cdots \delta_n^{m_n} : \quad m_1 \ge m_2 \ge \cdots \ge m_n \ge 0, \ m_j \in \mathbb{Z}$$

から誘導される既約表現と一対一に対応する. _____

目次へ

【**定理 4.7**】 SO(2*n* + 1, C)の有限次元複素既約表現は,指標は

 $\chi = \delta_1^{m_1} \cdots \delta_n^{m_n} : \quad m_1 \ge m_2 \ge \cdots \ge m_n \ge 0$

から誘導される既約表現と一対一に対応する.ただし, *m_j*はすべて整数であるか, すべて半奇数であるかのいずれかである.

【**定理 4.8**】 SO(2n, C)の有限次元複素既約表現は,指標は

 $\chi = \delta_1^{m_1} \cdots \delta_n^{m_n} : \quad m_1 \ge m_2 \ge \cdots \ge m_{n-1} \ge |m_n|$

から誘導される既約表現と一対一に対応する.ただし,*m_j*はすべて整数であるか, すべて半奇数であるかのいずれかである. _____

4.2.3 基本表現

【定義 4.9】 複素単純 Lie 代数 \mathscr{L} の任意の既約表現の指標 (maximal weight)w が, 既約表現の列 ρ_j に対応する一次独立な指標の系 w_j ($j = 1, \dots, J$) の非負整係数線形 結合として表されるとき, ρ_j を \mathscr{L} の基本表現という. w_j は基本整ウエイトと一致 する.

【定理 4.10】 A_r 型, B_r 型, C_r 型, D_r 型の複素半単純 Lie 代数は r 個の基本表現をもつ.対応する maximal weight は次のようになる.

1) A_r 型 (SL(r+1, C)) および C_r 型 (Sp(r, C)):

$$w_1 = (1, 0, 0, \cdots), w_2 = (1, 1, 0, \cdots), \cdots, w_r = (1, 1, \cdots, 1).$$

2) B_r 型 (SO(2r+1, C)):

$$w_1 = (1, 0, 0, \cdots), w_2 = (1, 1, 0, \cdots), \cdots, w_{r-1} = (1, \cdots, 1, 0),$$

 $w_r = (1/2, \cdots, 1/2).$

3) D_r 型(SO(2r, C)):

$$w_1 = (1, 0, 0, \cdots), w_2 = (1, 1, 0, \cdots), \cdots, w_{r-2} = (1, \cdots, 1, 0, 0),$$

 $w_{r-1} = (1/2, \cdots, 1/2, 1/2), w_r = (1/2, \cdots, 1/2, -1/2).$

目次へ

Algebra	Dynkin designation	Dimensionality
A _n	(100)	n+1
	or (001)*	$\overline{n+1}$
B _n	(100)*	2n + 1
	(00001)	2"
C,	(100)	2 <i>n</i>
D,	(100)*	2 n
	(0001)	2 ⁿ⁻¹
	or (00010)*	2 ⁿ⁻¹
G ₂	(01)	7
F4	(0001)	26
E ₆	(100000)	27
1999- 	or (000010)*	27
E ₇	(0000010)	56
E ₈	(0000010)	248

Simple irreps of simple Lie algebras

* This irrep can be constructed from products of the unstarred irrep.

図 1: 単純 Lie 代数に対する単純既約表現のリスト(Dynkin 基底)

4.3 Dynkin 基底

 \mathfrak{h} を Cartan 部分代数, \mathfrak{h} * をその双対空間, Δ をルート系, $\Pi = \{\alpha_1, \cdots, \alpha_n\}$ をその基本ルート系とする.線形同値写像 $\mathfrak{h}^* \ni \alpha \mapsto H_\alpha \in \mathfrak{h}$ を

$$(H_{\alpha}, X) = \alpha(X) \ \forall X \in \mathfrak{h}$$

$$(4.61)$$

により定義する.このとき,

$$(\alpha,\beta) := (H_{\alpha}, H_{\beta}) \tag{4.62}$$

により、 hの内積より h*の内積が誘導される.このとき、

$$F_j := \frac{2}{(\alpha_j, \alpha_j)} H_{\alpha_j} \ (j = 1, \cdots, n)$$

$$(4.63)$$

は \mathfrak{h} の基底となる. この基底 F_i の双対基底 f_i をルート空間の Dynkin 基底とよぶ:

 $f_j(H_k) = \delta_{jk} \ (j, k = 1, \cdots, n)$ (4.64)

 f_1, \cdots, f_n は基本表現の最高ウェイトと一致する.したがって、任意の表現のウェイト $\Lambda \varepsilon f_i$ で

$$\lambda = \sum_{j} m^{j} f_{j} \tag{4.65}$$

と成分表示すると,

$$m^{j} = \frac{2(\lambda, \alpha_{j})}{(\alpha_{j}, \alpha_{j})} \in \mathbb{Z}$$

$$(4.66)$$

が成り立つ. $[m^1, \dots, m^n]$ は Dynkin ラベルと呼ばれる.

$$C_j^{\ k} := \frac{2(\alpha_j, \alpha_k)}{(\alpha_k, \alpha_k)} \equiv <\alpha_j, \alpha_k >>$$
(4.67)

により Cartan 行列 $C = (C_j^k)$ を定義すると,

$$f_j = \sum_k (C^{-1})_j{}^k \alpha_k$$
 (4.68)

が成り立つ. また,

$$G_{jk} := (C^{-1})_j^k \frac{(\alpha_k, \alpha_k)}{2}$$
(4.69)

とおくと,

$$(f_j, f_k) = G_{jk}.$$
 (4.70)

Level vectors of simple groups. The ordering follows the conventions of table 5

SU _{n+1}	$\bar{R} = [n, 2(n-1), 3(n-2), \dots, (n-1)2, n]$
SU ₅	$\bar{R} = [4, 6, 6, 4]$
SU ₆	$\bar{R} = [5, 8, 9, 8, 5]$
SO _{2n+1}	$\bar{R} = [2n, 2(2n-1), 3(2n-2), 4(2n-3), \dots, (n-1)(n+2), n(n+1)/2]$
SO ₉	$\bar{R} = [8, 14, 18, 10]$
Sp _{2n}	$\overline{R} = [(2n-1), 2(2n-2), 3(2n-3), \dots, (n-1)(n+1), n^2]$
SO _{2n}	$\bar{R} = [(2n-2), 2(2n-3), 3(2n-4), \dots, (n-2)(n+1), n(n-1)/2, n(n-1)/2]$
SO ₈	$\vec{R} = [6, 10, 6, 6]$
SO ₁₀	$\bar{R} = [8, 14, 18, 10, 10]$
G ₂	$\bar{R} = [10, 6]$
F ₄	$\bar{R} = [22, 42, 30, 16]$
E ₆	$\bar{R} = [16, 30, 42, 30, 16, 22]$
E ₇	$\bar{R} = [34, 66, 96, 75, 52, 27, 49]$
E ₈	\bar{R} = [92, 182, 270, 220, 168, 114, 58, 136]

図 2: 単純 Lie 代数に対する Dynkin 基底でのレベルベクトル

4.4 GL(*n*)

4.4.1 GL(*n*, C) の Lie 代数の構造

交換関係 $E_{ab}(a, b = 1, \dots, n)$ が Lie 代数 $\mathfrak{gl}(n, \mathbb{C})$ の基底となり、その交換関係は次 式で与えられる:

$$[E_{ab}, E_{cd}] = \delta_{bc} E_{ad} - \delta_{ad} E_{cb}. \tag{4.71}$$

Cartan 部分代数

$$\mathcal{L}_0 = \langle H_1, \cdots, H_n \rangle; \quad H_a = E_{aa}. \tag{4.72}$$

ルート系 Cartan 部分代数 \mathcal{L}_0 の双対空間 \mathcal{L}_0^* の基底 h_a を H_a の双対基底,

$$h_a(H_b) = \delta_{ab},$$

とする.このとき,

$$[H_a, E_{bc}] = (\delta_{ab} - \delta_{ac})E_{bc}$$
(4.73)

より, ルート系∆は

$$\Delta = \{ h_a - h_b \mid 1 \leqslant a, b \leqslant n \}, \qquad (4.74)$$

$$\alpha = h_a - h_b \mapsto E_\alpha = E_{ab}. \tag{4.75}$$

Cartan matrices of simple Lie algebras

A(A _n) =	$\begin{pmatrix} 2\\ -1\\ 0\\ \\ 0\\ 0 \end{pmatrix}$	$ \begin{array}{r} -1 \\ 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $	0 -1 2 0 0	1	1	• • • •	-1 0	0 0 2 -1	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ . \\ -1 \\ 2 \end{pmatrix}$	A(G; A(F4	2) =) =	(_ (-	2 -1 2 1 0 0	$\begin{pmatrix} -3 \\ 2 \end{pmatrix}$	0 2 2 - 1	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}$			
A(B _n) =	$ \begin{pmatrix} 2 \\ -1 \\ 0 \\ . \\ 0 \\ 0 \end{pmatrix} $	-1 2 -1 , 0 0	0 -1 2 0 0	•••••		• • • • •	0 0 0 2 -1	0 0 0 -2 2).	A(E ₆) =	(2 -1 0 0 0 0	-1 2 -1 0 0	0 -1 2 -1 0 -1	0 0 -1 2 -1 0	0 0 -1 2 0	0 0 -1 0 0 2)	

 $A(C_n)$ is the transpose of $A(B_n)$, since the short and long roots are interchanged.

	12	-1	0			0	0	01		12	-1	0	0	0	0	0
	1-1	2	-1		0. W	0	0	0	2	-1	2	-1	0	0	0	0
	0	-1	2		•	0	0	0	3	0	-1	2	-1	0	0	-1
$(D_n) =$									$A(E_{7}) =$	0	0	-1	2	-1	0	0
	0	0	0			2	-1	-1	2320343	0	0	0	-1	2	-1	0
	10	0	0			-1	2	0		0	0	0	0	-1	2	0
	10	0	0			-1	0	2		10	0	-1	0	0	0	2
	1 -			0	0	~	0									
	\int_{-1}^{2}	-1 2	0 -1	0 0	0 0	0	0 0	°								
	$\begin{pmatrix} 2\\ -1\\ 0 \end{pmatrix}$	-1 2 -1	0 -1 2	0 0 -1	0 0 0	0 0 0	0 0 0	$\begin{pmatrix} 0\\ 0\\ -1 \end{pmatrix}$								
-	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \end{pmatrix}$	-1 2 -1 0	0 -1 2 -1	0 0 -1 2	0 0 0 -1	0 0 0 0	0 0 0 0	$\begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix}$								
4(E ₈) =	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	-1 2 -1 0 0	0 -1 2 -1 0	0 0 -1 2 -1	0 0 -1 2	0 0 0 -1	0 0 0 0	0 0 -1 0 0								
A(E ₈) =	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	-1 2 -1 0 0 0	0 -1 2 -1 0 0	0 0 -1 2 -1 0	0 0 -1 2 -1	0 0 0 -1 2	0 0 0 0 0 -1	0 0 -1 0 0 0								
4(E ₈) =	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{r} -1 \\ 2 \\ -1 \\ 0 \\ $	0 -1 2 -1 0 0 0	0 0 -1 2 -1 0 0	0 0 -1 2 -1 0	0 0 0 -1 2 -1	0 0 0 0 -1 2	$\begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $								

図 3: 単純 Lie 代数の Cartan 行列

Metric tensors G for weight space

Contract Contract Contract Contract Contract			_		and the second se			
	1	1 · n	1	· (n - 1)	$1 \cdot (n-2)$)	1 · 2	1.1
	1	$1 \cdot (n - 1)$	l) 2	(n - 1)	$2 \cdot (n - 2)$)	2.2	2.1
$G(A_n) = -$	1	$1 \cdot (n - 2)$	2) 2	· (n - 2)	$3 \cdot (n - 2)$)	3 · 2	3 · 1
n	11	1.2	2	. 2	3.2		$(n-1) \cdot 2$	$(n-1) \cdot 1$
	1	1 • 1	2	1	3.1		$(n-1) \cdot 1$ $(n-1) \cdot 1$	$\binom{n}{n \cdot 1}$
	-							
	12	22.	2		1			
22		4 4 .	4		$\frac{2}{2}$			
$G(B_{-}) = \frac{1}{-}$	2	40.	0		3			
2								
	12	4 0 .	2	(n-1)	n-1			
	<u>)</u>	23.	·· n	-1	n/2 /			
	/ 1	11.	1	1	1			
	1	22.	. 2	2				
1	1	23.	. 3	3				
$G(\mathbf{C}_n) = \frac{1}{2}$			•••••					
-	1	23.	· · n	-1 n	-1/			
	\1	23.	·· n	-1 n	/			
	12	22.	2	8	1	1	1	
	2	4 4 .	4		2	2	1	
	2	46.	6	G	3	3	1	
$G(\mathbf{D}_n) = \frac{1}{2}$								
2	2	46.	·· 2	(n - 2)	n – 2	n - 2		
	1	23.		n-2	n/2	(n - 2)/	2	
	1	23.	••	n - 2	(n-2)/2	n/2	1	

図 4: 古典 Lie 代数のウエイト空間での Cartan 計量

Gauss 分解 $\mathcal{L} = \mathcal{L}_{-} + \mathcal{L}_{0} + \mathcal{L}_{+}$. 正ルート空間は

$$\Delta^+ = \{h_a - h_b \mid 1 \leqslant a < b \leqslant n\}, \qquad (4.76a)$$

$$\mathscr{L}_{+} = \langle E_{ab}^{+} := E_{ab}; a < b \rangle, \tag{4.76b}$$

負ルート空間は

$$\Delta^{-} = \{ -h_a + h_b \mid 1 \le a < b \le n \}, \qquad (4.77a)$$

$$\mathscr{L}_{-} = \langle E_{ab}^{-} := E_{ba}; a < b \rangle.$$
(4.77b)

Weyl 基底の交換関係は,

$$[E_{ab}^{+}, E_{cd}^{+}] = \delta_{bc} E_{ad}^{+} - \delta_{ad} E_{cb}^{+}, \qquad (4.78a)$$

$$[E_{ab}^{-}, E_{cd}^{-}] = \delta_{ad} E_{cb}^{-} - \delta_{cb} E_{ad}^{-}, \qquad (4.78b)$$

$$[E_{ab}^+, E_{ab}^-] = H_a - H_b.$$
(4.78c)

4.5 A_r 型

4.5.1 SL(*n*, C) の Lie 代数の構造

基底 Lie 代数 $\mathscr{L} = \mathfrak{sl}(n, \mathbb{C})$ の基底は,

$$H_j := E_{jj} - E_{nn} \, (j = 1, \cdots, n-1), \quad E_{ab} \, (1 \le a \ne b \le n). \tag{4.79}$$

Cartan 部分代数

$$\mathscr{L}_0 = \langle H_1, \cdots, H_{n-1} \rangle. \tag{4.80}$$

Cartan 計量 $j, k = 1, \cdots, n-1$ として,

$$[H_j, E_{ab}] = (\delta_{ja} - \delta_{jb} - \delta_{an} + \delta_{bn})E_{ab}$$

より,

$$[H_j, E_{kl}] = (\delta_{jk} - \delta_{jl})E_{kl}, \qquad (4.81a)$$

$$[H_j, E_{kn}] = (\delta_{jk} + 1)E_{kn}, \tag{4.81b}$$

$$[H_j, E_{nk}] = -(\delta_{jk} + 1)E_{nk}.$$
(4.81c)

Root diagrams in the Dynkin basis. "Level of simple roots" is the
number of simple roots that must be subtracted from the highest root
in order to obtain the simple roots; the next level has the n zero roots
corresponding to the Cartan subalgebra

Algebra	Highest root	Level of simple roots	Dimension
A.,	(1 0 0 0 0 1)	n – 1	n(n + 2)
B _n	(0 1 0 0 0 0)	2n - 2	n(2n + 1)
C,	(200000)	2n - 2	n(2n+1)
D,	(0 1 0 0 0 0)	2n - 4	n(2n-1)
G ₂	(1 0)	4	14
F4	$(1 \ 0 \ 0 \ 0)$	10	52
E ₆	(0 0 0 0 0 1)	10	78
E ₇	(1 0 0 0 0 0 0)	16	133
E ₈	(0 0 0 0 0 0 1 0)	28	248

図 5: 単純 Lie 代数の随伴表現の最高 Dynkin ウエイト

よって,

$$\operatorname{Tr}\left(\operatorname{ad}(H_j)\operatorname{ad}(H_k)\right) = 2n(\delta_{jk} + 1).$$
(4.82)

これより, Cartan 計量を

$$\gamma_{jk} = (H_j, H_k) = \delta_{jk} + 1 \tag{4.83}$$

で定義する.このとき、双対空間 \mathcal{L}_0^* に誘導される計量は、 $h_j \in H_j$ の双対基底として

$$(h_j, h_k) = \delta_{jk} - \frac{1}{n}.$$
 (4.84)

ルート系

$$\Delta = \{\lambda_{jk} \mid j, k = 1, \cdots, n\}.$$
(4.85)

ここで,

$$\lambda_{jk} = h_j - h_k, \quad \lambda_{jn} = -\lambda_{nj} = h_j + \sum_{k=1}^{n-1} h_k.$$
 (4.86)

基本ルート系

$$\alpha_1 = \lambda_{12}, \cdots, \alpha_{n-1} = \lambda_{n-1\,n} \tag{4.87}$$

とおくと,

$$\lambda_{jk} = \alpha_j + \alpha_{j+1} + \dots + \alpha_{k-1} (1 \le j < k \le n),$$

$$n (h_1 + h_2 + \dots + h_{n-1}) = \alpha_1 + 2\alpha_2 + \dots + (n-1)\alpha_{n-1},$$

$$h_j = \alpha_{n-1} + \dots + \alpha_j - \frac{1}{n} \{ (n-1)\alpha_{n-1} + \dots + \alpha_1 \}.$$
(4.88)

Cartan 行列 基本ルートの内積は

$$(\alpha_i, \alpha_j) = 2\delta_{ij} - \delta_{i+1j} - \delta_{ij+1}.$$

$$(4.89)$$

Cartan 行列は

$$C_{j}^{\ k} = \frac{2(\alpha_{j}, \alpha_{k})}{(\alpha_{k}, \alpha_{k})} = 2\delta_{jk} - \delta_{j+1k} - \delta_{jk+1}, \qquad (4.90a)$$

$$(C^{-1})_j{}^k = \min(j,k) - \frac{jk}{n}.$$
 (4.90b)

Dynkin 基底は

$$f_j = \frac{n-j}{n} \sum_{k=1}^{j} k\alpha_k + j \sum_{k=j+1}^{n-1} \frac{n-k}{n} \alpha_k = \sum_{k=1}^{j} h_k, \qquad (4.91)$$

$$\alpha_j = \sum_{k=1}^{n-1} C_j^{\ k} f_k = 2f_j - f_{j-1} - f_{j+1}.$$
(4.92)

Gauss 分解と Weyl 基底 $\mathscr{L} = \mathscr{L}_{-} + \mathscr{L}_{0} + \mathscr{L}_{+}.$ 正ルート空間は

$$\Delta^{+} = \{\lambda_{jk} \mid 1 \leq j < k \leq n\},\$$

$$\mathscr{L}^{+}: \quad \alpha = \lambda_{jk} \mapsto E_{\alpha} = E_{jk}^{+} = E_{jk}(j < k).$$
 (4.93)

負ルート空間は

$$\Delta^{-} = \{ -\lambda_{jk} \mid 1 \leq j < k \leq n \},$$

$$\mathscr{L}^{-} : \quad \alpha = -\lambda_{jk} \mapsto E_{\alpha} = E_{kj} = E_{jk}^{-}(j < k).$$
(4.94a)

Weyl 基底の交換関係

$$\begin{split} & [H_j, H_k] = 0, \\ & [X, E_\alpha] = \alpha(X) E_\alpha; \ X \in \mathscr{L}_0, \\ & [E_{jk}^{\pm}, E_{lm}^{\pm}] = \pm (\delta_{kl} E_{jm}^{\pm} - \delta_{jm} E_{lk}^{\pm}), \\ & [E_{jn}^{\pm}, E_{jn}^{-}] = H_j, \quad [E_{jk}^{+}, E_{jk}^{-}] = H_j - H_k \ (j < k), \\ & [E_{jk}^{+}, E_{lm}^{-}] = \delta_{km} E_{jl} - \delta_{jl} E_{mk} \ (j \neq l \text{ or } k \neq m). \end{split}$$

ルート系の \mathbb{E}^n への埋め込み e_1, \cdots, e_n を \mathbb{E}^n の正規直交基底として, Δ を

$$\lambda_{jk} = e_j - e_k \quad (j \neq k) \tag{4.95}$$

と \mathbb{E}^n に埋め込むことができる.

4.5.2 SL(*n*, C) の複素解析的既約表現

【定理 4.11 (分類)】

1. SL(*n*, ℂ) の有限次元複素既約表現は次の条件を満たす最高ウエイトと一対一に 対応する:

$$\lambda = \sum_{j} m^{j} h_{j} : m^{1} \ge m^{2} \ge \dots \ge m^{n-1} \ge 0.$$

2. SL(n, C) の随伴表現の最高ウエイトは

$$\lambda = 2h_1 + h_2 + \dots + h_{n-1} = \alpha_1 + \alpha_2 + \dots + \alpha_{n-1}.$$

3. SL(*n*, ℂ) の基本整ウエイトは

$$f_1 = h_1, f_2 = h_1 + h_2, \cdots, f_{n-1} = h_1 + \cdots + h_{n-1}.$$

各ウエイトの level(λ) (= $\sum_i w^i, \lambda = \sum_i w^i \alpha_i$) は
level(λ_i) = $\frac{1}{2}i(n-i).$

4. \mathbb{C}^n の p 次交代形式の作る線形空間を Λ_p とする. このとき, \mathbb{C}^n への作用から 決まる SL (n,\mathbb{C}) の $\Lambda_p(1 \leq p \leq n-1)$ 上への表現は既約で,基本整ウエイト f_p を最高ウエイトとする基本表現 ρ_p となる. 特に, dim $\rho_p = {}_nC_p$.

【定理 4.12 (実型の複素既約表現)】 $SL(n, \mathbb{C})$ の任意の実型の複素既約表現は $SL(n, \mathbb{C})$ の複素解析的既約表現 (ρ, V) と一対一に対応し, ρ の実型への制限により 得られる.また,これらのすべての既約表現は、ベクトル表現のテンソル積の既約 分解により得られる.

【命題 4.13 ([1]×[1]の既約分解)】 最高ウエイト λ の既約表現を(λ)と表すとき, (λ_1)×(λ_1) = (2 λ_1) + (λ_2). (4.96)

すなわち, n 次対称行列の全体は最高ウエイト $2\lambda_1$ をもつ $SL(n, \mathbb{C})$ の既約表現を与える.

【定義 4.14 (合同類と合同数)】 $\mathfrak{sl}_n(\mathfrak{su}_n)$ の既約表現 $R = [a_1, \dots, a_{n-1}]$ (Dynkin ラベル) に対して, その合同数 (congruence number) を

$$c(R) \equiv \sum_{k=1}^{n-1} ka_k \mod n \tag{4.97}$$

により定義すると、2つの既約表現 R_1 , R_2 が合同となる条件は $c(R_1) = c(R_2)$ で与えられる.

[Lemire F, Patera J.: JMP21, 2026 (1980)]

目次へ

【命題 4.15 (最高ウエイトと最低ウエイト)】 A_r 型 Lie 代数の既約表現 ρ に対して,

1) Weyl 変換

$$w = w_m w_{m-1} \cdots w_0; \quad m = [(r-1)/2], \qquad (4.98)$$

$$w_k = W[\beta_k], \quad \beta_k = (\overbrace{0\cdots0}^{\bullet} 1\cdots 1 \overbrace{0\cdots0}^{\bullet})$$
(4.99)

により、その Dynkin ウエイト系は、

$$[m_1m_2\cdots m_r] \rightarrow [(-m_r)\cdots (-m_2)(-m_1)]$$

と変換する.

- 2) ρ の最高ウエイトのDynkin ラベルを $[a_1 \cdots a_r]$ とすると,最低ウエイトのDynkin ラベルは $[(-a_r) \cdots (-a_2)(-a_1)]$ で与えられる.
- 3) ρ の最高ウエイトの Dynkin ラベルを $[a_1 \cdots a_r]$ とすると、その反傾表現 ρ^* (実型の複素表現としては、複素共役表現)の最高ウエイトは $[a_r \cdots a_1]$ で与えられる。特に、表現が自己共役であるための必要十分条件は、 $a_{r+1-i} = a_i (i = 1, \cdots, [r/2])$ となることである。

【証明あり】

4.6 C_r型

4.6.1 Sp(*n*, C) の Lie 代数の構造

【命題 4.16】 (4.59) により $Sp(n, \mathbb{C})$ を $SL(2n, \mathbb{C})$ の部分群として定義する.この とき, $A, B, C, D \in M(n, \mathbb{C})$ に対して,

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathfrak{sl}(2n, \mathbb{C})$$

が Lie 代数 $\mathfrak{sp}(n, \mathbb{C})$ の属するための必要十分条件は, $J_n \in (4.54)$ で定義される行列 として,

 $J_n A J_n = -{}^T\!D, \ J_n B J_n = {}^T\!B, \ J_n C J_n = {}^T\!C$ (4.100)

と表される.これは、 $B \ge C$ が補対角線 (i + j = n + 1) に関する反転で不変、Dが Aの同じ反転の (-1) 倍であることを意味する.
以下, E_{ab} は $GL(2n, \mathbb{C})$ に対する(a, b)-成分行列とし, a < bのとき, $E_{ab}^+ = E_{ab}$, $E_{ab}^- = E_{ba}$ と表記する.また, j, k, l, mは $1, \dots, n$ の範囲の値を取るものとする.

基底 リー代数 ស𝒫(*n*, ℂ) の基底は

$$H_{j} := E_{jj} - E_{2n+1-j\,2n+1-j} \, (j = 1, \cdots, n),$$

$$\tilde{E}_{jk+}^{\pm} \equiv E_{j\,2n+1-k}^{\pm} + E_{k\,2n+1-j}^{\pm}, \quad \tilde{E}_{jk-}^{\pm} \equiv E_{jk} - E_{2n+1-k\,2n+1-j} \, (1 \le j, k \le 4n)$$

Cartan 部分代数

$$\mathscr{L}_0 = \langle H_1, \cdots, H_n \rangle. \tag{4.102}$$

Cartan 計量

$$[H_j, E_{ab}] = (\delta_{ja} - \delta_{jb} - \delta_{a\,2n+1-j} + \delta_{b\,2n+1-j})E_{ab}$$
(4.103)

より,

$$[H_j, E_{k2n+1-l}^{\pm}] = \pm (\delta_{jk} + \delta_{jl}) E_{k2n+1-l}^{\pm},$$

$$[H_j, E_{kl}] = (\delta_{jk} - \delta_{jl}) E_{kl},$$

$$[H_j, E_{2n+1-k2n+1-l}] = -(\delta_{jk} - \delta_{jl}) E_{2n+1-k2n+1-l}.$$

よって,

$$\operatorname{Tr}\left(\operatorname{ad}(H_j)\operatorname{ad}(H_k)\right) = 4n\delta_{jk}.$$
(4.104)

したがって, Cartan 計量は

$$\gamma_{jk} = (H_j, H_k) = 2\delta_{jk}.$$
 (4.105)

このとき,双対空間 \mathscr{L}_0^* に誘導される計量は, h_j を H_j の双対基底として

$$(h_j, h_k) = \frac{1}{2}\delta_{jk}.$$
 (4.106)

ルート系

$$\Delta = \{ \pm h_j \pm h_k \mid 1 \le j \le k \le n \}$$

$$(4.107)$$

基本ルート系

$$\alpha_1 = h_1 - h_2, \cdots, \alpha_{n-1} = h_{n-1} - h_n, \ \alpha_n = 2h_n.$$
(4.108)

とおくと,

$$h_{j} - h_{k} = \alpha_{j} + \dots + \alpha_{k-1} (1 \leq j < k \leq n),$$

$$h_{j} + h_{k} = \alpha_{j} + \dots + \alpha_{k-1} + 2\alpha_{k} + \dots + 2\alpha_{n-1} + \alpha_{n} (1 \leq j < k \leq n-1),$$

$$2h_{j} = 2\alpha_{j} + \dots + 2\alpha_{n-1} + \alpha_{n} (1 \leq j \leq n-1),$$

$$h_{j} + h_{n} = \alpha_{j} + \dots + \alpha_{n} (1 \leq j \leq n-1),$$

$$2h_{n} = \alpha_{n}.$$
(4.109)

Cartan 行列 基本ルートの内積は

$$K(\alpha_i, \alpha_j) = \begin{cases} \delta_{ij} - 1/2\delta_{i+1j} - 1/2\delta_{ij+1} & :i, j \le n, \\ 2\delta_{ij} - \delta_{i+1j} - \delta_{ij+1} & :i = r \text{ or } j = r. \end{cases}$$
(4.110)

Cartan 行列は

$$C_{i}^{\ j} = \begin{cases} 2\delta_{ij} - \delta_{ij+1} - \delta_{i+1j} & : i = 1, \cdots, n-1 \\ 2\delta_{nj} - 2\delta_{n-1j} & : i = n \end{cases}$$
(4.111)

逆行列は

$$(C^{-1})_i^{\ j} = \begin{cases} j & : j < i, \\ i & : i \le j \le n-1, \\ i/2 & : j = n \end{cases}$$
(4.112)

Gauss 分解と Weyl 基底 $\mathscr{L} = \mathscr{L}_{-} + \mathscr{L}_{0} + \mathscr{L}_{+}.$

$$\Delta^{\pm} = \{ \pm (h_j + h_k), \pm (h_j - h_k) \mid 1 \le j \le k \le n \}.$$
(4.113)

$$\mathscr{L}^{\pm}: \quad \alpha = \pm 2h_j \mapsto \tilde{E}_j^{\pm} := E_{j2n+1-j}^{\pm}, \\ \alpha = \pm (h_j + h_k) \mapsto \tilde{E}_{jk+}^{\pm} := \frac{1}{\sqrt{2}} (E_{j2n+1-k}^{\pm} + E_{k2n+1-j}^{\pm}), \\ \alpha = \pm (h_j - h_k) \mapsto \tilde{E}_{jk-}^{\pm} := \frac{1}{\sqrt{2}} (E_{jk}^{\pm} - E_{2n+1-k2n+1-j}^{\pm}). \quad (4.114)$$

Wyle 基底の交換関係

$$\begin{split} & [H_{j}, H_{k}] = 0, \ [X, E_{\alpha}] = \alpha(X)E_{\alpha}; \ X \in \mathscr{L}_{0}, \\ & [\tilde{E}_{j}^{+}, \tilde{E}_{k}^{-}] = \delta_{jk}H_{j}, \ [\tilde{E}_{jk\pm}^{+}, \tilde{E}_{jk\pm}^{-}] = \frac{1}{2}(H_{j} \pm H_{k}), \\ & [\tilde{E}_{j\pm}^{\pm}, \tilde{E}_{k}^{\pm}] = 0, \ [\tilde{E}_{j}^{\pm}, \tilde{E}_{kl+}^{\pm}] = 0, \ [\tilde{E}_{j}^{\pm}, \tilde{E}_{kl-}^{\pm}] = \mp \delta_{jl}\tilde{E}_{kl+}^{\pm}, \\ & [\tilde{E}_{jk\pm}^{\pm}, \tilde{E}_{lm\pm}^{\pm}] = 0, \\ & [\tilde{E}_{jk\pm}^{\pm}, \tilde{E}_{lm\pm}^{\pm}] = \mp \frac{1}{\sqrt{2}} \left(\delta_{jm}\tilde{E}_{kl\pm}^{\pm} + \delta_{km}\tilde{E}_{jl\pm}^{\pm} \right), \\ & [\tilde{E}_{jk\pm}^{\pm}, \tilde{E}_{lm\pm}^{\pm}] = \pm \frac{1}{\sqrt{2}} \left(\delta_{kl}\tilde{E}_{jm\pm}^{\pm} + \delta_{jm}\tilde{E}_{lk\pm}^{\pm} \right), \\ & [\tilde{E}_{jk\pm}^{\pm}, \tilde{E}_{lm\pm}^{\pm}] = \pm \left(\delta_{jl}\tilde{E}_{kl\pm}^{\pm} + \delta_{jk}\tilde{E}_{kl\pm}^{\pm} \right), \\ & [\tilde{E}_{j}^{\pm}, \tilde{E}_{kl\pm}^{\pm}] = \pm \left(\delta_{jl}\tilde{E}_{kl\pm}^{\pm} + \delta_{jk}\tilde{E}_{kl\pm}^{\pm} \right), \\ & [\tilde{E}_{jk\pm}^{\pm}, \tilde{E}_{lm\pm}^{\pm}] = \pm \left(\delta_{jl}\tilde{E}_{kl\pm}^{\pm} + \delta_{km}E_{jl\pm} + \delta_{jm}E_{kl\pm} + \delta_{kl}E_{jm\pm} \right), \\ & [\tilde{E}_{jk\pm}^{\pm}, \tilde{E}_{lm\pm}^{\pm}] = \pm \left(\delta_{jl}\tilde{E}_{kl\pm}^{\pm} + \delta_{km}E_{jl\pm} + \delta_{jm}E_{kl\pm} + \delta_{kl}E_{jm\pm} \right), \\ & [\tilde{E}_{jk\pm}^{\pm}, \tilde{E}_{lm\pm}^{\pm}] = \mp \frac{1}{\sqrt{2}} \left(\delta_{jl}E_{km\pm} + \delta_{km}E_{jl\pm} + \delta_{jm}E_{kl\pm} + \delta_{kl}E_{jm\pm} \right), \\ & [\tilde{E}_{jk\pm}^{\pm}, \tilde{E}_{lm\pm}^{\pm}] = \mp \frac{1}{\sqrt{2}} \left(\delta_{jl}\tilde{E}_{km\pm}^{\pm} + \delta_{kl}\tilde{E}_{jm\pm}^{\pm} \right), \\ & [\tilde{E}_{+jk\pm}^{\pm}, \tilde{E}_{lm\pm}^{\pm}] = \pm \frac{1}{\sqrt{2}} \left(\delta_{jl}\tilde{E}_{km\pm} + \delta_{kl}\tilde{E}_{jm\pm} \right). \end{split}$$

- 4.6.2 Sp(n, C)の複素解析的既約表現【定理 4.17】
 - 1. Sp(*n*, ℂ) の有限次元複素既約表現は次の条件を満たす最高ウエイトと一対一に 対応する:

$$\lambda = \sum_{j} m_{j} h_{j} : m_{1} \ge m_{2} \ge \dots \ge m_{n} \ge 0.$$

2. Sp(n, C) の随伴表現の最高ウエイトは

$$\lambda = 2h_1 = 2\alpha_1 + \dots + 2\alpha_{n-1} + \alpha_n.$$

3. Sp(*n*, ℂ) の基本整ウエイトは

$$\lambda_1 = h_1, \ \lambda_2 = h_1 + h_2, \cdots, \lambda_n = h_1 + \cdots + h_n.$$

対応する level は

$$\operatorname{level}(\lambda_i) = \frac{1}{2}i(2n-i).$$

4. \mathbb{C}^{2n} の p 次交代形式の作る線形空間を Λ_p とする. このとき, \mathbb{C}^{2n} への作用から 決まる Sp (n, \mathbb{C}) の $\Lambda_p(1 \le p \le 2n - 1)$ 上への表現は既約で, $1 \le p \le n$ のとき 基本整ウエイト f_p を最高ウエイトとする基本表現 ρ_p となる. 特に, dim $\rho_p = 2nC_p(1 \le p \le n)$. また, Λ_p への表現と Λ_{2n-p} への表現は同型となる.

【定理 4.18】 Sp (n, \mathbb{C}) の任意の実型の複素既約表現は Sp (n, \mathbb{C}) の複素解析的既約表現 (ρ, V) と一対一に対応し、 ρ の実型への制限により得られる.

Proof. SL (n, \mathbb{C}) の証明と同じ.

Q.E.D.

 \Box

【定義 4.19 (合同類と合同数)】 \mathfrak{sp}_n の既約表現 $R = [a_1, \dots, a_n]$ (Dynkin ラベル) に対して,その合同数 (congruence number) を

$$c(R) \equiv a_1 + a_3 + \dots \mod 2 \tag{4.115}$$

により定義すると、2つの既約表現 R_1 , R_2 が合同となる条件は $c(R_1) = c(R_2)$ で与えられる. $c(R) \equiv 0$ となる表現は実表現, $c(R) \equiv 1$ となる表現は擬実表現となる. [Lemire F, Patera J.: JMP21, 2026 (1980); Slansky R: PLC79, 1 (1981); Dynkin EB: Amer. Math. Soc. Trans. Ser. 2, 6, 111 & 245 (1975)]

【命題 4.20 (最高ウエイトと最低ウエイト)】 C_r 型 Lie 代数の既約表現 ρ に対して,

1) Weyl 変換

$$w = w_{r-1} \cdots w_1 w_0;$$
 (4.116)

$$w_k = W[\beta_k], \quad \beta_k = (\overbrace{0 \cdots 0}^k \overbrace{2 \cdots 2}^{r-k-1} 1)$$
 (4.117)

により、その Dynkin ウエイト系は、

$$[m_1m_2\cdots m_r] \rightarrow [(-m_1)(-m_2)\cdots (-m_r)]$$

と変換する.

目次へ

 \Box

- 2) ρ の最高ウエイトのDynkin ラベルを $[a_1 \cdots a_r]$ とすると,最低ウエイトのDynkin ラベルは $[(-a_1)(-a_2)\cdots(-a_r)]$ で与えられる.
- 3) *ρ*は常に自己共役である.

Proof.

1) β_0 は随伴表現に対する最高ウエイトで, $(\beta_0, \beta_0) = 2 \ \sigma \ \beta_0 = 2f_1 \ L b$,

$$w_0 f_i = \begin{cases} -f_1, & i = 1\\ f_i - 2f_1, & i = 2, \cdots, r \end{cases}$$

つぎに, ある *k* < *r*-1 に対して

(#)
$$w_k \cdots w_0 f_i = \begin{cases} -f_i & i = 1, \cdots, k+1, \\ f_i - 2f_{k+1}, & i = k+2, \cdots, r \end{cases}$$

が成り立つとすると、 $(\beta_{k+1}, \beta_{k+1}) = 2, \beta_{k+1} = -2f_{k+1} + 2f_{k+2}$ より、(#) において $k \to k+1$ とおいた式が成り立つ.

よって,数学的帰納法により,(\sharp) は $k \leq r-1$ を満たす任意のkについて成立. 特に,k = r-1とおくと題意の変換則が得られる.

- 2) 1)の変換則より,同じ変換則で最高ウエイトと最低ウエイトが対応することが 要求される.
- 3) 共役変換によりウエイトは $[m_1m_2\cdots m_r] \rightarrow [(-m_1)(-m_2)\cdots (-m_r)]$ と変換 するので、2)より、 ρ^* の最高ウエイトは、 $[a_1a_2\cdots a_r]$ となり、 ρ と一致する. Q.E.D.

4.7 \mathbf{B}_r 型および \mathbf{D}_r 型

4.7.1 SO(*n*, C) の Lie 代数の構造

SO(2r, C) は次の対応により SO(2r + 1, C) の部分群と見なす:

$$\operatorname{SO}(2r, \mathbb{C}) \ni A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \in \operatorname{SO}(2r+1, \mathbb{C})$$

この対応は、自然な Gauss 分解 $\mathscr{L} = \mathscr{L}_{-} + \mathscr{L}_{0} + \mathscr{L}_{+}$ の対応を与える.

基底と交換関係 Lie 代数 so(n, ℂ) の基底は

$$A_{ab} = E_{ab} - E_{ba} \tag{4.118}$$

で与えられ、その交換関係は

$$[A_{ab}, A_{cd}] = -\delta_{ac}A_{bd} - \delta_{bd}A_{ac} + \delta_{ad}A_{bc} + \delta_{bc}A_{ad} \quad (a, b, c, d = 1, \cdots, n).$$
(4.119)

Cartan 部分代数 rank=r (n = 2r or n = 2r + 1)

$$\mathscr{L}_0 = \langle H_1, \cdots, H_r \rangle$$
: $H_j = -iA_{2j-1\,2j} \ (j = 1, \cdots, r).$ (4.120)

Cartan 計量

$$\operatorname{Tr}\left(\operatorname{ad}(H_j)\operatorname{ad}(H_k)\right) = 2(n-2)\delta_{jk}.$$
(4.121)

以下, \mathscr{L}_0 および \mathscr{L}_0^* の元は基底 H_j およびその双対基底 h_j に関する成分表示で表し, Cartan 計量を

$$(H_i, H_j) = \delta_{ij}, \quad (h_i, h_j) = \delta^{ij} \tag{4.122}$$

と規格化する.この規格化では

$$\alpha = \sum_{j} x_j h_j \quad \mapsto H_\alpha = \sum_{j} x^j H_j; \quad x^j = \sum_{k} (\gamma^{-1})^{jk} x_k. \tag{4.123}$$

ルート系 B_r 型:n = 2r + 1のとき,

$$\Delta = \{ \pm h_j \, (1 \le j \le r), \ \pm h_j \pm h_k \, (1 \le j < k \le r) \} \,. \tag{4.124}$$

 D_r 型:n = 2rのとき,

$$\Delta = \left\{ \pm h_j \pm h_k \left(1 \le j < k \le r \right) \right\}.$$
(4.125)

基本ルート系 B_r 型:n = 2r + 1のとき,

$$\Pi: \ \alpha_1 = h_1 - h_2, \cdots, \alpha_{r-1} = h_{r-1} - h_r, \ \alpha_r = h_r \tag{4.126}$$

とおくと,

$$h_{j} = \alpha_{j} + \dots + \alpha_{r} (1 \leq j \leq r),$$

$$h_{j} - h_{k} = \alpha_{j} + \dots + \alpha_{k-1} (1 \leq j < k \leq r),$$

$$h_{j} + h_{k} = \alpha_{j} + \dots + \alpha_{k-1} + 2\alpha_{k} + \dots + 2\alpha_{r} (1 \leq j < k \leq r). \quad (4.127)$$

 D_r 型:n = 2rのとき,

$$\Pi: \ \alpha_1 = h_1 - h_2, \cdots, \alpha_{r-1} = h_{r-1} - h_r, \ \alpha_r = h_{r-1} + h_r$$
(4.128)

とおくと,

$$h_j = \alpha_j + \dots + \alpha_{r-2} + \frac{1}{2}(\alpha_{r-1} + \alpha_r), \ (j \le r-2),$$
(4.129)

$$h_{r-1} = \frac{1}{2}(\alpha_{r-1} + \alpha_r), \quad h_r = \frac{1}{2}(\alpha_r - \alpha_{r-1}), \tag{4.130}$$

$$h_{j} - h_{k} = \alpha_{j} + \dots + \alpha_{k-1} (1 \leq j < k - 1 < r),$$

$$h_{j} + h_{k} = \alpha_{j} + \dots + \alpha_{k-1} + 2\alpha_{k} + \dots + 2\alpha_{r-2} + \alpha_{r-1} + \alpha_{r} (1 \leq j < k \leq r-2),$$

$$h_{j} + h_{r-1} = \alpha_{j} + \dots + \alpha_{r} (1 \leq j \leq r-2),$$

$$h_{j} + h_{r} = \alpha_{j} + \dots + \alpha_{r-2} + \alpha_{r} (1 \leq j \leq r-2),$$

$$h_{r-1} + h_{r} = \alpha_{r}.$$
(4.131)

Cartan 行列 B_r 型に対して,基本ルートの内積は,

$$(\alpha_i, \alpha_j) = \begin{cases} 2\delta_{ij} - \delta_{ij+1} - \delta_{i+1j} & : i = 1, \cdots, r - 1, \\ \delta_{rj} - \delta_{r-1j} & : i = r \end{cases}$$
(4.132)

これより、Cartan 行列は

$$C_{i}^{\ j} = \begin{cases} 2\delta_{ij} - \delta_{ij+1} - \delta_{i+1j} & : j = 1, \cdots, r - 1, \\ 2\delta_{ir} - 2\delta_{ir-1} & : j = r \end{cases}$$
(4.133)

逆行列は

$$(C^{-1})_{i}^{j} = \begin{cases} j & : j \leq i \leq r-1, \\ i & : j > i, \\ j/2 & : i = r \end{cases}$$
(4.134)

D_r型に対して,基本ルートの内積は

$$(\alpha_i, \alpha_j) = \begin{cases} 2\delta_{ij} - \delta_{i+1j} - \delta_{ij+1} & :i, j \leq r - 1, \\ -\delta_{ir-2} & :j = r, i \leq r - 1, \\ -\delta_{jr-2} + 2\delta_{jr} & :i = r \end{cases}$$
(4.135)

これより、Cartan 行列は

$$C_i^{\ j} = (\alpha_i, \alpha_j), \tag{4.136}$$

逆行列は

$$(C^{-1})_{i}^{j} = \begin{cases} \min(i,j) & :i,j \leq r-2, \\ i/2 & :i \leq r-2, j = r-1, r, \\ j/2 & :j \leq r-2, i = r-1, r, \\ r/4 & :i = j = r-1, r, \\ (r-2)/4 & :(i,j) = (r,r-1), (r-1,r) \end{cases}$$
(4.137)

Gauss 分解と Weyl 基底 $\mathscr{L} = \mathscr{L}_{-} + \mathscr{L}_{0} + \mathscr{L}_{+}$

 B_r 型: $n = 2r + 1 \mathcal{O}$ とき,

 $\Delta^{\pm} = \{ \pm h_j \mid 1 \leq j \leq r \} \cup \{ \pm (h_j + \eta h_k) \mid 1 \leq j < k \leq r, \eta = \pm 1 \}.$ (4.138) に対して、

$$\mathscr{L}_{\pm}: \quad \alpha = \pm h_{j} \quad \mapsto E_{\alpha} = E_{j}^{\pm} := \frac{i}{\sqrt{2}} (A_{2r+1\,2j-1} \pm iA_{2r+1\,2j}),$$

$$\alpha = \pm (h_{j} + \eta h_{k})$$

$$\mapsto E_{\alpha} = E_{j\,k\,\eta}^{\pm} := \frac{1}{2} \{ \pm (-\eta A_{2j-1\,2k-1} + A_{2j\,2k}) - i(\eta A_{2j\,2k-1} + A_{2j-1\,2k}) \}$$

$$(4.139)$$

$$D_r$$
型: $n = 2r$ のとき,
 $\Delta^{\pm} = \{ \pm (h_j + \eta h_k)) \mid 1 \le j < k \le r, \eta = \pm 1 \}.$ (4.140)

に対して,

$$\mathscr{L}_{\pm}: \quad \alpha = \pm (h_j + \eta h_k)$$

$$\mapsto E_{\alpha} = E_{jk\eta}^{\pm} := \frac{1}{2} \left\{ \pm (-\eta A_{2j-12k-1} + A_{2j2k}) - i(\eta A_{2j2k-1} + A_{2j-12k}) \right\}$$
(4.141)

Weyl 基底の交換関係 (要チェック: 2020/8/21)

$$\begin{split} & [H_i, H_j] = 0, \\ & [X, E_\alpha] = \alpha(X) E_\alpha; \ X \in \mathscr{L}_0, \\ & [E_j^+, E_j^-] = H_j, \\ & [E_j^\pm, E_k^\epsilon] = \pm E_{jk(\pm\epsilon)}^\pm \quad (j < k), \\ & [E_j^\pm, E_{kl\eta}^\epsilon] = \epsilon \left(\delta_{jk} \delta_{\epsilon, \mp 1} E_l^{\epsilon\eta} - \delta_{jl} \delta_{\epsilon\eta, \mp 1} E_k^\epsilon\right), \\ & [E_{jk\eta}^\pm, E_{jk\eta}^\mp] = \pm (H_j + \eta H_k), \\ & [E_{jk\eta}^\epsilon, E_{j'k', \eta'}^\epsilon] = \delta_{jj'} \delta_{\epsilon', -\epsilon} \epsilon \eta E_{kk'(\epsilon'\eta')}^{\epsilon\eta} - \delta_{kk'} \delta_{\epsilon'\eta', -\epsilon\eta} \epsilon' E_{jj'\epsilon'}^\epsilon \\ & + \delta_{jk'} \delta_{\epsilon'\eta', -\epsilon} \epsilon' \eta E_{kj\epsilon'}^{\epsilon\eta} + \delta_{kj'} \delta_{\epsilon', -\epsilon\eta} \epsilon' E_{jk'\epsilon'\eta'}^\epsilon. \end{split}$$

【注 4.21】 上記の Gauss 分解は, $GL(n, \mathbb{C})$ ないし $SL(n, \mathbb{C})$ の Gauss 分解の $SO(n, \mathbb{C})$ への制限とはなっていない. これら 2 つの Gauss 分解は次のように対応 する.

$$SO(n, \mathbb{C}) \ni A \mapsto TAT^{-1} \in SL(n, \mathbb{C}).$$

ここでTは次の2つの行列の結合である: $T = T_2T_1$

$$T_1: \begin{array}{ll} (T_1)_{oo} = 1/\sqrt{2} & (T_1)_{oe} = -i/\sqrt{2} \\ (T_1)_{eo} = 1/\sqrt{2} & (T_1)_{ee} = i/\sqrt{2} \end{array}.$$

ここで, o,eはそれぞれ奇数および偶数の添え字.

$$(T_2)_{j\,2j-1} = 1; \qquad 1 \le j \le (n+1)/2,$$

 $T_2: \quad (T_2)_{n+1-j\,2j} = 1; \quad 1 \le j \le n/2,$
他の成分 = 0.

*T*₁ は座標変換

$$x'_{2j-1} = \frac{1}{\sqrt{2}}(x_{2j-1} + ix_{2j}) = z_j,$$

$$x'_{2j} = \frac{1}{\sqrt{2}}(x_{2j-1} - ix_{2j}) = \tilde{z}_j$$

と, また, T₂ は座標の並べ替え

$$(1, 2, \cdots, n-1, n) \mapsto (1, 3, \cdots, 4, 2)$$

と対応する.具体的に成分で表すと、任意の反対称行列 $A \in \mathfrak{so}_n$ に対し、

$$(TAT^{-1})_{jk} = \frac{1}{2} \{A_{2j-1\,2k-1} + A_{2j\,2k} + i(A_{2j-1\,2k} + A_{2k-1\,2j})\}(4.142a)$$

$$(TAT^{-1})_{n+1-j\,n+1-k} = -(TAT^{-1})_{kj}, \qquad (4.142b)$$

$$(TAT^{-1})_{j\,n+1-k} = \frac{1}{2} \{A_{2j-1\,2k-1} - A_{2j\,2k} - i(A_{2j-1\,2k} - A_{2k-1\,2j})\}(4.142c)$$

$$(TAT^{-1})_{n+1-j\,k} = \frac{1}{2} \{A_{2j-1\,2k-1} - A_{2j\,2k} + i(A_{2j-1\,2k} - A_{2k-1\,2j})\}(4.142c)$$

この写像により, SO(n, \mathbb{C}) の Weyl 基底は次のような SL(n, \mathbb{C}) の Weyl 基底と対応 する.

$$\begin{array}{rcl} H_{j} & \mapsto & H_{j} - H_{n+1-j}, & (H_{5} = 0), \\ E_{j}^{\pm} & \mapsto & \pm i (E_{jr+1}^{\pm} - E_{r+1\,n+1-j}^{\pm}) & (n : \text{odd}), \\ E_{jk\eta}^{\pm} & \mapsto & P_{\eta} (E_{jn+1-k}^{\pm} - E_{kn+1-j}^{\pm}) + P_{-\eta} (E_{jk}^{\pm} - E_{n+1-k\,n+1-j}^{\pm}) & (j < k). \end{array}$$

ただし, $P_{\eta} = (1 + \eta)/2.$

この対応を 50 の実基底を用いて表すと

$$\begin{array}{rcl} A_{2j-1\,2j} & \mapsto & i(E_{jj}-E_{n+1-j\,n+1-j}), \\ A_{2j-1\,2k-1} & \mapsto & \frac{1}{2}\left(-A_{jk}+A_{n+1-k\,n+1-j}+A_{j\,n+1-k}-A_{k\,n+1-j}\right), \\ & A_{2j\,2k} & \mapsto & \frac{1}{2}\left(-A_{jk}+A_{n+1-k\,n+1-j}-A_{j\,n+1-k}+A_{k\,n+1-j}\right), \\ & A_{2j-1\,2k} & \mapsto & \frac{i}{2}\left(-S_{jk}+S_{n+1-k\,n+1-j}-S_{j\,n+1-k}+S_{k\,n+1-j}\right), \\ & A_{2j\,2k-1} & \mapsto & \frac{i}{2}\left(S_{jk}-S_{n+1-k\,n+1-j}-S_{j\,n+1-k}+S_{k\,n+1-j}\right), \\ & A_{2r+1\,2j-1} & \mapsto & \frac{1}{\sqrt{2}}\left(A_{r+1\,n+1-j}-A_{j\,r+1}\right), \\ & A_{2r+1\,2j} & \mapsto & \frac{i}{\sqrt{2}}\left(S_{j\,r+1}-S_{r+1\,n+1-j}\right). \end{array}$$

となる. すなわち, $\mathfrak{so}_n(\mathbb{R})$ の基底に対応する元は \mathfrak{su}_n に含まれるので, この対応 jにより, SO(n)はSU(n)の部分群に写される. また, n = 2rのとき,

$$U = V \oplus J_r {}^{T}V^{-1}J_r^{-1} = V \oplus J_r V^* J_r^{-1}; \quad V \in SU(r),$$
(4.143)

$$J_r = (\delta_{i+j,r+1}) \tag{4.144}$$

は、jの像に含まれ、自然な埋込 SU $_r \subset$ SO(2r)を与える.

- **4.7.2** SO(*n*, ℂ) の複素解析的既約表現
- B_r型Lie代数の複素表現 【定理 4.22 (B_r型)】
 - 1. SO(2r + 1, C)の有限次元複素既約表現は次の条件を満たす最高ウエイトと一 対一に対応する:

$$\lambda = \sum_{j} m_{j} h_{j} : m_{1} \ge m_{2} \ge \dots \ge m_{r} \ge 0.$$

ただし, m_iはすべてが整数かすべてが半奇数.

SO(2r + 1, C)の随伴表現の最高ウエイトは

$$\lambda = h_1 + h_2 = \alpha_1 + 2\alpha_2 + \dots + 2\alpha_r.$$

3. SO(2r+1, ℂ) の基本整ウエイトは

$$f_1 = h_1, \dots, f_{r-1} = h_1 + \dots + h_{r-1},$$

 $f_r = \frac{1}{2}(h_1 + h_2 + \dots + h_r).$

対応する level は

$$\operatorname{level}(f_i) = \frac{1}{2}i(2r+1-i) \ (i=1,\cdots,r-1), \quad \operatorname{level}(f_r) = \frac{1}{4}r(r+1).$$

4. \mathbb{C}^{2r+1} の p次交代形式の作る線形空間を Λ_p とする. このとき, \mathbb{C}^{2r+1} への作用 から決まる SO($2r + 1, \mathbb{C}$)の Λ_p ($1 \le p \le 2r$)上への表現は既約で, Λ_p への表現 と Λ_{2r+1-p} への表現は同型となる. Λ_p への表現は, $1 \le p \le r - 1$ のとき基本 整ウエイト f_p を最高ウエイトとする基本表現 ρ_p , p = rのとき $2f_r$ を最高ウエ イトとする既約表現となる. 特に, dim $\rho_p = {}_nC_p$.

【証明あり】

【定義 4.23 (合同類と合同数)】 $\mathfrak{so}(2r+1)$ の既約表現の合同類は2つで、既約表現 $R = [a_1, \dots, a_r]$ (Dynkin ラベル)に対して、合同類はは次式で定義される合同数 (congruence number)により分類される:

$$c(R) \equiv a_r \mod 2 \tag{4.145}$$

 $c(R) \equiv 0$ となる表現はベクトル型表現, $c(R) \equiv 1$ となる表現はスピノール型表現 となる. [Lemire F, Patera J.: JMP21, 2026 (1980); Slansky R: PLC79, 1 (1981); Dynkin EB: Amer. Math. Soc. Trans. Ser. 2, 6, 111 & 245 (1975)] _____

【命題 **4.24** (最高ウエイトと最低ウエイト)】 B_r 型 Lie 代数の既約表現 ρ に対 して,

1) Weyl 変換

$$w = w_{r-1} \cdots w_1 w_0;$$
 (4.146)

$$w_k = W[\beta_k], \quad \beta_k = (\overbrace{0\cdots0}^k \overbrace{2\cdots2}^{r-k})$$
(4.147)

により、その Dynkin ウエイト系は、

$$[m_1m_2\cdots m_r] \rightarrow [(-m_1)(-m_2)\cdots (-m_r)]$$

と変換する.

- 2) ρ の最高ウエイトのDynkin ラベルを $[a_1 \cdots a_r]$ とすると,最低ウエイトのDynkin ラベルは $[(-a_1)(-a_2) \cdots (-a_r)]$ で与えられる.
- 3) *ρ*は常に自己共役である.

【証明あり】

• D_r型Lie代数の複素表現 【定理 4.25 (D_r型)】

1. SO(2*r*, ℂ) の有限次元複素既約表現は次の条件を満たす最高ウエイトと一対一 に対応する:

$$\lambda = \sum_{j} m_{j} h_{j} : m_{1} \ge m_{2} \ge \cdots \ge |m_{r}|.$$

ただし、m_iはすべてが整数かすべてが半奇数.

2. SO(2r, C) の随伴表現の最高ウエイトは

$$\lambda = h_1 + h_2 = \alpha_1 + 2\alpha_2 + \dots + 2\alpha_{r-2} + \alpha_{r-1} + \alpha_r.$$

3. SO(2*r*, ℂ) の基本整ウエイトは

$$f_{1} = h_{1}, \dots, f_{r-2} = h_{1} + \dots + h_{r-2},$$

$$f_{r-1} = \frac{1}{2}(h_{1} + \dots + h_{r-1} - h_{r}),$$

$$f_{r} = \frac{1}{2}(h_{1} + \dots + h_{r-1} + h_{r}).$$

対応する level は

$$\operatorname{level}(f_i) = \frac{i}{2}(2r - 1 - i) \ (i = 1, \cdots, r - 2), \quad \frac{1}{4}r(r - 1) \ (i = r - 1, r). \ (4.148)$$

4. \mathbb{C}^{2r} の p 次交代形式の作る線形空間を Λ_p とする. このとき、 \mathbb{C}^{2r} への作用から 決まる SO(2r, \mathbb{C}) の $\Lambda_p(1 \le p \le 2r-1)$ 上への表現は $p \ne r$ のとき既約で、 Λ_p へ の表現と Λ_{2r-p} への表現は同型となる. Λ_p への表現は、 $1 \le p \le r-2$ のとき基 本整ウエイト f_p を最高ウエイトとする基本表現 ρ_p 、p = r-1のとき $f_{r-1} + f_r$ を最高ウエイトとする既約表現となる. 特に、 $\dim \rho_p = {}_nC_p$. また、 Λ_r への表 現は可約で、 Λ_r の Hodge 双対に関する固有空間への分解 $\Lambda_r = \Lambda_r^+ + \Lambda_r^-$ が既 約分解を与える. Λ_r^+ および Λ_r^- への表現は、それぞれ最高ウエイト $2f_r$ および $2f_{r-1}$ の既約表現となる. 2つの表現は同じ次元、 ${}_{2r}C_r/2$ をもつ.

【証明あり】

【定義 4.26 (合同類と合同数)】 $\mathfrak{so}(2r)$ の既約表現に対する合同類は4 個で, $R = [a_1, \dots, a_r]$ に対する合同数は次式で定義される2つの数の組で分類される:

r odd : $[a_{r-1} + a_r \pmod{2}, 2a_1 + 2a_3 + \dots + 2a_{r-2} + (r-2)a_{r-1} + ra_r \pmod{4}]$ $\equiv [0, 0], [0, 2], [1, 1], [1, 3],$ (4.149a)

 $r \text{ even } : [a_{r-1} + a_r \pmod{2}, 2a_1 + 2a_3 + \dots + 2a_{r-3} + (r-2)a_{r-1} + ra_r \pmod{4}] \\ \equiv [0,0], [0,2], [1,0], [1,2].$ (4.149b)

目次へ

[Lemire F, Patera J.: JMP21, 2026 (1980); Slansky R: PLC79, 1 (1981); Dynkin EB: Amer. Math. Soc. Trans. Ser. 2, 6, 111 & 245 (1975)]

【命題 4.27 (\mathbf{D}_{2m} 型 Lie 代数の既約表現の最高ウエイトと最低ウエイト)】 D_r 型 Lie 代数 (r = 2m)の既約表現 ρ に対して,

1) Weyl 変換

$$w = w_3 w_5 \cdots w_{r-3} w'_{r-4} w'_{r-6} \cdots w'_0 w_1 w_{r-1} w_r; \qquad (4.150)$$

$$w_i = W[\alpha_i]: \tag{4.151}$$

r-k-3

$$w'_k = W[\beta_k]; \quad \beta_k = (\overbrace{0 \cdots 0}^{\sim} 1 \, \overbrace{2 \cdots 2}^{\sim} 11)$$
 (4.152)

k

により、その Dynkin ウエイト系は、

$$[m_1m_2\cdots m_r] \rightarrow [(-m_1)(-m_2)\cdots (-m_r)]$$

と変換する.

- 2) ρ の最高ウエイトのDynkin ラベルを $[a_1 \cdots a_r]$ とすると,最低ウエイトのDynkin ラベルは $[(-a_1)(-a_2) \cdots (-a_r)]$ で与えられる.
- 3) *ρ*は常に自己共役である.

【証明あり】

【命題 4.28 (\mathbf{D}_{2m+1} 型 Lie 代数の既約表現の最高ウエイトと最低ウエイト)】 D_r 型 Lie 代数 (r = 2m + 1)の既約表現 ρ に対して,

1) Weyl 変換

$$w = w_3 w_5 \cdots w_{r-3} w'_{r-4} w'_{r-6} \cdots w'_0 w''_r w''_{r-1} w_1 w_{r-1} w_r; \qquad (4.153)$$

$$w_i = W[\alpha_i]: \tag{4.154}$$

r-k-3

$$w'_k = W[\beta_k]; \quad \beta_k = (\overbrace{0 \cdots 0}^{\bullet} 1 \, \overbrace{2 \cdots 2}^{\bullet} 11),$$
(4.155)

$$w_r'' = W[\gamma_r]; \quad \gamma_r = \alpha_{r-2} + \alpha_r, \tag{4.156}$$

$$w_{r-1}'' = W[\gamma_{r-1}]; \quad \gamma_r = \alpha_{r-2} + \alpha_{r-1} \tag{4.157}$$

により、その Dynkin ウエイト系は、

$$[m_1 \cdots m_{r-2} m_{r-1} m_r] \rightarrow [(-m_1) \cdots (-m_{r-2}) (-m_r) (m_{r-1}]$$

k

と変換する.

目次へ

- 2) ρ の最高ウエイトのDynkin ラベルを $[a_1 \cdots a_r]$ とすると,最低ウエイトのDynkin ラベルは $[(-a_1) \cdots (-a_{r-2})(-a_r)(-a_{r-1})]$ で与えられる.
- 3) ρ の反傾表現(複素共役表現) ρ^* の最高ウエイトは $[a_1 \cdots a_{r-2} a_r a_{r-1}]$ で与えられる。特に、 ρ が自己共役となるためには、 $a_{r-1} = a_r$ となることが必要十分である。

【証明あり】

【命題 4.29 (SO(*n*)の随伴表現のテンソル積)】 SO(*n*)の随伴表現 [010…]の2 個のテンソル積の既約分解は,テンソル積の一般元を $\Phi^{[ab][cd]}$ を用いて次のように表される:

$$\begin{bmatrix} 020\cdots 0 \end{bmatrix} : \Phi^{([ab][cd])} - \frac{2}{n-2} \left(\delta^{a[d} \Phi_1^{(c]b)} - \delta^{b[d} \Phi_1^{(c]a)} \right) - \frac{2}{(n-1)(n-2)} \delta^{a[c} \delta^{d]b} \Phi_2,$$
(4.158a)

$$[200\cdots0] : \delta^{a[d}\Phi_1^{(c]b)} - \delta^{b[d}\Phi_1^{(c]a)} - \frac{4}{n}\delta^{a[d}\delta^{c]b}\Phi_2$$
(4.158b)

$$[00\cdots 0] : \delta^{a[d}\delta^{c]b}\Phi_2, \qquad (4.158c)$$

$$[1010\cdots0] : \Phi^{[[ab][cd]]} + \frac{2}{n-2} \left(\delta^{a[d} \Phi_1^{[c]b]} - \delta^{b[d} \Phi_1^{[c]a]} \right), \qquad (4.158d)$$

$$[0100\cdots0] : \delta^{a[d}\Phi_1^{[c]b]} - \delta^{b[d}\Phi_1^{[c]a]}.$$
(4.158e)

ここで,

$$\Phi_1^{ab} = \sum_p \Phi^{[ap][pb]}, \tag{4.159a}$$

$$\Phi_2 = \sum_p \Phi_1^{pp}. \tag{4.159b}$$

4.8 スピノール群とスピノール表現

4.8.1 定義と一般的性質

【定義 4.30 (Clifford 代数 $\mathcal{C}_{p,q}, \mathbb{C}_n$)】 計量 η_{AB} (符号 (p,q) をもつ n 次元空間 における Γ 行列から生成される実代数

$$C\ell_{q,p} := \left\{ \sum_{I} c_{I} \Gamma^{I} \middle| c_{I} \in \mathbb{R}, I = \emptyset, [A], [AB], \cdots \right\}$$
(4.160)

目次へ

	1	2	3	4	5	6	7	8
$C\ell_n$	\mathbb{C}	\mathbb{H}	$\mathbb{H} \oplus \mathbb{H}$	$\mathbb{H}(2)$	$\mathbb{C}(4)$	$\mathbb{R}(8)$	$\mathbb{R}(8) \oplus \mathbb{R}(8)$	$\mathbb{R}(16)$
$C\ell_n^*$	$\mathbb{R} \oplus \mathbb{R}$	$\mathbb{R}(2)$	$\mathbb{C}(2)$	$\mathbb{H}(2)$	$\mathbb{H}(2) \oplus \mathbb{H}(2)$	$\mathbb{H}(4)$	$\mathbb{C}(8)$	$\mathbb{R}(16)$
$\mathbb{C}\ell_n$	$\mathbb{C}\oplus\mathbb{C}$	$\mathbb{C}(2)$	$\mathbb{C}(2) \oplus \mathbb{C}(2)$	$\mathbb{C}(4)$	$\mathbb{C}(4) \oplus \mathbb{C}(4)$	$\mathbb{C}(8)$	$\mathbb{C}(8) \oplus \mathbb{C}(8)$	$\mathbb{C}(16)$

表 2: *n* = 1, · · · , 8 に対する Clifford 代数の分類

を (\mathbb{R}^n, η) に付随する実 Clifford 代数という. また, その複素化

$$\mathbb{C}\ell_n = \mathbb{C}\ell_{q,p} \otimes_{\mathbb{R}} \mathbb{C} \tag{4.161}$$

を n 次元複素 Clifford 代数という. _____

【定理 4.31 (分類定理)】 $C\ell_n \ {\rm lt} n \ {\rm M}$ 偶数の時, $C\ell_n \ {\rm lt} {\rm lt}$

$$\mathbb{C}\ell_{2m} \cong \mathbb{C}(2^m). \tag{4.162}$$

また, *n*が奇数の時, ℂ*l*_{*n*}は可約で2つの同型な代数の直和となり, それぞれはやはりだだ一つの既約線形表現をもつ.

$$\mathbb{C}\ell_{2m+1} \cong \mathbb{C}(2^m) \oplus \mathbb{C}(2^m) \tag{4.163}$$

【命題 4.32】 $C\ell_{q,p}$ の中で Γ 行列の偶数個の積で生成される部分集合 $C\ell_{q,p}^{0}$ は部分代数となり、次の関係が成り立つ:

$$\mathcal{C}\ell^0_{q,p} \cong \mathcal{C}\ell_{q-1,p} \tag{4.164}$$

特に, Minkowski 時空に対して

$$\mathcal{C}\!\ell^0_{1,n-1} \cong \mathcal{C}\!\ell_{0,n-1} \equiv \mathcal{C}\!\ell^*_{n-1}.$$
(4.165)

この Clifford 代数は次の周期性をもつ:

$$\mathcal{C}_{n+8}^* \cong \mathcal{C}_n^* \otimes \mathcal{C}_8^* \cong \mathcal{C}_n^* \otimes \mathbb{R}(16). \tag{4.166}$$

_

【定義 4.33】 体 $k \perp o C\ell(V,q)$ に対して、その可逆元の作る乗法群を $C\ell^{\times}(V,q)$ とする. $C\ell^{\times}(V,q)$ の随伴表現

$$\mathrm{Ad}: \mathrm{C}\ell^{\times}(V,q) \to \mathrm{Aut}(\mathrm{C}\ell(V,q))$$

を

$$\operatorname{Ad}_{\phi}(y) = \phi y \phi^{-1} \quad \phi \in \operatorname{Cl}^{\times}(V, q), y \in \operatorname{Cl}(V, q)$$

で、また、 $C\ell^{\times}(V,q)$ のねじれ随伴表現

$$\widetilde{\mathrm{Ad}}: \mathrm{Cl}^{\times}(V,q) \to \mathrm{GL}(\mathrm{Cl}(V,q))$$

を

$$\operatorname{Ad}_{\phi}(y) = \alpha(\phi)y\phi^{-1} \quad \phi \in \operatorname{Cl}^{\times}(V,q), y \in \operatorname{Cl}(V,q)$$

により定義する. ここで, α は $\alpha(v) = -v$ ($v \in V$)により一意的に決まる $\mathcal{C}(V,q)$ の主 自己同型である. ϕ が偶元, すなわち $\phi \in \mathcal{C}^0(V,q)$ のとき, $\widetilde{\mathrm{Ad}}_{\phi} = \mathrm{Ad}_{\phi}$, $\phi \in \mathcal{C}^1(V,q)$ のとき, $\widetilde{\mathrm{Ad}}_{\phi} = -\mathrm{Ad}_{\phi}$ である.

【命題 4.34】 $v, w \in V$ に対して, $q(v) \neq 0$ のとき, \widetilde{Ad}_v はVにおけるvの垂直 な超平面に関する反転を表す:

$$\widetilde{\mathrm{Ad}}_v(w) = -\mathrm{Ad}_v(w) = w - \frac{q(v,w)}{q(v)}v.$$

【定義 4.35】 $\mathcal{C}\ell^{\times}(V,q)$ の部分群を $\operatorname{Pin}(V,q) := \{v_1 \cdots v_r \in \mathcal{C}\ell^{\times}(V,q) \mid q(v_j) = \pm 1 \forall j\},$ $\operatorname{Spin}(V,q) := \operatorname{Pin}(V,q) \cap \mathcal{C}\ell^0(V,q)$ で定義する. $\operatorname{Spin}(V,q) \wr (V,q) \vdash \mathcal{O} \mathcal{Z}\ell \mathcal{I} - \mathcal{V}$ 群と呼ぶ.

【定義 4.36】 体 k の乗法群 k^{\times} が $k^{\times} = (k^{\times})^2 \cup (-(k^{\times})^2)$ となるとき、k をスピン体という.

【定理 4.37】

 V をスピン体 k 上の有限次元ベクトル空間, q をその非退化計量とするとき, 次の完全列が存在する:

$$0 \to F \to \operatorname{Spin}(V,q) \xrightarrow{\operatorname{Ad}=\operatorname{Ad}} \operatorname{SO}(V,q) \to 1,$$
$$0 \to F \to \operatorname{Pin}(V,q) \xrightarrow{\operatorname{\widetilde{Ad}}} \operatorname{O}(V,q) \to 1.$$

ここで, $F \iota \sqrt{-1} \notin k$ のとき $\mathbb{Z}_2 = \{1, -1\}$, その他のとき $\mathbb{Z}_4 = \{\pm 1, \pm \sqrt{-1}\}$ である.特に, $k = \mathbb{R}$ のとき, 次の完全列が存在する:

$$\begin{split} 0 &\to \mathbb{Z}_2 \to \operatorname{Spin}_{r,s} \to \operatorname{SO}_{r,s} \to 1, \\ 0 &\to \mathbb{Z}_2 \to \operatorname{Pin}_{r,s} \to \operatorname{O}_{r,s} \to 1. \end{split}$$

さらに, $(r,s) \neq (1,1)$ のとき, $O_{r,s}$ の各連結成分上でこの2価の被覆空間は非 自明である.また, Spin, $lan \ge 3$ のとき単連結である.

2) Vの次元が偶数の時,次の完全列が存在する:

$$0 \to F \to \operatorname{Pin}(V,q) \xrightarrow{\operatorname{Ad}} \operatorname{O}(V,q) \to 1.$$

Vの次元が奇数の時,次の完全列が存在する:

 $0 \to F' \to \operatorname{Pin}(V,q) \xrightarrow{\operatorname{Ad}} \operatorname{SO}(V,q) \to 1.$

ここで, $F' = F \cup \{\Gamma, -\Gamma\}$. ただし, e_1, \dots, e_n を V の正規直交基底として $\Gamma = e_1 \cdots e_n$.

【**定義 4.38**】 Cℓ_n の実ベクトル空間 S 上への実既約表現を Spin_n に制限して得ら れる表現

$$\Delta_n : \operatorname{Spin}_n \to \operatorname{GL}(S)$$

を Spin_n の実スピノール表現と呼ぶ. 同様に、 $\mathbb{C}\ell_n$ の複素ベクトル空間 S 上への複素 既約表現を Spin_n に制限して得られる複素表現

$$\Delta_n^{\boldsymbol{C}} : \operatorname{Spin}_n \to \operatorname{GL}_{\boldsymbol{C}}(S)$$

を Spin_n の複素スピノール表現と呼ぶ. _____

目次へ

Π

【定理 4.39】 $n \equiv 3 \pmod{4}$ のとき、 $C\ell_n \circ 2 \circ 0$ の既約表現から得られる実スピ ノール表現 Δ_n は同値となる、したがって、任意の *n* に対して、実スピノール表現は 一意的である、さらに、次が成り立つ:

- i) $n \equiv 3, 5, 6, 7 \pmod{8}$ のとき、 Δ_n は既約である.
- ii) $n \equiv 1, 2 \pmod{8}$ のとき、 Δ_n は2つの同値な既約表現の直和となる.
- iii) n = 4mのとき、 Δ_n は非同値な2つの既約表現の直和となる:

$$\Delta_{4m} = \Delta_{4m}^+ \oplus \Delta_{4m}^-.$$

それぞれは体積要素 ω の固有値 +1, -1 の固有空間となる.

【定理 4.40】 nが奇数のとき、 $\mathbb{C}l_n$ の2つの既約表現から得られる複素スピノー ル表現 Δ_n^C は同値となる.したがって、すべてのnに対して Δ_n^C は一意的である.さ らに、次が成り立つ:

- i) n = 2m + 1のとき、 Δ_{2m+1}^{C} は既約で、その次元は 2^{m} となる.
- ii) n = 2m のとき, Δ_{2m}^{C} は同値でない 2 つの既約表現の直和となる:

$$\Delta_{2m}^{\boldsymbol{C}} = \Delta_{2m}^{\boldsymbol{C}+} \oplus \Delta_{2m}^{\boldsymbol{C}-}.$$

それぞれは複素体積要素 $\omega_C := i^m \omega$ の固有値 +1, -1 の固有空間となり、いず れも次元 2^{m-1} を持つ.

【注 4.41 (スピノール表現の Γ 行列による特徴づけ)】 複素 Clifford 代数 \mathbb{C}_n の 生成元 Γ_a を,関係式

$$\Gamma_a \Gamma_b + \Gamma_b \Gamma_a = 2\delta_{ab} \tag{4.167}$$

を満たすように取る. \mathbb{C}_n の既約表現 $(\rho, \mathcal{V} \cong \mathbb{C}^N)(N = 2^{[n/2]})$ において, 基底を適当に取ると, Γ_a はエルミート行列で表される.

このとき, $\Lambda \in SO(n, \mathbb{R})$ に対して, $\Gamma'_a = \Gamma_b \Lambda^b_a$ は Γ_a と同じ関係式を満たすので, $U \in GL(N, \mathbb{C})$ が存在して,

$$\Gamma_b \Lambda^b{}_a = U \Gamma_a U^{-1} \tag{4.168}$$

が成り立つ. Clifford 代数の表現の既約性より, U は定数倍の自由度を除いて Λ により一意的に定まる. また, $\Gamma_a^{\dagger} = \Gamma_a$ より,

$$U\Gamma_a U^{-1} = (U^{\dagger})^{-1} \Gamma_a U^{\dagger} \implies UU^{\dagger} = cI_N > 0$$

これより,定数倍の自由度を用いて, $UU^{\dagger} = 1$ が成り立つようにできる.このとき, 残るUの自由度は, $\pm U$.よって,(4.168)はSO (n, \mathbb{R}) の \mathcal{V} への2価のユニタリ表現 を与える.

 $v = ix^{a}\Gamma_{a} \in \mathbb{C}\ell_{n}$ の単元 $(x \cdot x = 1)$ とするとき、 $v^{-1} = v$ より、(4.168)の右辺で V = vとおくと、

$$v\Gamma_a v = \Gamma_a - 2x^a x^b \Gamma_b \implies \Lambda = I_n - 2x \cdot x$$

となる. この Λ は明らかに $\Lambda \in SO(n.\mathbb{R})$ なので、これより、Spin(n)の元はすべて上記のユニタリ表現に含まれる. したがって、次元計算より、上記のユニタリ表現は、スピノール表現と一致する.

次に,計量が符号 (*p*,*q*) をもつ一般の場合を考える:

$$\Gamma_a \Gamma_b + \Gamma_b \Gamma_a = 2\eta_{ab} \tag{4.169}$$

このガンマ行列は,適当なaの値に対して $\Gamma_a \rightarrow i\Gamma_a$ という置き換えをすることにより (4.167)を満たすようにできるので,表現の基底を適当にとると,

$$\Gamma_a^{\dagger} = \Gamma^a = \eta^{ab} \Gamma_b \tag{4.170}$$

を満たすようにできる. さらに, Γ_a^{\dagger} は Γ_a と同じ関係 (4.169) を満たすので,

$$\Gamma_a^{\dagger} = J\Gamma_a J^{-1} \tag{4.171}$$

となる $J \in GL(N, \mathbb{C})$ が存在. この式の整合性条件より,適当なスケール変換によ り $J^{\dagger} = J$ とできるので,適当な基底の変更 $\Gamma_a \rightarrow V\Gamma_a V^{-1}$ により, Jは対角成分 が ±1 の対角行列にできる. そこで,以下 J をそのような対角行列とする. すると Euclid 計量の場合と同じ考察により,任意の $\Lambda \in SO_0(p,q)$ に対して (4.168) を満た す $U \in GL(N, \mathbb{C})$ が存在し, U は

$$U^{\dagger}JU = J \tag{4.172}$$

を満たすことが示される.

対応 (4.168) は、奇数次元の場合 $\Lambda \in SO(p,q)$ 全体に、偶数次元の場合 $\Lambda \in O(p,q)$ に拡張できるが、この場合、一般には、 $U^{\dagger}JU = \pm J$ となる.

4.8.2 基本スピノール表現の構成

 $\Gamma^{\mu} \delta n$ 次元実 Clifford 代数 $C\ell_{1,n-1}$ の生成元とする:

$$\Gamma^{\mu}\Gamma^{\nu} + \Gamma^{\nu}\Gamma^{\mu} = 2\eta^{\mu\nu}.$$
(4.173)

1. *n* = 2*r* のとき

i)
$$\mathbb{C}\ell_{2r} \cong \overset{r}{\otimes} \mathbb{C}\ell_2 \cong \overset{r}{\otimes} \mathbb{C}(2) \cong \mathbb{C}(2^r)$$
:
 $\Gamma^{0\pm} = \frac{1}{2} (\pm \Gamma^0 + \Gamma^1), \ \Gamma^{j\pm} = \frac{1}{2} (\Gamma^{2j} \pm i\Gamma^{2j+1}) \ (j = 1, \cdots, r-1)$ (4.174)
とおくと,

$$\{\Gamma^{a+}, \Gamma^{b+}\} = 0, \ \{\Gamma^{a-}, \Gamma^{b-}\} = 0, \ \{\Gamma^{a+}, \Gamma^{b-}\} = \delta^{ab}.$$
(4.175)

よって、 v_0 を $\mathbb{C}\ell_n$ の有限次元既約複素表現の"最高ウエイト"ベクトル

$$\Gamma^{a+}v_0 = 0 \tag{4.176}$$

とすると, 表現空間は

$$|s_0 s_1 \cdots s_{r-1}\rangle = (\Gamma^{0-})^{1-2s_0} \cdots (\Gamma^{r-1-})^{1-2s_{r-1}} v_0 \ (s_a = \pm 1/2)$$
(4.177)

で張られる 2r 次元複素空間となる.また,

$$S_0 = \frac{1}{2} \Gamma^0 \Gamma^1, \ S_j = -\frac{i}{2} \Gamma^{2j} \Gamma^{2j+1} \ (j = 1, \cdots, r-1)$$
(4.178)

とおくと,

$$S_a = \Gamma^{a+} \Gamma^{a-} - \frac{1}{2} = \frac{1}{2} - \Gamma^{a-} \Gamma^{a+}, \qquad (4.179)$$

$$[S_a, \Gamma^{b\pm}] = \pm \Gamma^{a\pm} \delta^b_a. \tag{4.180}$$

より, *Γ^{a±}* の表現は

$$S_{a}|s_{0} s_{1} \cdots s_{r-1}\rangle = s_{a}|s_{0} s_{1} \cdots s_{r-1}\rangle,$$

$$\Gamma^{a\pm}|s_{0} s_{1} \cdots s_{r-1}\rangle = (-1)^{(1-2s_{0})+\dots+(1-2s_{a-1})}|s_{0} \cdots s_{a-1} s_{a} \pm 1/2 s_{a+1} \cdots s_{r-1}\rangle.$$

となる.これは,成分表示では,

$$\Gamma^{a+} = \overbrace{\sigma_3 \otimes \cdots \otimes \sigma_3}^{a} \otimes \left(\begin{smallmatrix} 0 & 1\\ 0 & 0 \end{smallmatrix}\right) \otimes \overbrace{I_2 \otimes \cdots \otimes I_2}^{r-a-1}, \qquad (4.181a)$$

$$\Gamma^{a-} = \overbrace{\sigma_3 \otimes \cdots \otimes \sigma_3}^{a} \otimes \left(\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix}\right) \otimes \overbrace{I_2 \otimes \cdots \otimes I_2}^{r-a-1}, \qquad (4.181b)$$

$$S_a = \overbrace{I_2 \otimes \cdots \otimes I_2}^{\bullet} \otimes \frac{1}{2} \sigma_3 \otimes \overbrace{I_2 \otimes \cdots \otimes I_2}^{\bullet}$$
(4.181c)

と表される. これより, Γ^a は次のように成分表示される:

$$\Gamma^{0} = (i\sigma_{2}) \otimes \overbrace{I_{2} \otimes \cdots \otimes I_{2}}^{r-1}, \qquad (4.182a)$$

$$\Gamma^{1} = (\sigma_{1}) \otimes \overbrace{I_{2} \otimes \cdots \otimes I_{2}}^{i}, \qquad (4.182b)$$

$$\Gamma^{2j} = \overbrace{\sigma_3 \otimes \cdots \otimes \sigma_3}^{j} \otimes (\sigma_1) \otimes \overbrace{I_2 \otimes \cdots \otimes I_2}^{j}, \qquad (4.182c)$$

$$\Gamma^{2j+1} = \overbrace{\sigma_3 \otimes \cdots \otimes \sigma_3}^{2j+1} \otimes \overbrace{I_2 \otimes \cdots \otimes I_2}^{2j+1}.$$
(4.182d)

ただし, $j = 1, \cdots, r - 1$ である.特に,

$$\bar{\Gamma}^{0} = \Gamma^{0}, \ \bar{\Gamma}^{1} = \Gamma^{1}, \ \bar{\Gamma}^{2j} = \Gamma^{2j}, \ \bar{\Gamma}^{2j+1} = -\Gamma^{2j+1} \left(j = 1, \cdots, r-1 \right)$$
(4.183)

$$\succeq \not a \not a, \ \ddagger \not a.$$

$${}^{T}(\Gamma^{0}) = -\Gamma^{0}, \ {}^{T}(\Gamma^{1}) = \Gamma^{1}, \ {}^{T}(\Gamma^{2j}) = \Gamma^{2j}, \ {}^{T}(\Gamma^{2j+1}) = -\Gamma^{2j+1} (j = 1, \cdots, r-1).$$

$$(4.184)$$

ii) $\operatorname{Spin}(2r, \mathbb{C}) \subset \mathbb{C}\ell_{2r} \rhd \mathbb{C}^{2^r}$:

$$A_{0j} = -\Sigma^{0j} = \frac{i}{4} [\Gamma^0, \Gamma^j],$$

$$A_{jk} = i\Sigma^{jk} = \frac{1}{4} [\Gamma^j, \Gamma^k] \ (j, k = 1, \cdots, 2r - 1)$$
(4.185)

とおくと, $i\Sigma^{\mu\nu}$ はSO(2r-1,1)の標準交換関係

$$i[\Sigma^{\mu\nu}, \Sigma^{\lambda\sigma}] = -\eta^{\mu\lambda}\Sigma^{\nu\sigma} - \eta^{\nu\sigma}\Sigma^{\mu\lambda} + \eta^{\mu\sigma}\Sigma^{\nu\lambda} + \eta^{\nu\lambda}\Sigma^{\nu\sigma}$$
(4.186)

を満たす.また, A_{ab} はSO(2r, \mathbb{C})の標準生成元の交換関係 (4.119)を満たし, その Cartan 部分代数の標準基底 H_a は

$$H_a = -iA_{2a\,2a+1} = S_a \ (a = 0, \cdots, r-1) \tag{4.187}$$

となる.また、 \mathscr{L}_+ のWeyl基底は

$$E_{0\pm k\epsilon} = i\Gamma^{0\pm}\Gamma^{k\epsilon}, \ E_{j\pm k\epsilon} = \mp\Gamma^{j\pm}\Gamma^{k\epsilon}$$
(4.188)

と表される.いま, $\Gamma \in \mathbb{C}\ell_{2r}$ を

$$\Gamma = i^{-r+1} \Gamma^0 \Gamma^1 \cdots \Gamma^{2r-1} = 2^r S_0 S_1 \cdots S_{r-1}$$
$$= \sigma_3 \otimes \cdots \otimes \sigma_3$$
(4.189)

と定義すると,

$$(\Gamma)^2 = 1, \ \{\Gamma, \Gamma^\mu\} = 0, \ [\Gamma, \Sigma^{\mu\nu}] = 0$$

$$(4.190)$$

より,スピノール表現 Spin($2r, \mathbb{C}$) $\triangleright \mathbb{C}^{2^r}$ は可約で, $\Gamma = \pm 1$ の二つの表現 ρ_{\pm} に 分解される:

$$\rho_{+} \rhd \quad |s_{0} \cdots s_{r-1}\rangle \ (s_{0} \cdots s_{r-1} > 0),$$

$$\rho_{-} \rhd \quad |s_{0} \cdots s_{r-1}\rangle \ (s_{0} \cdots s_{r-1} < 0).$$

それぞれの表現は最高ウエイトベクトル

$$\rho_{+}: |1/2\cdots 1/2 1/2\rangle; \ \lambda = (h_{0} + \cdots + h_{r-1} + h_{r})/2,$$

$$\rho_{-}: |1/2\cdots 1/2 - 1/2\rangle; \ \lambda = (h_{0} + \cdots + h_{r-1} - h_{r})/2$$

を含んでおり、かつ既約である.これらは基本スピノール表現に対応し、その 次元はいずれも 2^{r-1} である.

- 2. n = 2r + 1のとき .
 - i) $\mathbb{C}\ell_{2r+1} \cong \mathbb{C}\ell_{2r} \oplus \mathbb{C}\ell_{2r} \cong \mathbb{C}(2^r) \oplus \mathbb{C}(2^r)$: $\mathbb{C}\ell_{2r+1}$ \Bbbk

$$\Gamma^{0\pm}, \cdots, \Gamma^{r-1\pm}, \Gamma^{2r} \tag{4.191}$$

により生成される. このとき,

$$(\Gamma\Gamma^{2r})^2 = 1, \ [\Gamma, \Gamma^{2r}] = 0, \ [\Gamma\Gamma^{2r}, \Gamma^{a\pm}] = 0 \ (a = 0, \cdots, r-1).$$
 (4.192)

 $\Gamma\Gamma^{2r}$ は $\mathbb{C}\ell_{2r+1}$ の中心に属する射影的要素となる.したがって、 $\mathbb{C}\ell_{2r+1}$ は $\Gamma^{2r} = \pm \Gamma$ となる2つのイデアルに直和分解され、因子はともに $\mathbb{C}\ell_{2r}$ と同型となる.

ii) Spin $(2r+1,\mathbb{C}) \subset \mathbb{C}\ell_{2r+1} \triangleright \mathbb{C}^{2^r}$: SO $(2r+1,\mathbb{C})$ の標準生成元は, SO $(2r,\mathbb{C})$ の 標準生成元 $M_{\mu\nu}(0 \le \mu, \nu \le 2r - 1)$ と

$$M_{0\,2r} = -\Sigma^{0\,2r} = \frac{i}{4} [\Gamma^0, \Gamma^{2r}],$$

$$M_{j\,2r} = i\Sigma^{j\,2r} = \frac{1}{4} [\Gamma^j, \Gamma^{2r}] \ (j = 1, \cdots, 2r - 1)$$
(4.193a)

により与えられる.したがって、 $\mathbb{C}\ell_{2r+1}$ の既約分解と $\mathbb{C}\ell_{2r}$ の既約表現からSpin(2r+1)1, \mathbb{C})のスピノール表現が一意的に定まる. 今の場合, $\Sigma^{\mu,2r}$ は Γ と反可換で $\Gamma = 1$ の要素とΓ = -1の要素の間を結ぶので、この表現は既約となり、最高ウエイ トは

$$|1/2 1/2, \cdots, 1/2 \rangle; \lambda = (h_1 + \cdots + h_r)/2.$$
 (4.194)

これは, SO(2r + 1, C) の基本スピノール表現に対応し, その次元は 2^r.

交換関係による特徴付け SO(n,1)の生成元

$$i\Sigma^{\mu\nu} = \frac{1}{4} [\Gamma^{\mu}, \Gamma^{\nu}]$$
 (4.195)

は一般に交換関係

$$[i\Sigma^{\alpha\beta},\Gamma^{\mu}] = \eta^{\mu\beta}\Gamma^{\alpha} - \eta^{\mu\alpha}\Gamma^{\beta}$$
(4.196)

と表される.これより、無限小 Lorentz 変換 $\delta \Lambda^{\alpha}{}_{\beta}$ に対して、

$$\left[\frac{i}{2}\Sigma^{\alpha\beta}\delta\Lambda_{\alpha\beta},\Gamma^{\mu}\right] = -\delta\Lambda^{\mu}{}_{\nu}\Gamma^{\nu}$$
(4.197)

が成り立つ. この積分形は

$$S(\Lambda)^{-1}\Gamma^{\mu}S(\Lambda) = \Lambda^{\mu}{}_{\nu}\Gamma^{\nu}; \qquad (4.198)$$

$$S(\Lambda)^{-1}\Gamma^{\mu}S(\Lambda) = \Lambda^{\mu}{}_{\nu}\Gamma^{\nu}; \qquad (4.198)$$

$$\delta S = \frac{i}{2}\Sigma^{\alpha\beta}\delta\Lambda_{\alpha\beta}. \qquad (4.199)$$

Γ^μの表現が

$$(\Gamma^{0})^{\dagger} = -\Gamma^{0}, \ (\Gamma^{j})^{\dagger} = \Gamma^{j}$$
 (4.200)

を満たすとき,

$$S^{\dagger}\Gamma^{0} = \Gamma^{0}S^{-1} \tag{4.201}$$

が成り立つ.

96

4.8.3 Majorana スピノール

【定義 4.42 (Majorana スピノール)】 スピノール表現

$$\rho: \operatorname{Spin}(D-1,1) \subset \operatorname{Spin}(D,\mathbb{C}) \subset \mathbb{C}\ell_D \rhd \mathbb{C}^{2^{\lfloor D/2 \rfloor}} = \mathscr{V}$$

に対して、 $B \in M(\mathscr{V}, \mathbb{C})$ が存在して、

$$\mathscr{M} := \left\{ \zeta \in \mathscr{V} \mid \bar{\zeta} = B\zeta \right\}$$
(4.202)

 $i \mu \rho$ で不変で $M \neq \{0\}$ となるとき, M の元を Majorana スピノールという.

【命題 4.43】 スピノール表現 ρ に対して Majorana スピノールが存在するための 必要十分条件は、 ρ が Spin(D - 1, 1)の ℝ-表現 ρ_0 の複素化を成分として含むことで ある. この条件はさらに、 ρ で不変な Ψ の複素部分空間 Ψ_1 および Ψ_1 の一次変換Bが存在して、 $\rho_1 = \rho|_{\Psi_1}$ とおくと、 $\bar{\Psi} = \Psi$ 、 $\bar{\rho}_1 = B\rho_1 B^{-1}$ 、 $\bar{B}B = 1$ が成り立つこと と同値である.

【命題 4.44】 §4.8.2 で構成した \mathbb{C}_D の既約表現 ρ のもとで, D = 2k + 2, 2k + 3に対して,

$$B_0 = i^k \Gamma^3 \Gamma^5 \cdots \Gamma^{2k+1}, \quad B_1 = \Gamma B_0$$
(4.203)

とおくと,

$$\bar{B}_0 = B_0, \quad \bar{B}_1 = B_1,$$
(4.204)

$$B_0^2 = (-1)^{k(k+1)/2}, \quad B_1^2 = (-1)^{k(k-1)/2},$$
(4.205)

$$\Gamma B_0 = (-1)^k B_0 \Gamma \tag{4.206}$$

および

$$B_0 \Gamma^{\mu} B_0^{-1} = (-1)^k \bar{\Gamma}^{\mu}, \quad B_1 \Gamma^{\mu} B_1^{-1} = (-1)^{k+1} \bar{\Gamma}^{\mu}$$
(4.207)

が成り立つ. ただし、 B_1 に対する式はD = 2k + 2の時のみ成り立つ. ____

【定理 4.45】 スピノール表現 ρ : Spin $(D-1,1) \subset \mathbb{C}_D \triangleright \mathbb{C}^{2^{[D/2]}} = \mathscr{V}$ に対して, Majorana スピノールが存在するための必要十分条件は各次元 D に対して次のよう に表される:

i) $D \equiv 0 \pmod{4}$: 常に存在し、 $\mathscr{V} = \mathscr{M} \oplus i\mathscr{M}$ となる. Weyl スピノールへの分解 $\mathscr{V} = \mathscr{W}_+ + \mathscr{W}_- (\mathscr{W}_+ = P_+ \mathscr{V}, P_+ := (1 \pm \Gamma)/2)$ に対して、 $\rho = \rho_+ \oplus \rho_-$ とおくと

き、C-線形同型 $E: \mathscr{W}_- \to \mathscr{W}_+$ が存在して、 $\rho_- = E^{-1} \bar{\rho}_+ E$ となる. Majorana スピノールを定義する線形変換 B は、この E を用いて

$$B = \begin{pmatrix} 0 & cE\\ (\bar{c}\bar{E})^{-1} & 0 \end{pmatrix}$$

$$(4.208)$$

と表される.ここで, cはゼロでない任意の複素数である.スピン表示に対しては, $D \equiv 0 \pmod{8}$ の時に B_0 が, $D \equiv 4 \pmod{8}$ の時に B_1 がこの条件を満たす.Weyl 表示のもとで, $\zeta \in \mathscr{W}_+$ は

$$\zeta = \xi \oplus c^{-1} E^{-1} \bar{\xi} \tag{4.209}$$

と表される.

ii) $D \equiv 2 \pmod{4}$: 条件は $D \equiv 2 \pmod{8}$. このとき, Weyl スピノールへの分解 $\mathscr{V} = \mathscr{W}_{+} + \mathscr{W}_{-} (\mathscr{W}_{\pm} = P_{\pm} \mathscr{V}, P_{\pm} := (1 \pm \Gamma)/2)$ に対して $\bar{\rho}_{\pm} \cong_{\mathbb{C}} \rho_{\pm}$ となり, スピン表示では線形変換 *B* の一般形は

$$B = e^{i\theta_+} P_+ B_0 + e^{i\theta_-} P_- B_0 \tag{4.210}$$

となる.ここで θ_+ は任意の実数である. B_1 もこのクラスに含まれる.

iii) $D \equiv 1 \pmod{2}$: 条件は $D \equiv 1, 3 \pmod{8}$. 線形変換 $B \mathcal{O} \longrightarrow \mathbb{H}$ 能 $B = e^{i\theta} B_0$ となる.

4.9.1 $SL(2, \mathbb{C})$

【例 4.46 (SL(2, C) の既約表現の構成)】 SL(2, C) の Gauss 分解 *2DZ* は

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ w & 1 \end{pmatrix} \begin{pmatrix} \delta & 0 \\ 0 & \delta^{-1} \end{pmatrix} \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \delta & \delta z \\ \delta w & \delta z w + \delta^{-1} \end{pmatrix}$$
(4.211)

で与えられる. Dの指標 $\delta^m(m = 0, 1, 2, \cdots)$ に対応する既約表現の表現空間 $V_m \subset \mathbb{C}(Z)$ は

$$f(z) = 1 \implies f_g(z) = \delta^m = (a + cz)^m \quad \forall a, c \in \mathbb{C}, \ |a| + |c| \neq 0$$

$$(4.212)$$

目次へ

の全体により張られるので、Vm はm次以下のzの多項式全体と一致する:

$$f(z) \in V^m \iff f(z) = e_0 + e_1 z + \dots + e_m z^m, \quad c_j \in \mathbb{C}$$
 (4.213)

このとき, $zg = \tilde{\zeta} \tilde{\delta} \tilde{z}$ の分解は

$$\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a + cz & b + dz \\ c & d \end{pmatrix}$$
(4.214)

より

$$\tilde{\delta} = a + cz, \quad \tilde{z} = \frac{b + dz}{a + cz}$$

$$(4.215)$$

となるので、 $f(z) \in V_m$ に対するgの作用は

$$f_g(z) = \chi(\tilde{\delta})f(\tilde{z}) = (a+cz)^m f\left(\frac{b+dz}{a+cz}\right) \in V_m$$
(4.216)

で与えられる.具体的な表式は

$$e'_{j} = \sum_{k=1}^{m} e_{k} \Lambda(g)_{j}^{k},$$
 (4.217a)

$$\Lambda_{j}^{k} = \sum_{l=\max(j-k,0)}^{\min(j,m-k)} {}_{m-k}C_{l\,k}C_{j-l}a^{m-k-l}b^{k-j+l}c^{l}d^{j-l}$$
(4.217b)

4.10 テンソル表現

4.10.1 有限群の表現

【定義 4.47 (有限群の群環)】 有限群 G に対し、環 R を係数とする G の元の形式的線型和 $a_1g_1 + \cdots + a_ng_n$ の全体には、自然に R-多元環の構造が入る. このようにして得られる多元環 R[G] を、G の群環 (group algebra) という.

【定理 4.48 (Maschke の定理 (群環の半単純性))】 有限群 G の体 K 上の群環 K[G] に対し,

K[G]が半単純 \Leftrightarrow Kの標数がGの位数が約数でない

_

 \Box

【定理 4.49 (有限群の既約表現の数)】 K が代数的閉体で,その標数が有限群 G の位数の約数でないとき,Gの K 上の既約表現類の個数は,Gの共役類の個数に等しい.

[< 近藤武「群論」(岩波, 1991)] _____

【注 4.50 (K[G]の中心の基底)】 有限群Gの共役類への分割を $G = C_1 \cup \cdots \cup C_k$ とするとき、 C_i の元の和を $c_i \in K[G]$ とおけば、 c_1, \cdots, c_k が中心Z(K[G])の $K \perp$ の基底となる.

[<近藤武「群論」(岩波, 1991)] ____□

【定義 4.51 (群の1次指標)】 Kを体とするとき,群Gから乗法群 $K^* = K - \{0\}$ への準同型写像 $\phi: H \to K^*$ を,GのK上の1次指標という.

【定理 4.52 (部分群の定める群環の巾等元)】 K を標数ゼロの代数的閉体, G を 有限群とする.

1) Gの部分群 H および H 上の 1 次指標 $\phi: H \to K^*$ に対して,K[G] の元

$$e = e(H, \phi) \equiv \frac{1}{|H|} \sum_{h \in H} \phi(h)h$$

は、巾等元となる $(e^2 = e)$. また、K[G]の左イデアルl = K[G]e はゼロでない.

2) $H_1, H_2 \& G @ O B @ O B @ A #, \phi_1, \phi_2 \& \& \& \& h \in I, f_1, f_2 \& h \in I, f_1, f_2 \& h \in I, f_2, f_3 & h \in I, f_3 &$

 $\operatorname{Hom}_R(\mathfrak{l}_1,\mathfrak{l}_2)\cong_K e_1Re_2:\quad f\mapsto f(e_1)$

が成り立つ.

3) 2)の記号のもとで,

 $\langle \mathfrak{l}_1, \mathfrak{l}_2 \rangle_R \equiv \dim_K \operatorname{Hom}_R(\mathfrak{l}_1, \mathfrak{l}_2) = \sharp \left\{ H_1 \sigma H_2 \left| \phi_2(y) = \phi_1(\sigma y \sigma^{-1}) \forall y \in H_2 \cap \sigma^{-1} H_1 \sigma \right\} \right\}.$ 特に, $\phi_1 \equiv 1, \phi_2 \equiv 1 \mathcal{O}$ とき, $\langle \mathfrak{l}_1, \mathfrak{l}_2 \rangle_R = |H_1 \backslash G/H_2|.$

4) 2)の記号のもとで、 $H_1 \cap H_2 = \{1\}$ のとき、 $\langle \mathfrak{l}_1, \mathfrak{l}_2 \rangle_R \ge 1$ で、

5) 2) の記号のもとで, $H_1 \cap H_2 = \{1\}$, かつ $\langle \mathfrak{l}_1, \mathfrak{l}_2 \rangle_R = 1$ とすると, $(e_1e_2)^2 = c(e_1e_2) \ (c \neq 0)$ で, $Re_1e_2 \cong_R Re_2e_1$ は極小左イデアルとなる.

[< 岩堀長慶「対称群と一般線形群の表現論」(岩波, 1978)]
 □
 【定理 4.53 (有限群の既約表現の次元)】 有限群の既約表現の次数は, 群の位数の約数である.
 [< 近藤武「群論」(岩波, 1991)]
 □
 【定理 4.54 (有限群の既約表現の次元)】 有限群Gの既約表現の次数は, C(G)をGの中心とするとき, [G : C(G)]の約数である.
 [< 近藤武「群論」(岩波, 1991)]
 □
 【定理 4.55 (有限群の既約表現の次元(伊藤))】 Hを有限群Gの可換正規部分群とするとき, Gの既約表現の次数は, [G : H]の約数である.
 [< 近藤武「群論」(岩波, 1991)]

4.10.2 対称群の表現

【定義 4.56 (自然数の分割数)】 自然数 n に対して,その分割

 $(l_1, \cdots, l_s): l_1 \ge \cdots \ge l_s > 0, \quad l_1 + l_2 + \cdots + l_s = n$

の異なるものの総数 *p*(*n*) を *n* **の分割数**という. _____

n	1	2	3	4	5	6	7	8	9	10
p(n)	1	2	3	5	7	11	15	22	30	42

表 3: 1 ≤ n ≤ 10 に対する分割数 p(n) の値

【定理 4.57 (対称群の既約表現の数)】 n次の対称群の既約表現類の数は, nの 分割数 p(n) と一致する.

【定義 4.58 (Young 図式)】

 自然数 n の分割 (l₁, ..., l_s) に対して,同じサイズのマス目を上から j 番目の行 に l_j 個左詰に並べた s 段の図形を, n 次の台 D, D のマス目に 1 から n まで の整数を一個ずつ配置したものを盤 B,台と盤を Young 図式 (Young table), (l₁,..., l_s)を盤の符号数という.また,これらの行と列を反転したものを共役 な盤/台という.

- 2) n次の盤Bに対して、Bの各行での置換の積で表される G_nの元が作る部分群 を水平置換群、各列での置換の積で表される元の作る部分群を垂直置換群といい、それぞれ S_B、 S_B で表す.
- 3) 盤*B*に対して,群環 $Q[\mathfrak{S}_n] \subset \mathbb{C}[\mathfrak{S}_n]$ の巾等元 a_B, b_B を

$$a_B = \frac{1}{|\mathfrak{H}_B|} \sum_{\sigma \in \mathfrak{H}_B} \sigma,$$

$$b_B = \frac{1}{|\mathfrak{K}_B|} \sum_{\sigma \in \mathfrak{K}_B} \operatorname{sign}(\sigma) \sigma$$

により定義し、それぞれ Young 水平対称子, Young 垂直対称子という.

【命題 4.59 (置換群の盤への作用)】 任意の $\sigma \in \mathfrak{S}_n$ に対して, 盤の対応 $\sigma : B \rightarrow B'$ を

$$B'[i,j] = \sigma(B[i,j])$$

により定義すると,

$$\sigma\mathfrak{H}_B\sigma^{-1}=\mathfrak{H}_{\sigma B},\quad \sigma\mathfrak{K}_B\sigma^{-1}=\mathfrak{K}_{\sigma B},$$

が成り立つ.

【定理 4.60 (水平対称子と垂直対称子の絡数)】 \mathfrak{S}_n の盤 Bに対応する水平対称 子を a_B , 垂直対称子を b_B とするとき, $R = \mathbb{C}[\mathfrak{S}_n]$ に対して,

$$\dim a_B R b_B = 1$$

_

【定理 4.61 (盤 B の定める \mathfrak{S}_n の既約表現)】 \mathfrak{S}_n の盤 B に対して, $R = \mathbb{C}[\mathfrak{S}_n]$ の元を

$$c_B = \sum_{\sigma \in \mathfrak{H}_B} \sum_{\tau \in \mathfrak{K}_B} \operatorname{sign}(\tau) \sigma \tau$$

により定義し、**Young の対称子**とよぶ.このとき、 Rc_B はRの極小左イデアル、したがって Rの既約表現を与える.したがって、その次元 $r = \dim_{\mathbb{C}} Rc_B$ はn!の約数となり、

$$e_B \equiv \frac{r}{n!} c_B \Rightarrow e_B^2 = e_B$$

が成り立つ.

Young の対称子により左イデアル $l_B = Re_B$ に対応する R の表現は, 盤 B の定める G_n の既約表現と呼ばれる.

【定理 4.62 (\mathfrak{S}_n の既約表現の分類)】 \mathfrak{S}_n の群環 $R = \mathbb{C}[\mathfrak{S}_n]$ において,

 $\mathfrak{l}_B \cong_R \mathfrak{l}_{B'} \Leftrightarrow B \geq B'$ の符号数が一致

が成り立つ.また, Rの任意の左極小イデアルに対して, I_B がそれと R 同型となる 盤 Bが存在する.これより, \mathfrak{S}_n の既約表現類は, \mathfrak{S}_n の台と1対1に対応する.

4.10.3 半単純環と半単純加群

【定理 4.63 (半単純環の構造定理 (Wedderburn))】 単位元をもつ半単純環 R に対して,体 D_1, \dots, D_h ,整数 $n_1, \dots, n_h > 0$ が定まり,

$$R \cong M_{n_1}(D_1) \times \cdots M_{n_h}(D_h).$$

逆に、このような環は半単純である。特に、Rが代数的閉体K上の有限次元半単純線形環のとき、 $D_1 = \cdots = D_h = K$.

[< 岩波数学事典 v4; 服部昭「現代代数学」(朝倉, 1968); 岩堀長慶「対称群と一般 線型群の表現論」(岩波, 1978)] _____□

4.10.4 一般線型群のテンソル空間への表現の標準分解

【定義 4.64 (対称群のテンソル空間への表現)】 体 *K* 上の *n* 次元ベクトル空間 *V* に対し,その *r* 個のテンソル積で得られる *K* 上の *n^r* 次元ベクトル空間を

$$T_r(V) \equiv \overbrace{V \otimes \cdots \otimes V}^r \tag{4.218}$$

で表す.

このとき, r次対称群 \mathfrak{S}_r の $T_r(V)$ への表現 ρ_1 を

$$\mathfrak{S}_r \ni \tau \mapsto \rho_1(\tau) \in \operatorname{GL}(T_r) :$$

$$\rho_1(\tau)(x_1 \otimes \cdots \otimes x_r) = x_{\tau^{-1}(1)} \otimes \cdots \otimes x_{\tau^{-1}(r)}, \quad x_1, \cdots, x_r \in V.$$
(4.219)

で定義することができる. ρ₁に対して,

$$\rho_1(\tau\sigma) = \rho_1(\tau)\rho_1(\sigma), \quad \tau, \sigma \in \mathfrak{S}_r \tag{4.220}$$

が成り立つ. ρ₁は, *K*上の多元環の準同形

$$\rho_1: K[G] \to \operatorname{End}_K(T_r) \tag{4.221}$$

を誘導する. _____

【定理 4.65 (ρ_1 の核)】 $K = \mathbb{C}$ とすると、 $\mathbb{C}[\mathfrak{S}_r]$ は半単純で、r次の台の全体を $D_1, \dots, D_{p(r)}, \mathfrak{a}(D)$ を台Dに対応する $\mathbb{C}[\mathfrak{S}_r]$ の極小イデアルとして、

$$\mathbb{C}[\mathfrak{S}_r] = \mathfrak{a}(D_1) \oplus \cdots \mathfrak{a}(D_{p(r)})$$

と単純成分へ分解される.

この記法のもとで, r次の台Dの符号数を $(\lambda_1, \dots, \lambda_k)(\lambda_1 \ge \dots \ge \lambda_k > 0)$ とすると,

$$\operatorname{Ker}\rho_1 \supset \mathfrak{a}(D) \iff k > n = \dim V$$

が成り立つ. したがって, $\operatorname{Ker} \rho_1$ は, 深さkがnを超える台 D_i に対応する極小イデアル $\mathfrak{a}(D_i)$ の直和で与えられる.

【系 4.66 $(R = \text{Im}(\rho_1))$ 】 ρ_1 による $\mathbb{C}[\mathfrak{S}_r]$ の像 R は, $\text{End}(T_r)$ の部分多元環となり,

$$R \cong \mathbb{C}[\mathfrak{S}_r] / \mathrm{Ker}\rho_1 \cong \bigoplus_{D:\mathrm{depth}(D) \leqslant n} \mathfrak{a}(D).$$

と単純成分への分解が得られる. _____□

【定義 4.67 (一般線型群のテンソル空間上の表現)】 Vを体 $K \perp o_n$ 次元ベクトル空間, $T = T_r(V)$ として, GL(V) の T 上の線形表現

$$\rho_2 : \operatorname{GL}(V) \to \operatorname{GL}(T)$$
(4.222)

を次のように構成する:

$$\operatorname{GL}(V) \ni A \mapsto \rho_2(A) = \overbrace{A \otimes \cdots \otimes A} r \in \operatorname{GL}(T),$$

$$(4.223)$$

$$\rho_2(A)(x_1 \otimes \cdots \otimes x_r) = Ax_1 \otimes \cdots \otimes Ax_r, \quad x_1, \cdots, x_r \in V.$$
 (4.224)

このとき,

$$\rho_2(1_V)1_T, \quad \rho_2(AB) = \rho_2(A)\rho_2(B), \quad A, B \in GL(V)$$
(4.225)

が成り立つ. _____

目次へ

 \Box

【定理 4.68 $(S = \rho_2(\mathbb{C}[GL(V)]))$) ρ_2 による GL(V) の像に属する元の有限個の 線形結合全体が作る集合 $S = \rho_2(\mathbb{C}[GL(V)])$ は, End_C(T) の部分多元環となる. こ の S と多元環 $R = \rho_1(\mathbb{C}[\mathfrak{S}_r])$ の間に次の関係が成り立つ:

$$\operatorname{End}_R(V) = S, \quad \operatorname{End}_S(V) = R.$$

特に, $\rho_1(\sigma)$ ($\sigma \in \mathfrak{S}_r$) と $\rho_2(A)$ ($A \in \operatorname{GL}(V)$) は常に可換である.

【系 4.69 (GL(V) のテンソル積表現の完全可約性)】 多元環 $S = \mathbb{C}[\rho_2(GL(V))] \subset End(T)$ は半単純である.したがって、GL(V)の $T_r(V)$ への線形表現は完全可約である.

【定理 4.70 ($\mathfrak{S}_r \times \operatorname{GL}(V) \mathfrak{O} T_r(V)$ への表現の指標)】 $\tau \in \mathfrak{S}_r \mathfrak{O} \mathbb{Z} \delta \left(1^{\alpha_1(\tau)} 2^{\alpha_2(\tau)} \cdots r^{\alpha_r(\tau)} \right)$ とするとき, $A \in \operatorname{GL}(V)$ に対し,

$$\operatorname{Tr}(\rho_1(\tau)\rho_2(A)) = (\operatorname{Tr} A)^{\alpha_1(\tau)} \cdots (\operatorname{Tr} A^r)^{\alpha_r(\tau)}.$$

【定理 4.71 (GL(V) のテンソル表現の既約成分)】 dim $V = n, T = T_r(V)$ とする. 深さが n 以下であるような台 D 上の任意の盤 B の定める Young 対称子を c_B として, $U = c_B T$, または $U = \hat{c}_B T(c_B = \sum_{\sigma} k(\sigma)\sigma \Rightarrow \hat{c}_B = \sum_{\sigma} k(\sigma)\sigma^{-1})$ とおけば, U は GL(V) の既約表現を与える.

GL(V)のU上の表現指標を ψ_D とすると、 ψ_D は次の公式で与えられる:

$$\operatorname{GL}(V) \ni A \mapsto \psi_D(A) = S_\lambda(\epsilon_1, \cdots, \epsilon_n) \equiv \frac{|\epsilon^{\ell_1}, \cdots, \epsilon^{\ell_n}|}{|\epsilon^{n-1}, \cdots, \epsilon, 1|}$$

ただし、*D*の符号数を $\lambda = (\lambda_1, \dots, \lambda_n)$ とするとき、 $l = (l_1, \dots, l_n)$ は $l = \lambda + \delta, \delta = (n - 1, \dots, 1, 0)$ で定まる整数成分ベクトルである.また、 $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ は行列 *A*の固有値である.

【系 4.72 (GL(V) のテンソル表現の既約成分の重複度)】 r次の盤 Bの深さ $M \leq \dim V$ ならば, GL(V) の既約表現空間 $c_B T_r(V)$ が T_r 中に含まれる重複度は, $\mathbb{C}[\mathfrak{S}_r]$ の極小左イデアル $\mathfrak{l}_B = \mathbb{C}[\mathfrak{S}_r]c_B$ の次元に等しい.すなわち, Bの符号数が $\lambda = (\lambda_1, \dots, \lambda_n)$ ならば,

$$\langle T_r, c_B T_r \rangle_S = \frac{r!}{l_1! \cdots l_n!} D(l_1, \cdots, l_n)$$

である.ここで、 $l = \lambda + \delta$ で、 $D(l_1, \cdots, l_n)$ は差積を表す.

【定理 4.73 (GL(V) のテンソル表現の既約成分の次元)】 dim $V = n, T = T_r(V)$ のとき. 深さがn以下であるような台 D上の任意の盤 Bに対し, GL(V)の既約な表現空間 $c_B T$ の次元は, Dの符号数 $\lambda = (\lambda_1, \dots, \lambda_n)$ を用いて, 次の式で与えられる:

$$\dim c_B T = \frac{D(l_1, \cdots, l_n)}{D(n-1, \cdots, 1, 0)}$$

ただし, $l = (l_1, \cdots, l_n) = \lambda + \delta$.

【定義 4.74 (GL(V)の符号数をもつ既約表現)】 符号数 $\lambda = (\lambda_1, \dots, \lambda_n) (\lambda_1 \ge \dots \ge \lambda_n \ge 0)$ の台 D 上の盤 B を用いて作った表現空間 $c_B T_r(V)$ 上の GL(V)の既約表現を, GL(V)の符号数 $(\lambda_1, \dots, \lambda_n)$ をもつ既約表現と呼ぶ.

【定理 4.75 (符号数をもつ GL(V)の既約表現の同値判定条件)】 GL(V) (dim V = n) の 2 つの既約表現 ρ , ρ' がそれぞれ符号数 $\lambda = (\lambda_1, \dots, \lambda_n), \mu = (\mu_1, \dots, \mu_n)$ をも てば,

$$\rho \cong \rho' \iff \lambda = \mu.$$

【定義 4.76 (標準盤)】 r次の盤 B において, B の各列, 各行に書かれた数字が, 右に向かっても,下に向かっても単調増加するとき, B を標準盤という. ____□

【定理 4.77 (GL(V) のテンソル表現の既約分解)】 深さが高々 $n = \dim V$ 以下 の r 次の標準盤の全体を B_1, \dots, B_m とし、これらに対応する Young 対称子を $c_i = c_{Bi}(1 \le i \le m)$ とする.群環 $\mathbb{C}[\mathfrak{S}_r]$ の逆自己同型 $a = \sum \lambda_{\sigma} \sigma \mapsto \hat{a} = \sum \lambda_{\sigma} \sigma^{-1}$ による $c_i \circ \mathfrak{R}$ \hat{c}_i を用いて、 $T = T_r(V)$ は

$$T = \hat{c}_1 T \oplus \cdots \oplus \hat{c}_m T$$

と直和に分解され,各 *ĉ_iT* は GL(V) の既約表現を与える. _____□

【定理 4.78 (SL(V) のテンソル積表現の既約成分の Dynkin ラベル)】 dim V = nとする. SL(V) のテンソル積表現 \mathcal{T}^r の既約分解において, \mathfrak{S}_n の Young 標準盤 B に 対応する符号数が $\mathbf{m} = (m_1, \dots, m_D)(m_1 \ge m_2 \ge \dots \ge m_D \ge 0, m_1 + \dots + m_D = r)$ のとき,対応する既約表現の Dynkin ラベルは, $[m_1 - m_2 m_2 - m_3 \cdots m_{D-1} - m_D]$ となる.

【証明へ】

目次へ

4.11 実単純 Lie 群

4.11.1 分類

複素型	実型	定義	極大コンパクト群
A_{n-1}		$X \in \mathrm{SL}(n, \mathbb{C})$	
	SU(n)	$X^{\dagger}X = I_n$	コンパクト
	SU(p,q)(p+q=n)	$X^{\dagger}I_{p,q}X = I_{p,q}$	$S(\mathrm{U}(p) \times \mathrm{U}(q))$
	$\operatorname{SL}(n,\mathbb{R})$	$\bar{X} = X$	SO(n)
	$\mathrm{SU}^*(n) = \mathrm{SL}(n/2, \mathbb{H})$	$J_{n/2}X = \bar{X}J_{n/2}, n$:even	$\operatorname{Sp}(n/2)$
B_n		$^{T}XX = I_n, X \in SL(2n+1, \mathbb{C})$	
	SO(2n+1)	$\bar{X} = X$	コンパクト
	SO(p,q)(p+q=2n+1)	$\bar{X} = I_{p,q} X I_{p,q}$	$\mathrm{SO}(p) \times \mathrm{SO}(q)$
C_n		${}^{T}\!XJ_nX = J_n, \ X \in \mathrm{GL}(2n,\mathbb{C})$	
	$\operatorname{Sp}(n)$	$X^{\dagger}X = I_{2n}$	コンパクト
	$\operatorname{Sp}(p,q)(p+q=n)$	$X^{\dagger}K_{p,q}X = K_{p,q}$	$\operatorname{Sp}(p) \times \operatorname{Sp}(q)$
	$\operatorname{Sp}(n,\mathbb{R})$	$\bar{X} = X$	U(n)
D_n		$^{T}\!XX = I_n, \ X \in \mathrm{SL}(2n, \mathbb{C})$	
	SO(2n)	$\bar{X} = X$	コンパクト
	SO(p,q)(p+q=2n)	$\bar{X} = I_{p,q} X I_{p,q}$	$\mathrm{SO}(p) \times \mathrm{SO}(q)$
	$\mathrm{SO}^*(2n) = \mathrm{SO}(n, \mathbb{H})$	$X^{\dagger}J_nX = J_n$	U(n)
G_2	G_2		コンパクト
	$G_{2(2)}$		$SU(2) \times SU(2)$
F_4	F_4		コンパクト
	$F_{4(-20)}$		SO(9)
	$F_{4(4)}$		$\operatorname{Sp}(3) \times \operatorname{SU}(2)$
E_6	E_6		コンパクト
	$E_{6(2)}$		$SU(6) \times SU(2)$
	$E_{6(-14)}$		$SO(10) \times U(1)$
	$E_{6(6)}$		$\operatorname{Sp}(4)$
	$E_{6(-26)}$		F_4
E_7	E_7		コンパクト
	$E_{7(7)}$		SU(8)
	$ E_{7(-5)}$		$SO(12) \times SU(2)$
	$E_{7(-25)}$		$E_6 \times \mathrm{U}(1)$
E_8	E_8		コンパクト
	$ E_{8(8)}$		SO(16)
	$E_{8(-24)}$	107	$E_7 \times SU(2)$

Ref: Helgason S 1978B; Besse AL 2002B

注:

- 1. この表において,実型について位相の自由度は考慮されていない(Lie 代数のみの分類).
- 2. 半単純 Lie 群の実型 G に対して,その Lie 代数 g を極大コンパクト部分代数 t を用いて g = t + m と直和分解するとき,δ = dim(m) dim(t) を g の標数 (charater) と呼ぶ. 例外群に対しては,各単純複素 Lie 群において同じ標数を もつ実型は同型となるので,上の表では,実型をランク r と標数 δ を用いて, G_{r(δ)} と表記している.

4.11.2 同型関係

1. A型 ⇒ B/D型

$$\mathfrak{su}(2) \cong \mathfrak{so}(3),$$

$$\mathfrak{su}(4) \cong \mathfrak{so}(6),$$

$$\mathfrak{sl}(2, \mathbb{R}) \cong \mathfrak{so}(2, 1),$$

$$\mathfrak{sl}(4, \mathbb{R}) \cong \mathfrak{so}(3, 3),$$

$$\mathfrak{sl}(2, \mathbb{C}) \cong \mathfrak{so}(3, 1),$$

$$\mathfrak{su}(1, 1) \cong \mathfrak{so}(2, 1),$$

$$\mathfrak{su}(2, 2) \cong \mathfrak{so}(4, 2),$$

$$\mathfrak{su}(3, 1) \cong \mathfrak{so}^{*}(6) = \mathfrak{so}(3, \mathbb{H}),$$

$$\mathfrak{su}^{*}(2) = \mathfrak{sl}(1, \mathbb{H}) \cong \mathfrak{su}(2) \cong \mathfrak{so}(3),$$

$$\mathfrak{su}^{*}(4) = \mathfrak{sl}(2, \mathbb{H}) \cong \mathfrak{so}(5, 1).$$

2. C型 \Rightarrow B/D型

$$\mathfrak{sp}(1) \cong \mathfrak{so}(3),$$

$$\mathfrak{sp}(2) \cong \mathfrak{so}(5),$$

$$\mathfrak{sp}(1,\mathbb{R}) \cong \mathfrak{so}(2,1),$$

$$\mathfrak{sp}(2,\mathbb{R}) \cong \mathfrak{so}(3,2),$$

$$\mathfrak{sp}(1,1) \cong \mathfrak{so}(4,1).$$
3. B/D 型内部での同値関係

$$\begin{aligned} \mathfrak{so}(4) &\cong \mathfrak{so}(3) \oplus \mathfrak{so}(3), \\ \mathfrak{so}(2,2) &\cong \mathfrak{so}(2,1) \oplus \mathfrak{so}(2,1), \\ \mathfrak{so}^*(4) &= \mathfrak{so}(2,\mathbb{H}) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(2,1), \\ \mathfrak{so}^*(8) &= \mathfrak{so}(4,\mathbb{H}) \cong \mathfrak{so}(6,2). \end{aligned}$$

Group	Restriction	Real/Pseudoreal (PR)
SU ₁₊₁	$(a_1,, a_l) =$	Real only
$l = 2, 3, 4; 6, 7, 8; \dots$	$(a_1,, a_1)$	67%
SU_{l+1}	$(a_1,\ldots,a_l) =$	Real if $a_{(l+1)/2}$ even
<i>l</i> = 1, 5, 9, 13,	(a_1,\ldots,a_1)	PR if $a_{(l+1)/2}$ odd
\$O ₂₁₊₁	none	Real only
$l = 3, 4; 7, 8; 11, 12; \dots$		
\$O _{2l+1}	none	Real if a_l even
= 1, 2; 5, 6; 9, 10;	(a ₁ is the short root)	PR if a _l odd
Sp ₂₁	none	Real if $\sum_{i \text{ odd}} a_i$ even
	(a) is the long root)	PR if $\sum_{i \text{ odd}} a_i$ odd
SO ₂₁ I odd	$a_{l-1}=a_l$	Real only
SO ₂₁ I even, ¹ / ₂ I even	none	Real only
SO ₂₁	none	Real if $a_{l-1} + a_l$ even
even, $\frac{1}{2}l$ odd	$(\alpha_{l-1} \text{ and } \alpha_l \text{ are})$ the spinor roots	PR if $a_{l-1} + a_l$ odd
G ₂	none	Real only
F4	none	Real only
E ₆	$(a_1, a_2, \ldots, a_5, a_6) =$	Real only
	$(a_5, a_4, \ldots, a_1, a_6)$	
E7	none [Note, 56 = (0000010)]	Real if $a_4 + a_6 + a_7$ even
	(PR if $a_4 + a_6 + a_7$ odd
		20 X X

Self-conjugate representations of simple groups

図 6: 単純 Lie の自己共役表現のリスト

4.12 命題・定理・公式の証明

定理 4.78 の証明. 符号数 $m = (m_1, \dots, m_n)(m_1 \ge \dots \ge m_n \ge 0, m_1 + \dots + m_n = r)$ をもつ Young 台に対応する SL(n) の既約表現 ρ_m を考える.

 $\mathscr{T}^r = \bigotimes^r V(\dim V = n)$ に対し、この Young 台に属する Young 盤の一つを *B*、対応する Young 対称子とその反自己同型を

$$c_B = \left(\sum_{\sigma \in \hat{\mathfrak{K}}_B} \operatorname{sign}(\sigma) \sigma\right) \left(\sum_{\tau \in \hat{\mathfrak{H}}_B} \tau\right), \quad \hat{c}_B = \left(\sum_{\tau \in \hat{\mathfrak{H}}_B} \tau^{-1}\right) \left(\sum_{\sigma \in \hat{\mathfrak{K}}_B} \operatorname{sign}(\sigma) \sigma^{-1}\right),$$

とするとき,

$$\mathscr{T}^{\boldsymbol{m}}(B) = c_B \mathscr{T}^r \cong \hat{c}_B \mathscr{T}^r$$

が成り立つ.

いま,
$$E = c_B e_{a_1} \otimes \cdots \otimes e_{a_r} \in \mathscr{T}^m(B)$$
とすると, $SL(n)$ の極大可換部分群 Δ の元
 $A = [\delta_1, \cdots, \delta_n] \in \Delta \subset SL(n), \quad \delta_1 \cdots \delta_n = 1$

に対して,

$$\rho(A)\boldsymbol{E} = \delta_1^{l_1} \cdots \delta_n^{l_n} \boldsymbol{E}$$

が成り立つ. ここで,

$$\{a_1, \cdots, a_n\} = \left\{\overbrace{1, \cdots, 1}^{l_1}, \cdots, \overbrace{n, \cdots, n}^{l_n}\right\}, \quad l_1 + l_2 + \cdots + l_n = r.$$

これより、sl(n)のCartan部分代数を標準的に取り、その生成元を

$$H_1 = E_{11} - E_{nn}, \cdots, H_{n-1} = E_{n-1n-1} - E_{nn},$$

これらに双対的なウエイト空間での基底を h_i ($i = 1, \dots, n-1$) とするとき, **E** には次のウエイトベクトルが対応する:

$$E \mapsto w = l'_1 h_1 + \dots + l'_{n-1} h_{n-1}; \quad l'_j = l_j - l_n.$$

ここで, h_i を基本ルート α_i で表すと

$$h_1 = \alpha_1 + \alpha_2 + \dots + \alpha_{n-1} - \beta,$$

$$h_2 = \alpha_2 + \dots + \alpha_{n-1} - \beta,$$

$$\vdots = \vdots$$

$$h_{n-1} = \alpha_{n-1} - \beta,$$

$$\beta = \frac{1}{n} \{ \alpha_1 + 2\alpha_2 + \dots + (n-1)\alpha_{n-1} \}.$$

111

よって, ウエイトベクトル w は基本ルートを用いて

$$w = (l_1 - r/n)\alpha_1 + (l_1 + l_2 - 2r/n)\alpha_2 + \dots + (l_1 + \dots + l_{n-1} - (n-1)r/n)\alpha_{n-1}$$

と表される. よって, 既約表現 $\mathscr{T}^{m}(B)$ の最高ウエイトは, $E \neq 0$ となる (l_1, \dots, l_{n-1}) の中で, 辞書式順序に関して最大となるベクトルに対する w と一致する.

ここで、互換 $\alpha \in \mathfrak{K}_B$ に対し、

$$b_B = \sum_{\sigma \in \mathfrak{K}_B} \operatorname{sign}(\sigma) \sigma \implies (1 - \alpha) b_B = 2b_B$$

より, $E_a \neq 0$ となるためには, $a = (a_1, \dots, a_r)$ の Young 台のr 個のセルへの配列 (Young 配列)の中に, 任意の互換 $\alpha \in \mathfrak{K}_B$ で不変とならないものが存在することが 必要. この条件は, Young 配列のどの縦の列にも同じ数字が現れない配列が存在す ることと同等. このような配列は, 適当な垂直置換により, 各列の数字が上から下 に単調減少となる配列に写される.よって, l_1 が最大となるのは, Young 台の第1 行に表れる数字がすべて1の時.さらに, この第1行を固定して, m_2 が最大となる のは, 第2行に表れる数字がすべて2のとき.

以下,これをくり返すと,既約表現 $\mathcal{T}^m(B)$ の最高ウエイトを与える (l_1, \cdots, l_{n-1}) は,

$$l_1 = m_1, l_2 = m_2, \cdots, l_n = m_n$$

で与えられることが分かる.対応する最高上ウエイトは, f_1, \cdots, f_{n-1} を基本表現に 対応するウエイトベクトルとして,

$$w = (m_1 - m_n)h_1 + \dots + (m_{n-1} - m_n)h_{n-1}$$

= $(m_1 - m_n)f_1 + (m_2 - m_n)(f_2 - f_1) + \dots + (m_{n-1} - m_n)(f_{n-1} - f_{n-2})$
= $(m_1 - m_2)f_1 + (m_2 - m_3)f_2 + \dots + (m_{n-1} - m_n)f_{n-1}.$

すなわち, Dynkin ラベルは

$$[(m_1 - m_2)(m_2 - m_3) \cdots, (m_{n-1} - m_n)]$$

Q.E.D.

【定理 4.78 に戻る】

複素型	階数	次元	コンパクト実型 (π1)	非コンパクト実型(極大コンパクト群)
E_8	8	248	$E_{8}(1)$	$E_{8(8)}\left(\mathrm{SO}(16) \cong \mathrm{Spin}(16)/\mathbb{Z}_2\right)$
				$E_{8(-24)}\left((E_7 \times \mathrm{SU}(2))/\mathbb{Z}_2\right)$
E_7	7	133	$E_7\left(\mathbb{Z}_2\right)$	$E_{7(7)}({ m SU}(8)/{ m Z}_2)$
				$E_{7(-5)}\left((\operatorname{Spin}(12) \times \operatorname{SU}(2))/\mathbb{Z}_2\right),$
				$E_{7(-25)}\left((E_6 \times \mathrm{U}(1))/\mathbb{Z}_3\right)$
E_6	6	78	$E_6\left(\mathbb{Z}_3 ight)$	$E_{6(6)}\left({ m Sp}(4)/{ m Z}_2 ight)$
				$E_{6(2)}$ (SU(6) × SU(2)/ \mathbb{Z}_6),
				$E_{6(-14)}\left(({\rm Spin}(10) \times {\rm U}(1))/\mathbb{Z}_4\right)$
				$E_{6(-26)}(F_4)$
F_4	4	52	$F_{4}\left(1 ight)$	$F_{4(4)}\left((\operatorname{Sp}(3) \times \operatorname{Sp}(1))/\mathbb{Z}_2\right)$
				$F_{4(-20)}({\rm Spin}(9))$
G_2	2	14	$G_{2}\left(1 ight)$	$G_{2(2)}\left((\mathrm{SU}(2) imes \mathrm{SU}(2)/\mathbb{Z}_2) ight)$

表 4: 単純例外 Lie 群

5 例外群

Reviews

- Adams, J. Frank (1996), Lectures on exceptional Lie groups, Chicago Lectures in Mathematics, University of Chicago Press, ISBN 978-0-226-00526-3, MR1428422
- John C. Baez, "The Octonions"

5.1 *G*₂

5.1.1 基本事項

- Rank=2
- 次元=14
- Killing metric

$$\begin{pmatrix} 3 & -3/2 \\ -3/2 & 1 \end{pmatrix}$$
(5.1)

Cartan matrices of simple Lie algebras

A(A _n) =	$\begin{pmatrix} 2\\ -1\\ 0\\ \\ 0\\ 0 \end{pmatrix}$	$ \begin{array}{r} -1 \\ 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $	0 -1 2 0 0	-	1	• • • • •	-1 0	0 0 2 -1	$\begin{pmatrix} 0\\0\\.\\-1\\2 \end{pmatrix}$	А(G; А(F4	2) = 1) =	(_ (-	2 -1 0 0	$\binom{1}{2} - \frac{1}{2} - \frac{1}{0} - \frac{1}{0}$	0 2 2	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}$		
A(B _n) =	$ \begin{pmatrix} 2 \\ -1 \\ 0 \\ . \\ 0 \\ 0 \end{pmatrix} $	-1 2 -1 , 0 0	0 -1 2 0 0	•••••		• • • • •	0 0 0 -1	0 0 0 -2 2),	4(E ₆) =	(2 -1 0 0 0 0	-1 2 -1 0 0	0 -1 2 -1 0 -1	0 0 -1 2 -1 0	0 0 -1 2 0	0 0 -1 0 0 2)

 $A(C_n)$ is the transpose of $A(B_n)$, since the short and long roots are interchanged.

	12	-1	0			0	0	01		12	-1	0	0	0	0	0
	1-1	2	-1		0. W	0	0	0	2	-1	2	-1	0	0	0	0
	0	-1	2		•	0	0	0	3	0	-1	2	-1	0	0	-1
$A(D_n) =$									$A(E_{7}) =$	0	0	-1	2	-1	0	0
	0	0	0			2	-1	-1	2320343	0	0	0	-1	2	-1	0
	10	0	0			-1	2	0		0	0	0	0	-1	2	0
	10	0	0			-1	0	2		10	0	-1	0	0	0	2
	1 -	0 - 4	0	0	0		0	0.1								
	$\binom{2}{-1}$	-1 2	0 -1	0 0	0 0	0 0	0 0	°								
	$\begin{pmatrix} 2\\ -1\\ 0 \end{pmatrix}$	-1 2 -1	0 -1 2	0 0 -1	0 0 0	0 0 0	0 0 0	$\begin{pmatrix} 0\\ 0\\ -1 \end{pmatrix}$								
	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \end{pmatrix}$	-1 2 -1 0	0 -1 2 -1	0 0 -1 2	0 0 0 -1	0 0 0 0	0 0 0 0	$\begin{pmatrix} 0\\ 0\\ -1\\ 0 \end{pmatrix}$								
A(E ₈) =	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	-1 2 -1 0 0	0 -1 2 -1 0	0 0 -1 2 -1	0 0 -1 2	0 0 0 -1	0 0 0 0	0 0 -1 0 0								
4(E ₈) =	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	-1 2 -1 0 0 0	0 -1 2 -1 0 0	0 0 -1 2 -1 0	0 0 -1 2 -1	0 0 0 -1 2	0 0 0 0 -1	0 0 -1 0 0 0								
4(E ₈) =	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{r} -1 \\ 2 \\ -1 \\ 0 \\ $	$ \begin{array}{c} 0 \\ -1 \\ 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 -1 2 -1 0 0	0 0 -1 2 -1 0	0 0 0 -1 2 -1	0 0 0 0 0 0 -1 2	$\begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}$								

図 7: 単純 Lie 代数の Cartan 行列

$$G(\mathbf{E}_{6}) = \frac{1}{3} \begin{pmatrix} 4 & 5 & 6 & 4 & 2 & 3 \\ 5 & 10 & 12 & 8 & 4 & 6 \\ 6 & 12 & 18 & 12 & 6 & 9 \\ 4 & 8 & 12 & 10 & 5 & 6 \\ 2 & 4 & 6 & 5 & 4 & 3 \\ 3 & 6 & 9 & 6 & 3 & 6 \end{pmatrix}$$

$$G(\mathbf{E}_{7}) = \frac{1}{2} \begin{pmatrix} 4 & 6 & 8 & 6 & 4 & 2 & 4 \\ 6 & 12 & 16 & 12 & 8 & 4 & 8 \\ 8 & 16 & 24 & 18 & 12 & 6 & 12 \\ 6 & 12 & 18 & 15 & 10 & 5 & 9 \\ 4 & 8 & 12 & 10 & 8 & 4 & 6 \\ 2 & 4 & 6 & 5 & 4 & 3 & 3 \\ 4 & 8 & 12 & 9 & 6 & 3 & 7 \end{pmatrix}$$

$$G(\mathbf{E}_{8}) = \begin{pmatrix} 4 & 7 & 10 & 8 & 6 & 4 & 2 & 5 \\ 7 & 14 & 20 & 16 & 12 & 8 & 4 & 10 \\ 10 & 20 & 30 & 24 & 18 & 12 & 6 & 15 \\ 8 & 16 & 24 & 20 & 15 & 10 & 5 & 12 \\ 6 & 12 & 18 & 15 & 12 & 8 & 4 & 9 \\ 4 & 8 & 12 & 10 & 8 & 6 & 3 & 6 \\ 2 & 4 & 6 & 5 & 4 & 3 & 2 & 3 \\ 5 & 10 & 15 & 12 & 9 & 6 & 3 & 8 \end{pmatrix}$$

$$G(\mathbf{G}_{2}) = \frac{1}{3} \begin{pmatrix} 6 & 3 \\ 3 & 2 \end{pmatrix}$$

$$G(\mathbf{F}_{4}) = \begin{pmatrix} 2 & 3 & 2 & 1 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 3 & 3/2 \\ 1 & 2 & 3/2 & 1 \end{pmatrix}$$

図 8: 例外 Lie 代数のウエイト空間での Cartan 計量

Root diagrams in the Dynkin basis. "Level of simple roots" is the
number of simple roots that must be subtracted from the highest root
in order to obtain the simple roots; the next level has the n zero roots
corresponding to the Cartan subalgebra

Algebra	Highest root	Level of simple roots	Dimension
An	(1 0 0 0 0 1)	n – 1	n(n + 2)
B _n	(0 1 0 0 0 0)	2n - 2	n(2n + 1)
C,	(200000)	2n - 2	n(2n + 1)
D,	(0 1 0 0 0 0)	2n - 4	n(2n-1)
G ₂	(1 0)	4	14
F ₄	(1 0 0 0)	10	52
E ₆	(0 0 0 0 0 1)	10	78
E ₇	(1 0 0 0 0 0 0)	16	133
E ₈	(0 0 0 0 0 0 1 0)	28	248

図 9: 単純 Lie 代数の随伴表現の最高 Dynkin ウエイト

Algebra	Dynkin designation	Dimensionality			
A _n	(100)	n+1			
	or (001)*	$\overline{n+1}$			
B _n	(100)*	2n + 1			
	(00001)	2 ⁿ			
C,	(100)	2 <i>n</i>			
D,	(100)*	2 n			
	(0001)	2*-1			
	or (00010)*	2^{n-1}			
G ₂	(01)	7			
F4	(0001)	26			
E ₆	(100000)	27			
(1) Construction (Construction)	or (000010)*	27			
E ₇	(0000010)	56			
E ₈	(0000010)	248			

Simple irreps of simple Lie algebras

* This irrep can be constructed from products of the unstarred irrep.

図 10: 単純 Lie 代数に対する単純既約表現のリスト(Dynkin 基底)

ルート系 単純ルート基底での正ルートは

level roots 5: (2,3) 4: (1,3) 3: (1,2) 2: (1,1) 1: $\alpha_1 = (1,0) \quad \alpha_2 = (0,1)$

以下,基本ルート系 α_i に双対なCartan部分代数 $\mathcal{L}_0(\mathfrak{g}_2)$ の基底を H_i とする: $\alpha_i(H_j) = \delta_{ij}$.

Weyl 基底

$$\begin{split} & \left[E_{(2,3)}, E_{(-2,-3)} \right] = \frac{3}{2}H_1, & \left[E_{(1,3)}, E_{(-1,-3)} \right] = \frac{3}{2}(-H_1 + H_2), \\ & \left[E_{(1,2)}, E_{(-1,-2)} \right] = \frac{1}{2}H_2, & \left[E_{(1,1)}, E_{(-1,-1)} \right] = \frac{3}{2}H_1 - \frac{1}{2}H_2, \\ & \left[E_{(1,0)}, E_{(-1,0)} \right] = 3H_1 - \frac{3}{2}H_2, & \left[E_{(0,1)}, E_{(0,-1)} \right] = -\frac{3}{2}H_1 + H_2, \\ & \left[E_{(2,3)}, E_{(-1,0)} \right] = -aE_{(1,3)}, & \left[E_{(2,3)}, E_{(-1,-1)} \right] = -aE_{(1,2)}, \\ & \left[E_{(2,3)}, E_{(-1,-2)} \right] = aE_{(1,1)}, & \left[E_{(2,3)}, E_{(-1,-3)} \right] = aE_{(1,0)}, \\ & \left[E_{(1,3)}, E_{(1,0)} \right] = -aE_{(2,3)}, & \left[E_{(1,3)}, E_{(0,-1)} \right] = aE_{(1,2)}, \\ & \left[E_{(1,3)}, E_{(-1,-2)} \right] = -aE_{(0,1)}, & \left[E_{(1,3)}, E_{(-2,-3)} \right] = aE_{(1,3)}, \\ & \left[E_{(1,2)}, E_{(0,1)} \right] = -aE_{(2,3)}, & \left[E_{(1,2)}, E_{(0,1)} \right] = aE_{(1,3)}, \\ & \left[E_{(1,2)}, E_{(0,-1)} \right] = -aE_{(0,-1)}, & \left[E_{(1,2)}, E_{(-1,-1)} \right] = bE_{(0,1)}, \\ & \left[E_{(1,2)}, E_{(0,-1)} \right] = -aE_{(0,-1)}, & \left[E_{(1,2)}, E_{(-1,-1)} \right] = bE_{(0,1)}, \\ & \left[E_{(1,1)}, E_{(0,1)} \right] = -aE_{(1,0)}, & \left[E_{(1,1)}, E_{(-1,-2)} \right] = bE_{(0,-1)}, \\ & \left[E_{(1,1)}, E_{(0,-1)} \right] = -aE_{(1,0)}, & \left[E_{(1,0)}, E_{(0,1)} \right] = -aE_{(-1,-3)}, \\ & \left[E_{(0,1)}, E_{(-1,-1)} \right] = aE_{(0,-1)}, & \left[E_{(1,0)}, E_{(-1,-2)} \right] = -aE_{(-1,-3)}, \\ & \left[E_{(0,1)}, E_{(-1,-3)} \right] = -aE_{(-1,-2)}, & \left[E_{(0,-1)}, E_{(-1,-1)} \right] = -aE_{(-1,-2)}, \\ & \left[E_{(0,-1)}, E_{(-1,-2)} \right] = aE_{(-1,-2)}, & \left[E_{(0,-1)}, E_{(-1,-2)} \right] = -aE_{(-1,-2)}, \\ & \left[E_{(0,-1)}, E_{(-1,-2)} \right] = aE_{(-1,-3)}, & \left[E_{(0,-1)}, E_{(-1,-2)} \right] = -aE_{(-1,-2)}, \\ & \left[E_{(0,-1)}, E_{(-1,-2)} \right] = aE_{(-1,-3)}, & \left[E_{(-1,-1)}, E_{(-1,-2)} \right] = -aE_{(-2,-3)}. \\ & \left[E_{(0,-1)}, E_{(-1,-2)} \right] = -aE_{(-2,-3)}, & \left[E_{(-1,-1)}, E_{(-1,-2)} \right] = -aE_{(-2,-3)}. \\ & \left[E_{(0,-1)}, E_{(-1,-2)} \right] = aE_{(-1,-3)}, & \left[E_{(-1,-1)}, E_{(-1,-2)} \right] = -aE_{(-2,-3)}. \\ & \left[E_{(0,-1)}, E_{(-1,-2)} \right] = aE_{(-2,-3)}, & \left[E_{(-1,-1)}, E_{(-1,-2)} \right] = -aE_{(-2,-3)}. \\ & \left[E_{(0,-1)}, E_{(-1,-2)} \right] = aE_{(-2,-3)}, & \left[E_{(-1,-1)}, E_{(-1,-2)} \right] = -aE_{(-2,-3)}. \\ & \left[E_{($$

$$a = \frac{\sqrt{6}}{2}, \quad b = \sqrt{2} \tag{5.2}$$

level	representations
1	$[1,0] = 14_{adj}, \ [0,1] = 7_v$
2	[2,0] = 77, [1,1] = 64, [0,2] = 27
3	[3.0] = 273, [2,1] = 286, [1,2] = 189

表 5: G₂の低次元の表現

5.1.2 表現

Cartan 行列は,

$$C(\mathfrak{g}_2) = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}, \quad C(\mathfrak{g}_2)^{-1} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$$
(5.3)

よって,基本表現は

$$f_1 = 2\alpha_1 + 3\alpha_2$$
: **14**_{adj}, (5.4a)

$$f_2 = \alpha_1 + 2\alpha_2 : \quad \mathbf{7} \tag{5.4b}$$

$$\begin{bmatrix} 1,0 \end{bmatrix} = \mathbf{14}_{adj}: \begin{bmatrix} evel & Dynkin \ label & weight \\ 5 & [1,0] & (2,3) \\ 4 & [-1,3] & (1,3) \\ 3 & [0,1] & (1,2) \\ 2 & [1,-1] & (1,1) \\ 1 & [-1,2], \ [2,-3] & (0,1), \ (1,0) \\ 0 & [0,0]^2 & (0,0)^2 \\ \vdots & \vdots & \vdots \\ evel & Dynkin \ label & weight \\ 3 & [0,1] & (1,2) \\ 2 & [1,-1] & (1,1) \\ 1 & [-1,2] & (0,1) \\ 0 & [0,0] & (0,0) \\ \vdots & \vdots & \vdots \\ \end{bmatrix}$$
(5.5)

表現の一般的性質

【命題 5.1 (最高ウエイトと最低ウエイト)】 $G_2 型 \operatorname{Lie} 代数の既約表現 <math>\rho$ に対して,

1) Weyl 変換

$$w = W[\alpha_1]W[\alpha_1 + 2\alpha_2] \tag{5.7}$$

により、その Dynkin ウエイト系は、

$$[m_1m_2] \rightarrow [(-m_1)(-m_2)]$$

と変換する.

- 2) ρ の最高ウエイトの Dynkin ラベルを $[a_1a_2]$ とすると、最低ウエイトの Dynkin ラベルは $[(-a_1)(-a_2)]$ で与えられる.
- *ρ*は常に自己共役である.

5.1.3 SO(7) への埋め込み

SO(7) は B 型で, rank=3, 次元=21, 正ルート系は

level	roots	matrix rep
5:	(1, 2, 2)	E_{12+}^{+}
4:	(1,1,2)	E_{13+}^{+}
3:	(0,1,2) (1,1,1)	E_{23+}^+, E_1^+
2:	(0,1,1) (1,1,0)	E_2^+, E_{13-}^+
1:	$(1,0,0) \ (0,1,0) \ (0,0,1)$	$E_{12-}^+, E_{23-}^+, E_3^+$

Killing 計量は

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$
 (5.8)

*G*₂のSO(7)への埋め込みを

$$j:\mathfrak{g}_2\to\mathfrak{so}(7)\tag{5.9}$$

に対し, jの Cartan 部分代数への制限 $j : \mathcal{L}_0(\mathfrak{g}_2) \hookrightarrow \mathcal{L}'_0 = \mathcal{L}_0(\mathfrak{so}_7)$ は、ルート空間 の写像

$$j^*: \mathcal{H}' = \mathcal{H}(\mathfrak{so}_7) \ni \alpha' \mapsto \alpha \in \mathscr{R} = \mathscr{R}(G_2)$$
(5.10)

目次へ

を誘導する.この写像はルート系のレベルを保存する.このことより, j* は

$$j^*(\alpha'_1) = j^*(\alpha'_3) = \alpha_2, \quad j^*(\alpha'_2) = \alpha_1$$
 (5.11)

と一意的に定まる. すなわち,

$$\begin{pmatrix} \alpha_1' & \alpha_2' & \alpha_3' \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 \end{pmatrix} M_S; \quad M_S(\mathfrak{g}_2 \to \mathfrak{so}_7) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$
(5.12)

これより、 $\mathcal{L}_0(\mathfrak{so}_7)$ の基底を $H_j = -iA_{2j-1\,2j}$ (j = 1, 2, 3)と取るとき、Cartan 部分代数の対応が次のように決まる:

$$j_* \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = M_H \begin{pmatrix} H'_1 \\ H'_2 \\ H'_3 \end{pmatrix}; \quad M_H = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$
(5.13)

また, Dynkin ラベルで表した埋め込み行列は

$$M_D(\mathfrak{g}_2 \to \mathfrak{so}_7) = {}^{T}\!C(\mathfrak{g}_2) M_S {}^{T}\!C(\mathfrak{so}_7)^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$
(5.14)

これは、Dynkin 図式から決まる \mathcal{L}_0 の Cartan 計量と整合的である.

ただし、 \mathfrak{g}_2 の \mathfrak{so}_7 への埋め込みは具体的に決めるためには、 \mathfrak{g}_2 の7次元表現を具体的に構成しないといけない.まず、 \mathfrak{g}_2 の7次元表現のウエイト系は

level weight/basis
3
$$(1,2) = e_1,$$

2 $(1,1) = e_2,$
1 $(0,1) = e_3,$
0 $(0,0) = e_4,$
-1 $(0,-1) = e_5,$
-2 $(-1,-1) = e_6,$
-3 $(-1,-2) = e_7.$
(5.15)

この基底に対する \mathfrak{g}_2 の生成元 $E_{\pm\alpha_1}, E_{\pm\alpha_2}$ のユニタリ作用が, $(E_{\alpha})^{\dagger} = E_{-\alpha}$ と言う要請と $[E_{\alpha}, E_{-\alpha}] = H_{\alpha}$ という規格化条件により定まり,基底の位相を適当に取ると,

121

$$H_1 \mapsto E_{11} - E_{77} + E_{22} - E_{66},$$
 (5.16a)

$$H_2 \mapsto 2(E_{11} - E_{77}) + E_{22} - E_{66} + E_{33} - E_{55},$$
 (5.16b)

$$E_{\pm\alpha_1} \mapsto \frac{\sqrt{6}}{2} (E_{23}^{\pm} - E_{56}^{\pm}),$$
 (5.16c)

$$E_{\pm\alpha_2} \mapsto \frac{\sqrt{2}}{2} (E_{12}^{\pm} - E_{6,7}^{\pm} + i(E_{34}^{\pm} - E_{45}^{\pm}))$$
 (5.16d)

で与えられる.残りの Weyl 基底の表現は、交換関係 (5.2) により定まる.最終的に 得られる埋め込み $\mathfrak{g}_2 \to \mathfrak{so}_7$) は

 \mathfrak{so}_7 の随伴表現は、 \mathfrak{g}_2 に関して、次のように既約表現に分解される:

$$21 = 14 + 7 \tag{5.18}$$

各既約表現の g_2 に関するウエイト系と \mathfrak{so}_7 の随伴表現のウエイト系との対応は、 g_2 の既約表現の最高ウエイトに対応する \mathfrak{so}_7 随伴表現のウエイトベクトルに、(5.17)により $E_{-\alpha_i}$ と対応する \mathfrak{so}_7 の元を交換関係(??)により作用させることにより機械的に決定される.まず、 $7(g_2)$ は

$$\mathbf{7}(\mathfrak{g}_{2}) \to \mathbf{21}_{\mathrm{adj}}(\mathfrak{so}_{7}): \begin{array}{ccc}
G_{2} & \mathrm{SO}(7) \\
(1,2) & \mapsto & -(1,1,1) + \sqrt{2}(0,1,2) \\
(1,1) & \mapsto & (0,1,1) + \sqrt{2}(1,1,0) \\
(0,1) & \mapsto & \sqrt{2}(1,0,0) - (0,0,1).
\end{array}$$
(5.19)

次に、14_{adf}g2は

$$\begin{array}{ccccc} G_2 & \text{SO(7)} \\ (2,3) &\mapsto & (1,2,2) \\ (1,3) &\mapsto & (1,1,2) \end{array} \\ \mathbf{14}_{\text{adf}}(\mathfrak{g}_2) \rightarrow \mathbf{21}_{\text{adj}}(\mathfrak{so}_7) : & (1,2) &\mapsto & (0,1,2) + \sqrt{2}(1,1,1) \\ & (1,1) &\mapsto & (1,1,0) - \sqrt{2}(0,1,1) \\ & (0,1) &\mapsto & (1,0,0) + \sqrt{2}(0,0,1) \\ & (1,0 &\mapsto & (0,1,1). \end{array}$$
(5.20)

5.1.4 部分代数

g2の極大準半単純部分代数は以下の通り:

- 1. 正則型: \mathfrak{su}_3 , $\mathfrak{su}_2 \oplus \mathfrak{su}_2$
- 2. 特殊型: su₂
- (i) 正則部分代数 su3:

Normal embedding 拡張 Dynkin 図式より α_2 に対応するノードを取り除くと、一般公式より、次の埋め込み行列を得る:

$$M_H(\mathfrak{su}_3 \to \mathfrak{g}_2) = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix},$$
 (5.21a)

$$M_S(\mathfrak{su}_3 \to \mathfrak{g}_2) = \begin{pmatrix} 1 & -2/3 \\ 0 & -1/3 \end{pmatrix}, \qquad (5.21b)$$

$$M_D(\mathfrak{su}_3 \to \mathfrak{g}_2) = \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix}.$$
 (5.21c)

基本表現の分岐則

$$f_1: \mathbf{14}_{adj} = \mathbf{8}_{adj} + \mathbf{3} + \mathbf{3}^*,$$
 (5.22a)

$$f_2: \mathbf{7}_v = \mathbf{3} + \mathbf{3}^* + \mathbf{1}.$$
 (5.22b)

(ii) 正則部分代数 $\mathfrak{su}_2 \oplus \mathfrak{su}_2$:

Normal embedding

基本表現の分岐則

$$f_1: 14adj = ,$$
 (5.23a)

$$f_2: \mathbf{7}_{v} = .$$
 (5.23b)

(iii) 特殊部分打数 su₂:

Normal embedding

基本表現の分岐則

$$f_1: 14adj = ,$$
 (5.24a)

$$f_2: \mathbf{7}_{\boldsymbol{v}} = . \tag{5.24b}$$

図 11: F_4 の Dynkin 図式

- **5.2** *F*₄
- 5.2.1 Lie 代数の構造

f₄はランク4,次元52をもち,ルート系は

level	roots	(5.25)
11	(2, 3, 4, 2)	(5.26)
10	(1, 3, 4, 2)	(5.27)
9	(1, 2, 4, 2)	(5.28)
8	(1, 2, 3, 2)	(5.29)
7	$(1,2,2,2),\ (1,2,3,1)$	(5.30)
6	$(1,1,2,2),\ (1,2,2,1)$	(5.31)
5	(0, 1, 2, 2), (1, 1, 2, 1), (1, 2, 2, 0)	(5.32)
4	(0, 1, 2, 1), (1, 1, 1, 1), (1, 1, 2, 0)	(5.33)
3	(0, 1, 1, 1), (0, 1, 2, 0), (1, 1, 1, 0)	(5.34)
2	$(0,0,1,1), \ (0,1,1,0), \ (1,1,0,0)$	(5.35)
1	$(0,0,0,1), \ (0,0,1,0), \ (0,1,0,0), \ (1,0,0,0)$	(5.36)

ルート空間の内積は

$$K = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 1 & -1/2 \\ 0 & 0 & -1/2 & 1 \end{pmatrix}$$
(5.37)

5.2.2 表現

Cartan 行列は

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -2 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}, \quad C^{-1} = \begin{pmatrix} 2 & 3 & 4 & 2 \\ 3 & 6 & 8 & 4 \\ 2 & 4 & 6 & 3 \\ 1 & 2 & 3 & 2 \end{pmatrix}$$
(5.38)

したがって,基本表現は

$$f_1 = (2, 3, 4, 2)$$
 : **52**_{adj} (5.39a)

$$f_2 = (3, 6, 8, 4)$$
 : **1274** (5.39b)

$$f_3 = (2, 4, 6, 3)$$
 : **273** (5.39c)

$$f_4 = (1, 2, 3, 2)$$
 : **26**_v (5.39d)

これらの内,以下,26次元表現の基底を次のように取る:

$$\begin{aligned} e_1 &= (1, 2, 3, 2), \ e_2 = (1, 2, 2, 1), \ e_3 = (1, 2, 3, 1), \\ e_4 &= (1, 1, 1, 1), \ e_5 = (1, 1, 2, 1), \ e_6 = (1, 1, 1, 1), \\ e_7 &= (0, 1, 1, 1), \ e_8 = (0, 1, 2, 1), \ e_9 = (0, 1, 1, 0), \\ e_{10} &= (0, 0, -1, 0), \ e_{11} = (0, 0, 0, 0)_1, \ e_{12} = (0, 0, 1, 0), \\ e_{13} &= (0, -1, -1, 0), \ e_{14} = (0, -1, -2, -1), \ e_{15} = (0, -1, -1), \\ e_{16} &= (-1, -1, -1, -1), \ e_{17} = (-1, -1, -2, -1), \ e_{18} = (-1, -1, -1, -1), \\ e_{19} &= (-1, -2, -3, -1), \ e_{20} = (-1, -2, -2, -1), \ e_{21} = (-1, -2, -3, -2), \\ e_{22} &= (0, 0, 0, 1), \ e_{23} = (0, 0, 1, 1), \ e_{24} = (0, 0, 0, 0), \\ e_{25} &= (0, 0, -1, -1), \ e_{26} = (0, 0, 0, -1). \end{aligned}$$

表現の一般的性質

【命題 5.2 (最高ウエイトと最低ウエイト)】 $F_4 型 \text{Lie} 代数の既約表現 <math>\rho$ に対して,

1) Weyl 変換

$$w = W[(1242)]W[(1221)]W[\alpha_1]W[\alpha_4]$$
(5.41)

により、その Dynkin ウエイト系は、

$$[m_1m_2m_3m_4] \to [(-m_1)(-m_2)(-m_3)(-m_4)]$$

と変換する.

2) ρ の最高ウエイトの Dynkin ラベルを $[a_1a_2a_3a_4]$ とすると、最低ウエイトの Dynkin ラベルは $[(-a_1)(-a_2)(-a_3)(-a_4)]$ で与えられる.

3) *ρ* は常に自己共役である.

5.2.3 極大準半単純部分代数

F4の極大準半単純部分代数は,

- 1. 正則型: \mathfrak{so}_9 , $\mathfrak{su}_3 \oplus \mathfrak{su}_3$, $\mathfrak{sp}_3 \oplus \mathfrak{su}_2$
- 2. 特殊型: $\mathfrak{su}_2, \mathfrak{g}_2 \oplus \mathfrak{su}_2$
- (i) 正則部分代数 so₉:
- (A) Normal embedding この部分代数は拡張 Dynkin 図式から α_4 に対応するノードを取り除くことにより得られ、一般論から得られる埋め込み行列は

$$M_{H}(\mathfrak{so}_{9} \to \mathfrak{f}_{4}) = \begin{pmatrix} 0 & 0 & 0 & -1/2 \\ 1 & 0 & 0 & -1/2 \\ -1 & 1 & 0 & -1/2 \\ 0 & -1 & 1 & -1/2 \end{pmatrix},$$
(5.42a)
$$M_{S}(\mathfrak{so}_{9} \to \mathfrak{f}_{4}) = \begin{pmatrix} 0 & 0 & 0 & -1/2 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -3/2 \\ 0 & 0 & 1 & -2 \end{pmatrix},$$
(5.42b)
$$M_{D}(\mathfrak{so}_{9} \to \mathfrak{f}_{4}) = \begin{pmatrix} -2 & -3 & -2 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$
(5.42c)

(B) Slansky embedding この埋め込みは, (A) の埋め込みに 3 つの Weyl 変換 $w_{\alpha_1+2\alpha_2+4\alpha_3+2\alpha_4}, w_{\alpha_2+2\alpha_3+\alpha_4}, w_{\alpha_2+2\alpha_3}$ を順次施すことによりえらる. 具体的な埋め込 み行列は,

$$M_{H}(\mathfrak{so}_{9} \to \mathfrak{f}_{4}) = \begin{pmatrix} 0 & 1 & -1/2 & -1/2 \\ 1 & 0 & -1/2 & 1/2 \\ 1 & -1 & 1/2 & -1/2 \\ 0 & 0 & -1/2 & 1/2 \end{pmatrix},$$
(5.43a)
$$M_{S}(\mathfrak{so}_{9} \to \mathfrak{f}_{4}) = \begin{pmatrix} 0 & 1 & -1/2 & -1/2 \\ 1 & 1 & -1 & 0 \\ 2 & 0 & -1/2 & -1/2 \\ 2 & 0 & -1 & 0 \end{pmatrix},$$
(5.43b)
$$M_{D}(\mathfrak{so}_{9} \to \mathfrak{f}_{4}) = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ -2 & -4 & -3 & -1 \end{pmatrix},$$
(5.43c)

基本表現の分岐則

$$f_{1}: 52_{adj} = 36_{adj} [0, 1, 0, 0] + 16_{s} [0, 0, 0, 1], \qquad (5.44a)$$

$$f_{2}: 1274 = 594 [1, 0, 1, 0] + 432 [0, 1, 0, 1] + 128 [1, 0, 0, 1] + 84 [0, 0, 1, 0] + 36 [0, 1, 0, 0], \qquad (5.44b)$$

$$f_{3}: 273 = 128 [1, 0, 0, 1] + 84 [0, 0, 1, 0] + 36 [0, 0, 0, 1]$$

$$= \mathbf{128} [1, 0, 0, 1] + \mathbf{84} [0, 0, 1, 0] + \mathbf{36} [0, 0, 0, 1] + \mathbf{16}_{s} [0, 0, 0, 1] + \mathbf{9}_{v} [1, 0, 0, 0],$$
 (5.44c)

$$f_4: \mathbf{26}_{\boldsymbol{v}} = \mathbf{16}_{\boldsymbol{s}} [0, 0, 0, 1] + \mathbf{9}_{\boldsymbol{v}} [1, 0, 0., 0] + \mathbf{1}.$$
(5.44d)

(ii) 正則部分代数 𝒴₃⊕𝒴₃:

(A) Normal embedding この部分代数は拡張 Dynkin 図式から α_2 に対応する ノードを取り除くことにより得られる. ルートの対応を $\alpha'_1 = \alpha_3, \alpha'_2 = \alpha_4, \alpha'_3 = \alpha_1, \alpha'_4 = -\theta$ と取ると、一般論から得られる埋め込み行列は

$$M_H(\mathfrak{su}_3 \oplus \mathfrak{su}_3 \to \mathfrak{f}_4) = \begin{pmatrix} 0 & -2 & 1 & 1 \\ 0 & 0 & -1 & 2 \\ 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},$$
 (5.45a)

$$M_{S}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{3} \to \mathfrak{f}_{4}) = \begin{pmatrix} 0 & -4/3 & 1 & 0 \\ 0 & -2/3 & 0 & 1 \\ 1 & -2/3 & 0 & 0 \\ 0 & -1/3 & 0 & 0 \end{pmatrix},$$
(5.45b)
$$M_{D}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{3} \to \mathfrak{f}_{4}) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ -2 & -3 & -2 & -1 \end{pmatrix},$$
(5.45c)

(B) Slansky embedding (A)の行列に、6 個の Weyl 変換 $w_{2\alpha_1+3\alpha_2+4\alpha_3+2\alpha_4}, w_{\alpha_2+\alpha_3+\alpha_4}, w_{\alpha_1+2\alpha_2+2\alpha_2}, w_{\alpha_3}, w_{\alpha_1+\alpha_2}, w_{\alpha_2}$ を順次施すと

$$M_{H}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{3} \to \mathfrak{f}_{4}) = \begin{pmatrix} -2 & 0 & 1 & 1 \\ -2 & 2 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & -1 \end{pmatrix},$$
(5.46a)
$$M_{S}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{3} \to \mathfrak{f}_{4}) = \begin{pmatrix} -2/3 & -2/3 & 2/3 & 1/3 \\ -4/3 & 2/3 & 1/3 & -1/3 \\ 1/3 & 1/3 & -1/3 & 1/3 \\ 2/3 & -1/3 & 1/3 & -1/3 \end{pmatrix},$$
(5.46b)
$$M_{D}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{3} \to \mathfrak{f}_{4}) = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix},$$
(5.46c)

基本表現の分岐則

$$\begin{aligned} f_1: \ \mathbf{52}_{\mathbf{adj}} &= \ (\mathbf{8}_{\mathbf{adj}}, \mathbf{1}) + (\mathbf{1}, \mathbf{8}_{\mathbf{adj}}) + (\mathbf{3}, \mathbf{6}^*) + (\mathbf{3}^*, \mathbf{6}), \\ f_2: \ \mathbf{1274} &= \ (\mathbf{27}, \mathbf{8}) [2, 2] [1, 1] + (\mathbf{6}^*, \mathbf{15}) [0, 2] [2, 1] + (\mathbf{6}, \mathbf{15}^*) \\ &+ (\mathbf{15}^*, \mathbf{6}) + (\mathbf{15}, \mathbf{6}^*) + (\mathbf{24}^*, \mathbf{3}) [1, 3] [1, 0] + (\mathbf{24}, \mathbf{3}^*) \\ &+ ((\mathbf{8}, \mathbf{8})) \times 2 + (\mathbf{15}, \mathbf{3}) [4, 0] [1, 0] + (\mathbf{15}^*, \mathbf{3}^*) [0, 4] [0, 1] \\ &+ (\mathbf{15}, \mathbf{3}) [2, 1] [1, 0] + (\mathbf{15}^*, \mathbf{3}^*) [1, 2] [0, 1] \\ &+ (\mathbf{6}, \mathbf{6}) + (\mathbf{6}^*, \mathbf{6}^*) + (\mathbf{27}, \mathbf{1}) [2, 2] [0, 0] + ((\mathbf{6}^*, \mathbf{3})) \times 2 + ((\mathbf{6}, \mathbf{3}^*)) \times 2 \\ &+ (\mathbf{1}, \mathbf{10}) [0, 0] [3, 0] + (\mathbf{1}, \mathbf{10}^*) + (\mathbf{10}, \mathbf{1}) + (\mathbf{10}^*, \mathbf{1}) \\ &+ (\mathbf{3}, \mathbf{3}) + (\mathbf{3}^*, \mathbf{3}^*) + (\mathbf{1}, \mathbf{8}) + (\mathbf{8}, \mathbf{1}) + (\mathbf{1}, \mathbf{1}), \\ f_3: \ \mathbf{273} &= \ (\mathbf{8}, \mathbf{8}) + (\mathbf{3}, \mathbf{15}) + (\mathbf{3}^*, \mathbf{15}^*) \\ &+ (\mathbf{6}, \mathbf{3}^*) + (\mathbf{6}^*, \mathbf{3}) + (\mathbf{3}, \mathbf{6}^*) + (\mathbf{3}^*, \mathbf{6}) \\ &+ (\mathbf{1}, \mathbf{10}) [0] [3, 0] + (\mathbf{1}, \mathbf{10}^*) + (\mathbf{3}, \mathbf{3}) + (\mathbf{3}^*, \mathbf{3}^*) \\ &+ (\mathbf{1}, \mathbf{8}) + (\mathbf{1}, \mathbf{1}), \\ f_4: \ \mathbf{26}_n &= \ (\mathbf{1}, \mathbf{8}_{\text{rdi}}) + (\mathbf{3}, \mathbf{3}) + (\mathbf{3}^*, \mathbf{3}^*). \end{aligned}$$
(5.47d)

$$f_4: \mathbf{26}_v = (\mathbf{1}, \mathbf{8}_{adj}) + (\mathbf{3}, \mathbf{3}) + (\mathbf{3}^*, \mathbf{3}^*).$$
 (5.47d)

(iii) 正則部分代数 $\mathfrak{sp}_3 \oplus \mathfrak{su}_2$: subparagraph(A) Normal embedding この部分代数 は拡張 Dynkin 図式から α_1 に対応するノードを取り除くことにより得られる. ルー トの対応を $\alpha'_1 = \alpha_4, \alpha'_2 = \alpha_3, \, \alpha'_3 = \alpha_2, \, \alpha'_4 = -\theta$ と取ると、一般論から得られる埋め 込み行列は

$$M_{H}(\mathfrak{sp}_{3} \oplus \mathfrak{su}_{2} \to \mathfrak{f}_{4}) = \begin{pmatrix} -1 & 0 & 0 & 1 \\ -1 & 0 & 1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},$$
(5.48a)

$$M_{S}(\mathfrak{sp}_{3} \oplus \mathfrak{su}_{2} \to \mathfrak{f}_{4}) = \begin{pmatrix} -1 & 0 & 0 & 1 \\ -2 & 0 & 1 & 0 \\ -3/2 & 1 & 0 & 0 \\ -1/2 & 0 & 0 & 0 \end{pmatrix},$$
 (5.48b)

$$M_D(\mathfrak{sp}_3 \oplus \mathfrak{su}_2 \to \mathfrak{f}_4) = \begin{pmatrix} 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0\\ -2 & -3 & -2 & -1 \end{pmatrix},$$
(5.48c)

(B) canonical embedding (A)の埋め込み行列に4個のWeyl変換 $w_{\alpha_1+\alpha_2+\alpha_3+\alpha_4}$, $w_{\alpha_1+\alpha_2+2\alpha_3}, w_{\alpha_1+\alpha_2}, w_{\alpha_2}$ を順次施すと、 f_4 に関しての最高ウエイトを \mathfrak{sp}_3 に関しての 最高ウエイトに射影する埋め込み行列が得られる:

$$M_{H}(\mathfrak{sp}_{3} \oplus \mathfrak{su}_{2} \to \mathfrak{f}_{4}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ -1 & 0 & 1 & -1 \\ -1 & 2 & -1 & 0 \end{pmatrix},$$
(5.49a)

$$M_{S}(\mathfrak{sp}_{3} \oplus \mathfrak{su}_{2} \to \mathfrak{f}_{4}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1/2 & 0 & 1/2 & 0 \\ -1/2 & 1 & -1/2 & 0 \end{pmatrix},$$
(5.49b)
$$M_{D}(\mathfrak{sp}_{3} \oplus \mathfrak{su}_{2} \to \mathfrak{f}_{4}) = \begin{pmatrix} 2 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$
(5.49c)

基本表現の分岐則

$$f_{1}: 52_{adj} = (21_{adj}, 1) [2, 0, 0] + (14, 2) [0, 0, 1] + (1, 3_{adj}),$$
(5.50a)

$$f_{2}: 1274 = (216, 2) [2, 01] + (189, 1) [2, 1, 0] + (90, 3) [0, 2, 0] + (84, 1) [0, 0, 2] + (64, 2) [1, 1, 0] + (21, 3) [2, 0, 0] + (21, 1) + (14, 4) [0, 0, 1] + (14, 2) + (1, 3),$$
(5.50b)

$$f_3: \mathbf{273} = (\mathbf{70}, \mathbf{1}) [1, 0, 1] + (\mathbf{64}, \mathbf{2}) [1, 1, 0] + (\mathbf{21}, \mathbf{1}) [2, 0, 0] + (\mathbf{14}, \mathbf{3}) [0, 1, 0] + (\mathbf{6}, \mathbf{2}) [1, 0, 0],$$
(5.50c)

$$f_4: \mathbf{26}_{v} = (\mathbf{14}, \mathbf{1}) [0, 1, 0] + (\mathbf{6}, \mathbf{2}) [1, 0, 0]..$$
(5.50d)

(iv) 特殊部分代数 su₂:

(v) 特殊部分代数 $\mathfrak{g}_2 \oplus \mathfrak{su}_2$:

Normal embedding 部分代数 $g_2 \oplus \mathfrak{su}_2$ に対して, F_4 の 2 6 次元表現は

$$\mathbf{26}_{v}[0,0,0,1] \mapsto (\mathbf{7},\mathbf{3})[0,1][2] + (\mathbf{1},\mathbf{5})[0,0][4]$$
(5.51)

と分解する.この表現の基底を (5.40) のように取ると, F_4 の基本ルート系に双対的な Cartan 部分代数の基底 H_{α_a} の表現は、次の対角型行列で表される:

$$\begin{split} H_{\alpha_1} &\mapsto [1^{(3)}, 1^{(3)}, 0^{(3)}, 0^{(3)}, 0^{(3)}, (-1)^{(3)}, (-1)^{(3)}] \oplus [0^{(5)}], \quad (5.52a) \\ H_{\alpha_2} &\mapsto [2^{(3)}, 1^{(3)}, 1^{(3)}, 0^{(3)}, (-1)^{(3)}, (-1)^{(3)}, (-2)^{(3)}] \oplus [0^{(5)}], \quad (5.52b) \\ H_{\alpha_3} &\mapsto [3, 2, 3, 1, 2, 1, 1, 2, 1, -1, 0, 1, -1, -2, -1, -1, -2, -1, -3, -2, -3] \\ &\oplus [0, 1, 0, -1, 0], \quad (5.52c) \end{split}$$

$$H_{\alpha_3} \mapsto [2, 1, 1, 1, 1, 01, 1, 0, 0, 0, 0, 0, -1, -1, 0, -1, -1, -1, -1, -2] \oplus [1, 1, 0, -1, -1].$$
(5.52d)

一方, $\mathfrak{g}_2 \oplus \mathfrak{su}_2$ の基本ルート系に双対的な Cartan 部分代数の基底 $H_{lpha_i'}$ の表現は

$$H_{\alpha_1'} \mapsto [1^{(3)}, 1^{(3)}, 0^{(3)}, 0^{(3)}, 0^{(3)}, (-1)^{(3)}, (-1)^{(3)}] \oplus [0^{(5)}], \qquad (5.53a)$$

$$H_{\alpha'_{2}} \mapsto [2^{(3)}, 1^{(3)}, 1^{(3)}, 0^{(3)}, (-1)^{(3)}, (-1)^{(3)}, (-2)^{(3)}] \oplus [0^{(5)}], \quad (5.53b)$$

$$H_{\alpha'_3} \mapsto [(1,0,-1)^{(7)}] \oplus [2,1,0,-1,-2].$$
 (5.53c)

両者を比較して

$$H_{\alpha_1'} = H_{\alpha_1}, \quad H_{\alpha_2'} = H_{\alpha_2}, \quad H_{\alpha_3'} = 2H_{\alpha_4} - H_{\alpha_3}.$$
 (5.54)

よって, 埋め込み行列は

$$M_H(\mathfrak{g}_2 \oplus \mathfrak{su}_2 \to \mathfrak{f}_4) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 4 \end{pmatrix},$$
(5.55a)

$$M_{S}(\mathfrak{g}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{f}_{4}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 2 \end{pmatrix},$$
(5.55b)

$$M_D(\mathfrak{g}_2 \oplus \mathfrak{su}_2 \to \mathfrak{f}_4) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$
 (5.55c)

基本表現の分岐則

$$f_{1}: 52_{adj} = (14, 1) [1, 0] + (7, 5) [0, 1] + (1, 3),$$
(5.56a)

$$f_{2}: 1274 = (77, 1) [0, 3] + (64, 5) [1, 1] + (27, 7) [0, 2] + (27, 5) + (27, 3) + (14, 9) [1, 0] + (14, 5) + (14, 3) + (14, 1) + (7, 9) [0, 1] + (7, 7) + ((7, 5)) \times 2 + (7, 3) + (7, 1) + (1, 7) + (1, 3),$$
(5.56b)

$$f_{3}: 273 = (27, 3) + (14, 5) + (7, 7) + (((7, 5)) \times 2 + (7, 3) + (7, 1) + ((1, 7) + (1, 3),) + ((7, 5)) \times 2 + (7, 3) + (7, 1) + ((1, 7) + (1, 3),)$$
(5.56c)

$$f_{4}: 26_{v} = (7, 3) [0, 1] + (1, 5).$$
(5.56d)

図 12: E_6 の Dynkin 図式

5.3 *E*₆

5.3.1 代数の構造

e₆は、ランク 6, 次元 78 の Lie 代数で、Cartan 部分代数の計量は

$$K = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & -1 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 0 & 2 \end{pmatrix}$$
(5.57)

ルート系は

以下, Cartan 部分代数の標準生成基底としては, $H_i = H_{\alpha_i}$ $(i = 1, \dots, 6)$ を採用 する.

5.3.2 表現

(1) 基本表現 Cartan 行列は

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & -1 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 0 & 2 \end{pmatrix}, C^{-1} = \begin{pmatrix} 4/3 & 5/3 & 2 & 4/3 & 2/3 & 1 \\ 5/3 & 10/3 & 4 & 8/3 & 4/3 & 2 \\ 2 & 4 & 6 & 4 & 2 & 3 \\ 4/3 & 8/3 & 4 & 10/3 & 5/3 & 2 \\ 2/3 & 4/3 & 2 & 5/3 & 4/3 & 1 \\ 1 & 2 & 3 & 2 & 1 & 2 \end{pmatrix}.$$

$$(5.59)$$

よって、基本表現は

	highest weight		\dim	hl	triality	
f_1	$\left(4/3,5/3,2,4/3,2/3,1 ight)$:	27_{v}	8	[1]	
f_2	(5/3.10/3, 4, 8/3, 4/3, 2)	:	351	15	[2]	
f_3	(2, 4, 6, 4, 2, 3)	:	2925	21	[0]	(5.60)
f_4	(4/3, 8/3, 4, 10/3, 5/3, 2)	:	351^*	15	[1]	
f_5	$\left(2/3,4/3,2,5/3,4/3,1 ight)$:	$27^{*}{}_{v}$	8	[2]	
f_6	(1, 2, 3, 2, 1, 2)	:	78_{adj}	11	[0]	

(i) $\mathbf{27}_v = [1, 0, 0, 0, 0, 0]$ 表現:

level	weight vectors
8	$\left(4/3,5/3,2,4/3,2/3,1 ight)$
7	(1/3, 5/3, 2, 4/3, 2/3, 1)
6	(1/3,2/3,2,4/3,2/3,1)
5	(1/3,2/3,1,4/3,2/3,1)
4	$(1/3, 2/3, 1, 1/3, 2/3, 1), \ (1/3, 2/3, 1, 4/3, 2/3, 0)$
3	$(1/3, 2/3, 1, 1/3, -1/3, 1), \ (1/3, 2/3, 1, 1/3, 2/3, 0)$
2	$(1/3, 2/3, 1, 1/3, -1/3, 0), \ (1/3, -1/3, 0, 1/3, 2/3, 0)$
1	$(1/3,2/3,0,1/3,-1/3,0),\ (1/3,-1/3,0,1/3,2/3,0)$
0	(1/3, -1/3, 0, 1/3, -1/3, 0), (1/3, 2/3, 0, -2/3, -1/3, 0), (-2/3, -1/3, 0, 1/3, 2/3, 0)
-1	$(-2/3,-1/3,0,1/3,-1/3,0),\ (1/3,-1/3,0,-2/3,-1/3,0)$
-2	$(-2/3,-1/3,0,-2/3,-1/3,0),\ (1/3,-1/3,-1,-2/3,-1/3,0)$
-3	$(-2/3, -1/3, -1, -2/3, -1/3, 0), \ (1/3, -1/3, -1, -2/3, -1/3, -1)$
-4	$(-2/3, -4/3, -1, -2/3, -1/3, 0), \ (-2/3, -1/3, -1, -2/3, -1/3, -1)$
-5	$\left(-2/3,-4/3,-1,-2/3,-1/3,-1 ight)$
-6	$\left(-2/3,-4/3,-2,-2/3,-1/3,-1 ight)$
-7	$\left(-2/3,-4/3,-2,-5/3,-1/3,-1 ight)$
-8	$\left(-2/3,-4/3,-2,-5/3,-4/3,-1 ight)$
	(5.61)

以下, この27次元表現の基底を次のように名付ける:

$$e_{1} = \frac{1}{3}(4,5,6,4,2,1), e_{2} = \frac{1}{3}(1,5,6,4,2,3), e_{3} = \frac{1}{3}(1,2,6,4,2,3), e_{4} = \frac{1}{3}(1,2,3,4,2,3), e_{5} = \frac{1}{3}(1,2,3,-1,2,3), e_{6} = \frac{1}{3}(1,2,3,4,2,0), e_{8} = \frac{1}{3}(1,2,3,1,-1,3), e_{7} = \frac{1}{3}(1,2,3,1,3,0), e_{10} = \frac{1}{3}(1,2,3,1,-1,0), e_{9} = \frac{1}{3}(1,2,0,1,2,0), e_{12} = \frac{1}{3}(1,2,0,1,-1,0), e_{11} = \frac{1}{3}(1,-1,0,-1,2,0), e_{13} = \frac{1}{3}(1,-1,0,1,-1,0), e_{14} = \frac{1}{3}(1,2,0,-2,-1,0), e_{15} = \frac{1}{3}(-2,-1,0,1,2,0), e_{17} = \frac{1}{3}(-2,-1,0,1,-1,0), e_{18} = \frac{1}{3}(1,-1,-3,-2,-1,0), e_{19} = \frac{1}{3}(-2,-1,0,-2,-1,0), e_{18} = \frac{1}{3}(1,-1,-3,-2,-1,0), e_{21} = \frac{1}{3}(-2,-4,-3,-2,-1,0), e_{23} = \frac{1}{3}(-2,1,-3,-2,-1,-3), e_{24} = \frac{1}{3}(-2,-4,-3,-2,-1,-3), e_{25} = \frac{1}{3}(-2,-4,-6,-2,-1,-3), e_{26} = \frac{1}{3}(-2,-4,-6,-5,-1,-3), e_{27} = \frac{1}{3}(-2,-4,-6,-5,-4,-1).$$
(5.62)

このとき、Cartan 部分代数の基底 (α_i の双対基底)の表現は、次のような対角型行列で与えられる:

$$H_1 \mapsto \left[\frac{4}{3}, \left(\frac{1}{3}\right)^{(13)}, -\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}, \left(-\frac{2}{3}\right)^{(6)}\right],$$
(5.63a)

$$H_2 \mapsto \left[\frac{5}{3}, \frac{5}{3}, \left(\frac{2}{3}\right)^{(9)}, -\frac{1}{3}, \frac{2}{3}, -\frac{1}{3}, \frac{2}{3}, \left(-\frac{1}{3}\right)^{(7)}, -\frac{4}{3}, -\frac{1}{3}, \left(-\frac{4}{3}\right)^{(4)}\right], (5.63b)$$

$$H_3 \mapsto \left[(2)^{(3)}, (1)^{(5)}, 0, 1, (0)^{(7)}, -1, 0, (-1)^{(5)}, (-2)^{(3)}\right] \quad (5.63c)$$

$$H_{4} \mapsto \begin{bmatrix} \left(\frac{4}{3}\right)^{(4)}, \frac{1}{3}, \frac{4}{3}, \left(\frac{1}{3}\right)^{(7)}, -\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}, \frac{1}{3}, \left(-\frac{2}{3}\right)^{(8)}, -\frac{5}{3}, -\frac{5}{3} \end{bmatrix}, \quad (5.63d)$$

$$\begin{bmatrix} \left(2\right)^{(7)}, 1, 2, -1, 2, -1, 2, -\frac{1}{3}, \frac{2}{3}, -\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}, -\frac{2}{3}$$

$$H_6 \mapsto \left[\left(\frac{2}{3}\right)^{(1)}, -\frac{1}{3}, \frac{2}{3}, -\frac{1}{3}, \frac{2}{3}, -\frac{1}{3}, \frac{2}{3}, \left(-\frac{1}{3}\right)^{(13)}, -\frac{4}{3} \right]$$
(5.63e)

(2) 表現の一般的性質

【定義 5.3 (合同類と合同数)】 \mathfrak{e}_6 の既約表現は3個の合同類をもち,既約表現 $R = [a_1 \cdots, a_6]$ (Dynkin に対して次式で定義される合同数により分類される:

$$c(R) \equiv a_1 - a_2 + a_4 - a_5 \pmod{3}.$$
(5.64)

[Lemire F, Patera J.: JMP21, 2026 (1980); Slansky R: PLC79, 1 (1981); Dynkin EB: Amer. Math. Soc. Trans. Ser. 2, 6, 111 & 245 (1975)]

【命題 5.4 (最高ウエイトと最低ウエイト)】 $E_6 型 Lie 代数の既約表現 \rho に対して,$

1) Weyl 変換

 $w = W[\alpha_3]W[(011100)]W[(111110)]W[(123212)]$ (5.65)

により、その Dynkin ウエイト系は、

$$[m_1m_2m_3m_4m_5m_6] \rightarrow [(-m_5)(-m_4)(-m_3)(-m_2)(-m_1)(-m_6)]$$

と変換する.

- 2) ρ の最高ウエイトの Dynkin ラベルを $[a_1 \cdot a_6]$ とすると、最低ウエイトの Dynkin ラベルは $[(-a_5)(-a_4)\cdots(-a_1)(-a_6)]$ で与えられる.
- *ρ*の反傾表現(複素共役表現)*ρ**の最高ウエイトは[*a*₅*a*₄···*a*₁*a*₆]で与えられる.
 *φ*が自己共役となるためには, *a*₁ = *a*₅, *a*₂ = *a*₄ となることが必要十分である.

(3) 表現のテンソル積の既約分解

 $(27 \times 27)_s = 351'^* [200000] + 27^*,$ (5.66)

$$(27 \times 27)_a = 351 [010000],$$
 (5.67)

$$27 \times 27^* = 650 [100010] + 78_{adj} + 1, \qquad (5.68)$$

$$(78_{adj} \times 78_{adj})_s = 2430 [000002] + 650 [100010] + 1,$$
 (5.69)

$$(\mathbf{78}_{\mathrm{adj}} \times \mathbf{78}_{\mathrm{adj}})_a = \mathbf{2925} [001000] + \mathbf{78}_{\mathrm{adj}},$$
 (5.70)

(5.71)

目次へ

138

5.3.3 極大半単純部分代数

 \mathfrak{e}_6 の部分代数のうち、半単純代数と \mathfrak{u}_1 因子の直和で表されるもののうち極大なものは次の通りである:

- 1. 正則型: $\mathfrak{so}_{10} \oplus \mathfrak{u}_1$, $\mathfrak{su}_6 \oplus \mathfrak{su}_2$, $\mathfrak{su}_3 \oplus \mathfrak{su}_3 \oplus \mathfrak{su}_3$
- 2. 特殊型: \mathfrak{su}_3 , \mathfrak{g}_2 , \mathfrak{sp}_4 , \mathfrak{f}_4 , $\mathfrak{su}_3 \oplus \mathfrak{g}_2$.

(i) 正則型部分代数 *so*₁₀ ⊕ *u*₁:

(A) normal embedding この部分代数は、Dynkin 図式において、 α_5 を取り除く ことによって得られる.したがって、

$$\iota^*(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_6) = (\alpha'_1, \cdots, \alpha'_5), \tag{5.72a}$$

$$\iota^* \alpha_5 = -\frac{1}{2} \alpha_1' - \alpha_2' - \frac{3}{2} \alpha_3' - \frac{5}{4} \alpha_4' - \frac{3}{4} \alpha_5'.$$
 (5.72b)

対応する埋め込み行列は,

$$M_{H}(\mathfrak{so}_{10} \oplus \mathfrak{u}_{1} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1/2 & 0 & 1/2 \\ 0 & 1 & 1 & 1/2 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 1/2 & 1 & 3/2 & 5/4 & 1 & 3/4 \end{pmatrix},$$
(5.73a)
$$M_{S}(\mathfrak{so}_{10} \oplus \mathfrak{u}_{1} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 0 & 0 & 0 & -1/2 & 0 \\ 0 & 1 & 0 & 0 & -1/2 & 0 \\ 0 & 0 & 1 & 0 & -3/2 & 0 \\ 0 & 0 & 0 & 1 & -5/4 & 0 \\ 0 & 0 & 0 & 0 & -3/4 & 1 \\ 0 & 0 & 0 & 0 & 3/4 & 0 \end{pmatrix},$$
(5.73b)
$$M_{D}(\mathfrak{so}_{10} \oplus \mathfrak{u}_{1} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1/2 & 1 & 3/2 & 5/4 & 1 & 3/4 \end{pmatrix}$$
(5.73c)

目次へ

139

(B) canonical embedding \mathfrak{e}_6 に関する最高ウエイトを \mathfrak{so}_{10} に関する最高ウエイトに写す埋め込み行列は, (5.73) に4 個の Weyl 変換 w_{α_5} , $w_{\alpha_3+\alpha_4+\alpha_6}$, $w_{\alpha_1+\alpha_2+\alpha_3+\alpha_4}$, $w_{\alpha_2+\alpha_3+\alpha_4}$ を順次作用させることにより得られ,次式で与えられる:

$$M_{H}(\mathfrak{so}_{10} \oplus \mathfrak{u}_{1} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1/2 & 3/2 & 2 & 3/2 & 1/2 & 1 \\ 1/2 & 1/2 & 1 & 1/2 & 1/2 & 1 \\ 1/2 & 1/2 & 1 & 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 & 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 & -1/2 & -1/2 & 0 \\ 1 & -1 & 0 & 1 & -1 & 0 \end{pmatrix},$$
(5.74a)
$$M_{S}(\mathfrak{so}_{10} \oplus \mathfrak{u}_{1} \to \mathfrak{e}_{6}) = \begin{pmatrix} -1/2 & 1/2 & 0 & 1/2 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1/2 & -1/2 & 1 & -1/2 & 1/2 & 0 \\ 1/4 & -1/4 & 0 & 1/4 & 3/4 & 0 \\ 3/4 & 1/4 & 0 & -1/4 & 1/4 & 0 \\ 3 & -3 & 0 & 3 & -3 & 0 \end{pmatrix},$$
(5.74b)
$$M_{D}(\mathfrak{so}_{10} \oplus \mathfrak{u}_{1} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & -1 & 0 \end{pmatrix}$$
(5.74c)

基本表現の分岐則

$$f_{1}: \mathbf{27}_{v} = \mathbf{16}_{s}(-1/4) + \mathbf{10}_{v}(1/2) + \mathbf{1}(-1), \qquad (5.75a)$$

$$f_{2}: \mathbf{351} = \mathbf{144} [1, 0, 0, 0, 1](1/4) + \mathbf{120} [0, 0, 1, 0, 0](-1/2) + \mathbf{45}_{adj}(1)$$

$$\mathbf{16}_{s}(-5/4) + \mathbf{16}_{s}^{*}(1/4) + \mathbf{10}_{v}(-1/2), \qquad (5.75b)$$

$$f_{3}: \mathbf{2925} = \mathbf{945} [1, 0, 1, 0, 0](0) + \mathbf{560} [0, 1, 0, 0, 1](3/4) + \mathbf{560} [0, 1, 0, 1, 0](-3/4) + \mathbf{210} [0, 0, 0, 1, 1](0) + \mathbf{144} [1, 0, 0, 1, 0](3/4) + \mathbf{144} [1, 0, 0, 0, 1](-3/4) + \mathbf{120} [0, 0, 1, 0, 0]((3/2) + (-3/2)) + \mathbf{45}_{adj}(0) + \mathbf{16}_{s}(3/4) + \mathbf{16}_{s}^{*}(-3/4),$$
(5.75c)

$$f_4: \mathbf{351}^* = \mathbf{144} [1, 0, 0, 1, 0] (-1/4) + \mathbf{120} [0, 0, 1, 0, 0] (1/2) + \mathbf{45}_{adj} (-1) + \mathbf{16}_s (-1/4) + \mathbf{16}_s^* (5/4) + \mathbf{10}_v (1/2),$$
(5.75d)

$$f_5: \mathbf{27}^*_{\boldsymbol{v}} = \mathbf{16}^*_{\boldsymbol{s}}(1/4) + \mathbf{10}_{\boldsymbol{v}}(-1/2) + \mathbf{1}(1), \qquad (5.75e)$$

$$f_6: \mathbf{78}_{\mathbf{adj}} = \mathbf{45}_{\mathbf{adj}}(0) + \mathbf{16}_{\boldsymbol{s}}(3/4) + \mathbf{16}^*_{\boldsymbol{s}}(-3/4) + \mathbf{1}(0).$$

(5.75f)

(ii) 正則型部分代数 $\mathfrak{su}_6 \oplus \mathfrak{su}_2$:

(A) normal embedding この部分代数は,拡張 Dynkin 図式から α_6 を取り除く ことにより得られる.したがって, $\{\alpha'_1, \dots, \alpha'_5\}$ を \mathfrak{su}_6 の基本ルート系, α'_6 を \mathfrak{su}_2 の 基本ルートとすると,

$$\alpha_1' = \alpha_1, \quad \alpha_2' = \alpha_2, \quad \alpha_3' = \alpha_3, \quad \alpha_4' = \alpha_4, \quad \alpha_5' = \alpha_5 \tag{5.76}$$

$$\alpha_6' = -\theta = -\alpha_1 - 2\alpha_2 - 3\alpha_3 - 2\alpha_4 - \alpha_5 - 2\alpha_6.$$
(5.77)

これより, 埋め込み行列は

$$M_{H}(\mathfrak{su}_{6} \oplus \mathfrak{su}_{2} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & -2 & -3 & -2 & -1 & -2 \end{pmatrix},$$
(5.78a)

$$M_{S}(\mathfrak{su}_{6} \oplus \mathfrak{su}_{2} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 0 & 0 & 0 & -1/2 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & -3/2 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1/2 \\ 0 & 0 & 0 & 0 & 0 & -1/2 \end{pmatrix},$$
(5.78b)
$$M_{D}(\mathfrak{su}_{6} \oplus \mathfrak{su}_{2} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & -2 & -3 & -2 & -1 & -2 \end{pmatrix}$$
(5.78c)

(B) canonical embedding \mathfrak{e}_6 に関する最高ウエイトを \mathfrak{su}_6 の最高ウエイトに写 す埋め込み行列は, (A) の行列に 5 つの Weyl 変換 $w_{\alpha_2+2\alpha_3+\alpha_4+\alpha_6}$, w_{α_6} , $w_{\alpha_3+\alpha_4+\alpha_5}$, $w_{\alpha_2+\alpha_3+\alpha_4}$, $w_{\alpha_1+\alpha_2+\alpha_3}$ を順次施すことにより得られる.

$$M_{H}(\mathfrak{su}_{6} \oplus \mathfrak{su}_{2} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 2 & 3 & 2 & 1 & 2 \\ 1 & 2 & 2 & 1 & 1 & 1 \\ 1 & 2 & 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix},$$
(5.79a)
$$M_{S}(\mathfrak{su}_{6} \oplus \mathfrak{su}_{2} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & -1/2 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 & -1/2 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & -1/2 & 0 & 1/2 \\ 0 & -1/2 & 1 & -1/2 & 0 & -1/2 \end{pmatrix},$$
(5.79b)
$$M_{D}(\mathfrak{su}_{6} \oplus \mathfrak{su}_{2} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix},$$
(5.79c)

(C) Slansky embedding (1) (B)の埋め込み行列において、 $\mathfrak{su}_6 \geq \mathfrak{su}_2$ の順番を入 れ替え、さらに5個の Weyl 変換 $w_{\alpha_1+\alpha_2}, w_{\alpha_2+2\alpha_3+2\alpha_4+\alpha_5+\alpha_6}, w_{\alpha_2+2\alpha_3+\alpha_4+\alpha_6}, w_{\alpha_2+\alpha_3}, w_{\alpha_3}$ を順次施すと、次の埋め込み行列を得る:

$$M_{H}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{6} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 & 0 & 0 \\ 0 & -1 & -2 & -2 & -1 & -1 \\ 0 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \end{pmatrix},$$
(5.80a)
$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{6} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1/2 & 0 & 0 & 0 & 1/2 & -1/2 \\ 1/2 & 0 & 0 & 0 & -1/2 & 1/2 \\ 1 & -1 & 0 & 0 & 0 & 1 \\ 3/2 & -1 & 0 & 0 & -1/2 & 1/2 \\ 1 & 0 & -1 & 0 & 0 & 1 \\ 1/2 & 0 & 0 & -1 & 1/2 & 1/2 \end{pmatrix},$$
(5.80b)
$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{6} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 & -1 & -1 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$
(5.80c)

(D) Slansky embedding (2) (C) の埋め込みの複素共役に対応.まず,(C) の 行列の \mathfrak{su}_6 サイドにおいて, $f_i \leftrightarrow f'_{6-i}$ に対応する行の入れ替え ($i \ \leftrightarrow (8-i)$ 行; $i = 2, \dots, 6$) を行い, さらに5 個の Weyl 変換 $w_{\alpha_1+2\alpha_2+2\alpha_3+\alpha_4+\alpha_5+\alpha_6}, w_{\alpha_2+\alpha_3+\alpha_4+\alpha_5}, w_{\alpha_3+\alpha_6}, w_{\alpha_2+\alpha_3+\alpha_4}, w_{\alpha_3+\alpha_4}$ を行うと次の埋め込み行列を得る.

$$M_{H}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{6} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 1 \\ 1 & 2 & 3 & 2 & 1 & 2 \\ 1 & 1 & 2 & -1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix},$$
(5.81a)

$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{6} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 1/2 & -1/2 & 1/2 & 1/2 \\ -1 & 1/2 & 1/2 & -1/2 & 1/2 & -1/2 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & -1/2 & 1/2 & -1/2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1/2 & 1/2 & -1/2 & 1/2 & 1/2 \end{pmatrix},$$
(5.81b)
$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{6} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 0 & -1 & -1 & 0 & 0 \\ -1 & -1 & -1 & -1 & 0 & -1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$
(5.81c)

なお,この埋め込みによる \mathfrak{e}_6 の表現の分岐則は,(C)までのもの(下の公式)の 複素共役となる.

基本表現の分岐則

$$\begin{split} f_1: \ \mathbf{27}_v &= \ (\mathbf{15}^*, \mathbf{1}) \left[0, 0, 0, 1, 0 \right] \left[0 \right] + (\mathbf{6}, \mathbf{2}) \left[1, 0, 0, 0, 0 \right] \left[1 \right], \\ f_2: \ \mathbf{351} &= \ (\mathbf{105}^*, \mathbf{1}) \left[0, 0, 1, 0, 1 \right] + (\mathbf{84}, \mathbf{2}) \left[1, 0, 0, 1, 0 \right] \left[1 \right] + (\mathbf{21}, \mathbf{1}) \left[2, 0, 0, 0, 0 \right] \left[0 \right] \\ &+ (\mathbf{15}, \mathbf{3}) \left[0, 1, 0, 0, 0 \right] \left[2 \right] + (\mathbf{6}^*, \mathbf{2}) \left[0, 0, 0, 0, 1 \right] \left[1 \right], \\ f_3: \ \mathbf{2925} &= \ (\mathbf{540}, \mathbf{2}) \left[1, 0, 1, 0, 1 \right] \left[1 \right] + (\mathbf{280}, \mathbf{1}) \left[2, 0, 0, 1, 0 \right] \left[0 \right] + (\mathbf{280}^*, \mathbf{1}) \\ &+ (\mathbf{189}, \mathbf{3}) \left[0, 1, 0, 1, 0 \right] \left[2 \right] + (\mathbf{175}, \mathbf{1}) \left[0, 0, 2, 0, 0 \right] \left[0 \right] + (\mathbf{70}, \mathbf{2}) \left[1, 1, 0, 0, 0 \right] \left[1 \right] \\ &+ (\mathbf{70}^*, \mathbf{2}) + (\mathbf{35}, \mathbf{3}) \left[1, 0, 0, 0, 1 \right] \left[2 \right] + (\mathbf{35}^*, \mathbf{3}) \\ &+ (\mathbf{20}, \mathbf{4}) \left[0, 0, 1, 0, 0 \right] \left[3 \right] + (\mathbf{20}, \mathbf{2}) \left[0, 0, 1, 0, 0 \right] \left[1 \right] + (\mathbf{1}, \mathbf{3}) \left[0 \right] \left[2 \right], \\ f_4: \ \mathbf{351}^* &= \ (\mathbf{105}, \mathbf{1}) \left[1, 0, 1, 0, 0 \right] \left[0 \right] + (\mathbf{84}^*, \mathbf{2}) \left[0, 1, 0, 0, 1 \right] \left[1 \right] + (\mathbf{21}^*, \mathbf{1}) \left[0, 0, 0, 0, 2 \right] \left[0 \right] \\ &\quad (\mathbf{15}^*, \mathbf{3}) \left[0, 0, 0, 1, 0 \right] \left[2 \right] + (\mathbf{6}^*, \mathbf{2}) \left[0, 0, 0, 0, 1 \right] \left[1 \right], \\ f_5: \ \mathbf{27}_v^* &= \ (\mathbf{15}, \mathbf{1}) \left[0, 1, 0, 0, 0 \right] \left[0 \right] + (\mathbf{6}^*, \mathbf{2}) \left[0, 0, 0, 0, 1 \right] \left[1 \right], \\ f_6: \ \mathbf{78}_{\mathbf{adj}} &= \ (\mathbf{35}, \mathbf{1}) \left[1, 0, 0, 0, 1 \right] \left[0 \right] + (\mathbf{20}, \mathbf{2}) \left[0, 0, 1, 0, 0 \right] \left[1 \right] + (\mathbf{1}, \mathbf{3}) \left[0, 0, 0, 0, 0 \right] \left] 2 \right]. \\ (5.82f) \end{aligned}$$

(iii) 正則型部分代数 $\mathfrak{su}_3 \oplus \mathfrak{su}_3 \oplus \mathfrak{su}_3$:

目次へ

144
(A) normal embedding E_6 の拡張 Dynkin 図式より、この部分代数は、 θ をルート系の最高ウエイト

$$\theta = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + \alpha_5 + 2\alpha_6 \tag{5.83}$$

として,

$$\mathcal{L}_1 = \langle H_{\alpha_1}, H_{\alpha_2}, E_{\alpha_1}, E_{\alpha_2} \rangle \cong \mathfrak{sl}_3, \qquad (5.84a)$$

$$\mathcal{L}_2 = \langle H_{\alpha_4}, H_{\alpha_5}, E_{\alpha_4}, E_{\alpha_5} \rangle \cong \mathfrak{sl}_3, \tag{5.84b}$$

$$\mathcal{L}_1 = \langle H_{\alpha_6}, H_{-\theta}, E_{\alpha_6}, E_{-\theta} \rangle \cong \mathfrak{sl}_3$$
(5.84c)

のコンパクト実型の直和により与えられる.よって、埋め込み行列は

$$M_{H}(\mathfrak{su}_{3}^{3} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & -2 & -3 & -2 & -1 & -1 \\ -1 & -2 & -3 & -2 & -1 & -2 \end{pmatrix},$$
(5.85a)
$$M_{S}(\mathfrak{su}_{3}^{3} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 0 & -1/3 & 0 & 0 & 0 \\ 0 & 1 & -2/3 & 0 & 0 & 0 \\ 0 & 0 & -2/3 & 1 & 0 & 0 \\ 0 & 0 & -1/3 & 0 & 1 & 0 \\ 0 & 0 & -1/3 & 0 & 0 & 0 \end{pmatrix},$$
(5.85b)
$$M_{D}(\mathfrak{su}_{3}^{3} \to \mathfrak{e}_{6}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -1 & -2 & -3 & -2 & -1 & -2 \end{pmatrix}$$
(5.85c)

(B) canonical embedding 最高ウエイトを最高ウエイトに写す埋め込み行列は, (5.85) に 5 個の Weyl 変換 $w_{\alpha_2+2\alpha_3+\alpha_4+\alpha_5+\alpha_6}, w_{\alpha_3+\alpha_4+\alpha_6}, w_{\alpha_1+\alpha_2+\alpha_3}, w_{\alpha_2+\alpha_3+\alpha_4}, w_{\alpha_4}$

目次へ

145

を順次施すことにより得られる:

$$M_{H}(\mathfrak{su}_{3}^{3} \to \mathfrak{e}_{6}) = \begin{pmatrix} 2 & 4 & 4 & 3 & 2 & 2 \\ 2 & 3 & 2 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{pmatrix},$$
(5.86a)
$$M_{S}(\mathfrak{su}_{3}^{3} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 1/3 & -1/6 & 0 & 2/3 & 1/3 \\ 1 & 2/3 & -4/3 & 1 & 1/3 & 2/3 \\ 1 & 1 & -3/2 & 1 & 1 & 0 \\ 1 & 4/3 & -2/3 & 0 & 1/3 & -1/3 \\ 0 & 5/3 & -5/6 & 0 & 1/3 & -1/3 \\ 0 & -1/2 & 1/2 & 1/2 & -1/2 & -1/2 \end{pmatrix},$$
(5.86b)
$$M_{D}(\mathfrak{su}_{3}^{3} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$
(5.86c)

基本表現の分岐則

$$\begin{split} f_1: & 27_v &= (3^*,3^*,1) + (3,1,3^*) + (1,3,3), \quad (5.87a) \\ f_2: & 351 &= (8,3^*,3) + (3^*,8,3) + (3,3,8) + (6,3,1) + (3,6,1) \\ &\quad + (1,6,3^*) + (3^*,1,6) + (1,3^*,6) + (6,1,3) \\ &\quad + (3,3,1) + (3^*,1,3) + (1,3^*,3^*), \quad (5.87b) \\ f_3: & 2925 &= (15,3^*,3^*) + (15^*,3,3) + (3,15^*,3^*) \\ &\quad + (3^*,15,3) + (3,3^*,15^*) + (3^*,3,15) \\ &\quad + (10,1,1) + (10^*,1,1) + (1,10,1) \\ &\quad + (1,10^*,1) + (1,1,0) + (1,1,10^*) \\ &\quad + (8,8,8) + ((8,8,1)) \times 2 + ((8,1,8)) \times 2 + ((1,8,8)) \times 2 \\ &\quad + (8,1,1) + (1,8,1) + (1,1,8) \\ &\quad + (6,6^*,3) + (6^*,6,3^*) + (6,3,6^*) \\ &\quad + (6^*,3^*,6) + (3,6,6) + (3^*,6^*,6^*) \\ &\quad + (6^*,3,6^*) + (3,6,3^*) + (3^*,6^*,3) \\ &\quad + ((3,3^*,3^*)) \times 3 + ((3^*,3,3)) \times 3 + 1, \quad (5.87c) \\ f_4: & 351^* &= (8,3,3^*) + (3,1,3) + (1,3,6) + (6,1,3^*) \\ &\quad + (3^*,3^*,1) + (3,1,3^*) + (1,3,3), \quad (5.87d) \\ f_5: & 27^*_v &= (3,3,1) + (3^*,1,3) + (1,3^*,3^*), \quad (5.87e) \\ f_6: & 78_{adj} &= (8_{adj},1,1) + (1,8_{adj},1) + (1,1,8_{adj}) \\ \end{split}$$

+
$$(3^*, 3, 3^*)$$
 + $(3, 3^*, 3)$. (5.87f)

(iv) 特殊型部分代数 su3:

Canonical embedding この部分代数は、 \mathfrak{su}_3 の27次元表現[2,2]と \mathfrak{e}_6 の27次元 表現[1,0,0,0,0,0]を比較することにより得られる.まず、 \mathfrak{su}_3 および \mathfrak{e}_6 のCartan \mathcal{L}'_0 、 \mathcal{L}_0 の基底 { H'_1 , H'_2 }および { H_1 , ..., H_6 }を、いずれも基本ルートの双対基底に取る.

目次へ

147

ことのき, su3の27次元表現の基底を

$$e_{1} = (2, 2), \ e_{2} = (1, 2), \ e_{3} = (2, 1), \ e_{4} = (0, 2), \ e_{5} = (1, 1)_{1}, \ e_{6} = (1, 1)_{2},$$

$$e_{7} = (0, 1), \ e_{8} = (2, 0), \ e_{9} = (1, 0), e_{10} = (0, 1), \ e_{11} = (-1, 1), \ e_{12} = (1, 0),$$

$$e_{13} = (0, 0)_{1}, \ e_{14} = (0, 0)_{2}, \ e_{15} = (0, 0)_{3},$$

$$e_{16} = (-1, 0), \ e_{17} = (1, 1), \ e_{18} = (0, -1), \ e_{19} = (1, 0), \ e_{20} = (-2, 0), \ e_{21} = (0, -1),$$

$$e_{22} = (-1, -1)_{1}, \ e_{23} = (-1, -1)_{2}, \ e_{24} = (0, -2), \ e_{25} = (-2, -1), \ e_{26} = (-1, -2),$$

$$e_{27} = (-2, -3)$$
(5.88)

この基底のもとで、Cartan部分代数の生成元の作用は、次の対角型行列で表される:

$$\begin{array}{rcl} H_1' & \mapsto & [2,1,2,0,1,1,2,0,0,1,1,-1,0,0,0,0,1,-1,-1, \\ & & 0,0,2,-1,-1,0,-2,-1,-2], \\ H_2' & \mapsto & [2,2,1,2,1,1,0,1,1,0,0,1,0,0,0,-1,0,0, \\ & & -1,-1,0,-1,-1,-2,-1,-2,-2], \end{array} \tag{5.89b}$$

(5.89c)

これより,

$$H'_1 \mapsto H_1 - H_2 + 2H_3 - H_4 + H_5 - H_6,$$
 (5.90a)

$$H'_2 \mapsto H_2 - H_3 + H_4 + H_6.$$
 (5.90b)

よって,埋め込み行列は,

$$M_S(\mathfrak{su}_3 \to \mathfrak{e}_6) = M_H = \begin{pmatrix} 1 & -1 & 2 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 & 0 & 1 \end{pmatrix},$$
 (5.91a)

$$M_D(\mathfrak{su}_3 \to \mathfrak{e}_6) = \begin{pmatrix} 2 & 2 & 5 & 2 & 2 & 1 \\ 2 & 5 & 5 & 5 & 2 & 4 \end{pmatrix}.$$
 (5.91b)

基本表現の分岐則

$$\begin{array}{rclcrcl} f_1: \ \mathbf{27}_v &=& \mathbf{27} \, [2,2], & (5.92a) \\ f_2: \ \mathbf{351} &=& \mathbf{81} \, [5,2] + \mathbf{81}^* + \mathbf{64} \, [3,3] + \mathbf{35} \, [4,1] + \mathbf{35}^* \\ & \mathbf{27} \, [2,2] + \mathbf{10} \, [3,0] + \mathbf{10}^* + \mathbf{8}, & (5.92b) \\ f_3: \ \mathbf{2925} &=& \mathbf{216} \, [5,5] + (\mathbf{154} \, [6.3]) \times 2 + (\mathbf{154}^*) \times 2 + (\mathbf{125} \, [4,4]) \times 2 \\ & + (\mathbf{81} \, [5,2]) \times 4 + (\mathbf{81}^*) \times 4 + \mathbf{80} \, [7,1] + \mathbf{80}^* + (\mathbf{64} \, [3,3]) \times 6 \\ & + \mathbf{55} \, [9,0] + \mathbf{55}^* + (\mathbf{35} \, [4,1]) \times 4 + (\mathbf{35}^*) \times 4 \\ & + \mathbf{28} \, [6,0] + \mathbf{28}^* + (\mathbf{27} \, [2,2]) \times 4 + (\mathbf{10} \, [3,0]) \times 4 + (\mathbf{10}^*) \times 4 \\ & + (\mathbf{8} \, [1,1]) \times 2 + \mathbf{1}, & (5.92c) \\ f_4: \ \mathbf{351}^* &=& \mathbf{81} \, [5,2] + \mathbf{81}^* + \mathbf{64} \, [3,3] + \mathbf{35} \, [4,1] + \mathbf{35}^* \\ & \mathbf{27} \, [2,2] + \mathbf{10} \, [3,0] + \mathbf{10}^* + \mathbf{8}, & (5.92d) \\ f_5: \ \mathbf{27}^*_v &=& \mathbf{27} \, [2,2], & (5.92e) \\ \end{array}$$

$$f_6: \mathbf{78}_{adj} = \mathbf{8}_{adj} + \mathbf{35} [4, 1] + \mathbf{35}^* [1, 4].$$
(5.92f)

(v) 特殊型部分代数 g₂:

(A) normal embedding この埋め込みは、 \mathfrak{e}_6 の27次元表現 [1,0,0,0,0,0] と \mathfrak{g}_2 の27次元表現 [0,2]を比較することにより得られる.まず、 \mathfrak{e}_2 および \mathfrak{e}_6 のCartan \mathcal{L}'_0 , \mathcal{L}_0 の基底 { H'_1, H'_2 } および { H_1, \dots, H_6 }を、いずれも基本ルートの双対基底に取る.ことのき、 \mathfrak{g}_2 の27次元表現の基底を

$$e_{1} = (2,4), \ e_{2} = (2,3), \ e_{3} = (1,3), \ e_{4} = (2,2), \ e_{5} = (1,2)_{1}, \ e_{6} = (1,2)_{2},$$

$$e_{7} = (0,2), \ e_{8} = (1,1)_{1}, \ e_{9} = (1,1)_{2}, e_{10} = (0,1)_{1}, \ e_{11} = (0,1)_{2}, \ e_{12} = (1,0),$$

$$e_{13} = (0,0)_{1}, \ e_{14} = (0,0)_{2}, \ e_{15} = (0,0)_{3},$$

$$e_{16} = (-1,0), \ e_{17} = (0,-1)_{2}, \ e_{18} = (0,-1)_{1}, \ e_{19} = (-1,-1)_{2}, \ e_{20} = (-1,-1)_{1},$$

$$e_{21} = (0,-2), \ e_{22} = (-1,-2)_{2}, \ e_{23} = (-1,-2)_{1}, \ e_{24} = (-2,-2), \ e_{25} = (-1,-3),$$

$$e_{26} = (-2,-3), \ e_{27} = (-2,-4)$$
(5.93)

この基底のもとで、Cartan部分代数の生成元の作用は、次の対角型行列で表される:

$$\begin{array}{rcl} H_1' & \mapsto & [2,2,1,2,1,1,0,1,1,0,0,1,0,0,0,-1,0,0, \\ & & & -1,-1.0,-1,-1,-2,-1,-2,-2], \\ H_2' & \mapsto & [4,3,3,2,2,2,2,2,1,1,1,1,0,0,0,0,0,0,-1,-1, \end{array} \tag{5.94a}$$

$$-1, -1, -2, -2, -2, -2, -3, -3, -4],$$
 (5.94b)

(5.94c)

これより,

$$H'_1 \mapsto H_2 - H_3 - H_4 + H_6,$$
 (5.95a)

$$H'_2 \mapsto H_1 + H_3 + H_5.$$
 (5.95b)

よって, 埋め込み行列は,

$$M_S(\mathfrak{g}_2 \to \mathfrak{e}_6) = M_H = \begin{pmatrix} 0 & 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix},$$
(5.96a)

$$M_D(\mathfrak{g}_2 \to \mathfrak{e}_6) = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 2 & 2 & 5 & 2 & 2 & 1 \end{pmatrix}.$$
 (5.96b)

(B) Canonical embedding この部分代数については,最高ウエイトを常に最高 ウエイトに写す埋め込み行列(基本ルート系)は存在しない.

基本表現の分岐則

$$f_{1}: \mathbf{27}_{v} = \mathbf{27}[0, 2], \qquad (5.97a)$$

$$f_{2}: \mathbf{351} = \mathbf{189}[1, 2] + \mathbf{77}[2, 0] + \mathbf{64}[1, 1] + \mathbf{14}[1, 0] + \mathbf{7}[0, 1], \qquad (5.97b)$$

$$f_3: \mathbf{2925} = \mathbf{448} [1,3] + \mathbf{378} [0,5] + (\mathbf{286} [2,1]) \times 2 + \mathbf{273} [3,0] \\ + (\mathbf{189} [1,2]) \times 3 + \mathbf{182} [0,4] + (\mathbf{77} [0,3]) \times 4 + (\mathbf{64} [1,1]) \times 2 \\ + \mathbf{27} [0,2] + (\mathbf{14} [1,0]) \times 2 + (\mathbf{7} [0,1]) \times 2, \qquad (5.97c)$$

$$f_{4}: \mathbf{351}^{*} = \mathbf{189} [1, 2] + \mathbf{77} [2, 0] + \mathbf{64} [1, 1] \\ + \mathbf{14} [1, 0] + \mathbf{7} [0, 1],$$
(5.97d)
$$f_{5}: \mathbf{27}_{v}^{*} = \mathbf{27} [0, 2],$$
(5.97e)

$$f_6: \ \mathbf{78}_{adj} = \ \mathbf{14}_{adj} [1,0] + \mathbf{64} [1,1]$$
(5.97f)

150

(vi) 特殊型部分代数 $\mathfrak{g}_2 \oplus \mathfrak{su}_3$:

Canonical embedding 27 = 6×1+3×7より,この埋め込みは, \mathfrak{e}_6 の27次元 表現 [1,0,0,0,0]と, \mathfrak{su}_3 の6次元表現 [0,2],3次元表現 [1,0] および \mathfrak{g}_2 の7次元 表現 [0,1] を比較することにより決定される.

まず, su₃の6*において, 基底を

$$6^*|\mathfrak{su}_3 : e_1 = (4/3, 2/3), e_2 = (1/3, 2/3), e_3 = (1/3, -1/3), e_4 = (-2/3, 2/3), e_5 = (-2/3, -1/3), e_6 = (-2/3, -4/3)$$
(5.98)

と取る.このとき、これらの基底は、 \mathfrak{e}_6 の**27** $_v$ 表現の標準基底 (5.62) と次のように対応する:

$$\mathbf{6^*} \to \mathbf{27} : [e_1, \cdots, e_6] \quad \mapsto \quad [e_9, e_{11}, e_{13}, e_{15}, e_{17}, e_{19}] \tag{5.99}$$

次に, su3の3次元表現[1,0]の基底を

$$\mathbf{3}|\mathfrak{su}_3$$
 : $e_1 = (2/3, 1/3), \ e_2 = (-1/3, 1/3), \ e_3 = (-1/3, -2/3)$ (5.100)

と, また, g₂の7次元表現[0,1]の基底を

$$7|\mathfrak{g}_2 : e_1 = (1,2), \ e_2 = (1,1), \ e_3 = (0,1), \ e_4 = (0,0), \ e_5 = (0,-1), \\ e_6 = (-1,-1), \ e_7 = (-1,-2).$$
(5.101)

と取ると、 su₃⊕g₂の3×7表現の基底と e₆の27表現の基底は次のように対応する:

$$\mathbf{3} \times \mathbf{7} \to \mathbf{27} : [e_i \otimes e_j, \ i = 1, 2, 3, \ j = 1, \cdots, 7] \mapsto [e_1, e_2, e_3; e_4, e_5, e_8; e_6, e_7, e_{10}; \\ e_{12}, e_{14}, e_{16}; e_{18}, e_{21}, e_{22}; e_{20}, e_{23}, e_{24}; e_{25}, e_{26}, e_{27}]$$
(5.102)

これらの対応により、基本ルートに対して双対的な $\mathcal{L}_0(\mathfrak{su}_3)$ の基底 H'_1, H'_2 は $\mathcal{L}_0(\mathfrak{e}_6)$ に

$$H'_1 = H_1 - H_3 + H_4, \quad H'_2 = H_2 - H_3 + H_5$$

$$(5.103)$$

と埋め込まれることが分かる.また,基本ルートに対して双対的な $\mathcal{L}_0(\mathfrak{g}_2)$ の基底 H'_3, H'_4 は $\mathcal{L}_0(\mathfrak{e}_6)$ に

$$H_3' = H_6, \quad H_4' = H_3 \tag{5.104}$$

目次へ

151

と埋め込まれる.以上より,埋め込み行列は

$$M_{S}(\mathfrak{g}_{2} \oplus \mathfrak{su}_{3} \to \mathfrak{e}_{6}) = M_{H} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \end{pmatrix},$$
(5.105a)
$$M_{D}(\mathfrak{g}_{2} \oplus \mathfrak{su}_{3} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 2 & 3 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}.$$
(5.105b)

基本表現の分岐則

$$\begin{split} f_1: \ \mathbf{27}_v &= (\mathbf{1}, \mathbf{6}^*) + (\mathbf{7}_v, \mathbf{3}) \, [0, 1] [1, 0], \\ f_2: \ \mathbf{351} &= (\mathbf{27}, \mathbf{3}^*) \, [0, 2] [0, 1] + (\mathbf{14}, \mathbf{6}) \, [1, 0] [2, 0] + (\mathbf{7}, \mathbf{15}^*) \, [0, 1] [1, 2] \\ &+ (\mathbf{7}, \mathbf{6}) \, [0, 1] [2, 0] + (\mathbf{7}, \mathbf{3}^*) \, [0, 1] [0, 1] + (\mathbf{1}, \mathbf{15}^*) \, [0] [1, 2] \\ &+ \mathbf{13}^* [0] [0, 1], \\ f_3: \ \mathbf{2925} &= (\mathbf{77}, \mathbf{1}) \, [0, 3] [0] + (\mathbf{64}, \mathbf{8}) \, [1, 1] [1, 1] + (\mathbf{27}, \mathbf{10}) \, [0, 2] [3, 0] + (\mathbf{27}, \mathbf{10}^*) \\ &+ (\mathbf{27}, \mathbf{8}) \, [0, 2] [1, 1] + (\mathbf{14}, \mathbf{27}) \, [1, 0] [2, 2] + (\mathbf{14}, \mathbf{8}) \, [1, 0] [1, 1] + (\mathbf{14}, \mathbf{1}) \\ &+ (\mathbf{7}, \mathbf{27}) \, [0, 1] [2, 2] + (\mathbf{7}, \mathbf{10}) \, [0, 1] [3, 0] + (\mathbf{7}, \mathbf{10}^*) + (\mathbf{7}, \mathbf{8}) \\ &+ (\mathbf{7}, \mathbf{1}) + (\mathbf{1}, \mathbf{10}) + (\mathbf{1}, \mathbf{10}^*) + (\mathbf{1}, \mathbf{8}), \\ f_4: \ \mathbf{351}^* &= (\mathbf{27}, \mathbf{3}) \, [0, 2] [1, 0] + (\mathbf{14}, \mathbf{6}^*) \, [1, 0] [0, 2] + (\mathbf{7}, \mathbf{15}) \, [0, 1] [2, 1] \\ &+ (\mathbf{7}, \mathbf{6}^*) \, [0, 1] [0, 2] + (\mathbf{7}, \mathbf{3}) \, [0, 1] [1, 0] + (\mathbf{1}, \mathbf{15}) \, [0] [2, 1] \\ &+ (\mathbf{7}, \mathbf{6}^*) \, [0, 1] [0, 2] + (\mathbf{7}, \mathbf{3}) \, [0, 1] [1, 0] + (\mathbf{1}, \mathbf{15}) \, [0] [2, 1] \\ &+ \mathbf{13} [0] [1, 0], \\ f_5: \ \mathbf{27}^*_v &= (\mathbf{1}, \mathbf{6}) + (\mathbf{7}_v, \mathbf{3}^*) \, [0, 1] [0, 1], \\ f_6: \ \mathbf{78}_{\mathbf{adj}} &= (\mathbf{1}, \mathbf{8}_{\mathbf{adj}}) + (\mathbf{14}, \mathbf{1}) \, [1, 0] [0] + (\mathbf{7}_v, \mathbf{8}) \, [0, 1] [1, 1]. \\ \end{split}$$

(vii) 特殊型部分代数 sp₄:

(A) normal embedding この埋め込みは、 \mathfrak{e}_6 の27次元表現 [1,0,0,0,0,0] と \mathfrak{sp}_4 の27次元表現 [0,1,0,0] を比較することにより得られる.まず、 \mathfrak{sp}_4 および \mathfrak{e}_6 の Cartan \mathcal{L}'_0 、 \mathcal{L}_0 の基底 { H'_1 ,…, H'_4 }および { H_1 ,…, H_6 } を、いずれも基本ルートの

双対基底に取る.ことのき, sp₄の27次元表現の基底を

$$e_{1} = (1, 2, 2, 1), \ e_{2} = (1, 1, 2, 1), \ e_{3} = (0, 1, 2, 1), \ e_{4} = (1, 1, 1, 1),$$

$$e_{5} = (0, 1, 1, 1), \ e_{6} = (1, 1, 1, 0), \ e_{7} = (0, 1, 1, 0), \ e_{8} = (0, 0, 1, 1),$$

$$e_{9} = (1, 1, 0, 0), \ e_{10} = (0, 0, 1, 0), \ e_{11} = (0, 1, 0, 0), \ e_{12} = (1, 0, 0, 0),$$

$$e_{13} = (0, 0, 0, 0)_{1}, \ e_{14} = (0, 0, 0, 0)_{2}, \ e_{15} = (0, 0, 0, 0)_{3},$$

$$e_{16} = (-1, 0, 0, 0), \ e_{17} = (0, -1, 0, 0), \ e_{18} = (0, 0, -1, 0), \ e_{19} = (-1, -1, 0, 0),$$

$$e_{20} = (0, 0, -1, -1)_{1}, \ e_{21} = (0, -1, -1, 0), \ e_{22} = (-1, -1, -1, 0),$$

$$e_{23} = (0, -1, -1, -1), \ e_{24} = (-1, -1, -1, -1), \ e_{25} = (0, -1, -2, -1),$$

$$e_{26} = (-1, -1, -2, -1), \ e_{27} = (-1, -2, -2, -1)$$
(5.107)

この基底のもとで、Cartan部分代数の生成元の作用は、次の対角型行列で表される:

これより,

$$H'_1 \mapsto H_2 - H_3 + H_4,$$
 (5.108a)

$$H_2' \mapsto H_1 + H_5, \tag{5.108b}$$

$$H_3' \mapsto H_3, \tag{5.108c}$$

$$H_4' \mapsto H_6 \tag{5.108d}$$

よって,埋め込み行列は,

$$M_{S}(\mathfrak{g}_{2} \to \mathfrak{e}_{6}) = M_{H} = \begin{pmatrix} 0 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$
(5.109a)
$$M_{D}(\mathfrak{g}_{2} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$
(5.109b)

(B) Canonical embedding 最高ウエイトを最高ウエイトに写す埋め込み行列は, 上記の行列に Weyl 変換 w_{α_3} を施すことにより得られ,

$$M_{S}(\mathfrak{g}_{2} \to \mathfrak{e}_{6}) = M_{H} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$
(5.110a)
$$M_{D}(\mathfrak{g}_{2} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}.$$
(5.110b)

基本表現の分岐則

$f_1: \ 27_{m{v}}$	=	27[0,1,0,0],	(5.111a)
$f_2: \ {f 351}$	=	315 $[1, 0, 1, 0] + $ 36 $[2, 0, 0, 0],$	(5.111b)
$f_3: 2925$	=	1155 [2, 0, 0, 1] + 825 [0, 0, 2, 0] + 594 [2, 1, 0, 0]	
		+ 315 [1, 0, 1, 0] + 36 [2, 0, 0, 0]	(5.111c)
$f_4: \ {\bf 351}^*$	=	315 $[1, 0, 1, 0]$ 36 $[2, 0, 0, 0]$,	(5.111d)
$f_5: \ 27^{*}_{m{v}}$	=	${\bf 27}[0,1,0,0],$	(5.111e)
f_6 : 78 _{adj}	=	$\mathbf{36_{adj}} [2, 0, 0, 0] + 42 [0, 0, 0, 1].$	(5.111f)

(viii) 特殊型部分代数 f₄:

(A) Canonical embedding この埋め込みは, \mathfrak{e}_6 の27次元表現と \mathfrak{f}_4 の26次元表現の比較より得られる.まず, \mathfrak{f}_4 の26次元表現において,基底を次のように名付ける:

$$e_{1} = (1, 2, 3, 2), \ e_{2} = (1, 2, 3, 1), \ e_{3} = (1, 2, 3, 1), \ e_{4} = (1, 1, 2, 1), \ e_{5} = (1, 1, 1, 1),$$

$$e_{6} = (0, 1, 2, 1), \ e_{7} = (0, 1, 1, 1), \ e_{8} = (1, 1, 1, 0), \ e_{9} = (0, 0, 1, 1), \ e_{10} = (0, 1, 1, 0),$$

$$e_{11} = (0, 0, 0, 1), \ e_{12} = (0, 0, 1, 0), \ e_{13} = (0, 0, 0, 0)_{1}, \ e_{15} = (0, 0, 0, 0)_{2},$$

$$e_{16} = (0, 0, -1, 0), \ e_{17} = (0, 0, 0, -1), \ e_{18} = (0, -1, -1, 0), \ e_{19} = (0, 0, -1, -1),$$

$$e_{20} = (-1, -1, -1, 0), \ e_{21} = (0, -1, -1, -1), \ e_{22} = (0, -1, -2, -1),$$

$$e_{23} = (-1, -1, -1, -1), \ e_{24} = (-1, -1, -2, -1), \ e_{25} = (-1, -2, -3, -1),$$

$$e_{26} = (-1, -2, -3, -1), \ e_{27} = (-1, -2, -3, -2).$$
(5.112)

このとき、 f_4 の Cartan 部分代数の生成元 $H'_i(i = 1, \dots, 4)$ を α'_i の双対基底に取ると、その作用は、上記の基底に e_{14} を加えた 2 7 次元空間で、次の対角型行列で表される:

$$H'_1 \mapsto [(1)^{(4)}, 0, 1, 0, 1, (0)^{(11)}, -1, 0, -1, 0, (-1)^{(4)}],$$
 (5.113a)

$$H'_2 \mapsto [(2)^{(3)}, (1)^{(5)}, 0, 1, (0)^{(7)}, -1, 0, (-1)^{(5)}, (-2)^{(3)}],$$
 (5.113b)

$$\begin{array}{rcl}
H'_{3} & \mapsto & [(3)^{(2)}, (2)^{(3)}, (1)^{(5)}, 0, 1, 0, 0, 0, -1, 0, (-1)^{(5)}, (-2)^{(3)}, (-3)^{(2)}](5.113c) \\
H'_{4} & \mapsto & [2, (1)^{(6)}, 0, 1, 0, 1, (0)^{(5)}, -1, 0, -1, 0, (-1)^{(6)}, -2]. \\
\end{array} \tag{5.113d}$$

これと, e_6 の Cartan 部分代数の生成元 $H_j(j = 1, \dots, 6)$ の 27 次元表現における行 列表示を比較して,

$$H'_1 = H_6, \quad H'_2 = H_3, \quad H'_3 = H_2 + H_4, \quad H'_4 = H_1 + H_5$$
 (5.114)

を得る.よって,埋め込み行列は

$$M_D(\mathfrak{f}_4 \to \mathfrak{e}_6) = M_S = M_H = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$
 (5.115)

この埋め込み行列は、e₆に関しての最高ウエイトをf₄に対する最高ウエイトに写す.

(B) Slansky embedding (A)の行列に3個の Weyl 変換 $w_{\alpha_3+\alpha_4+\alpha_5}, w_{\alpha_2+\alpha_3+\alpha_4}, w_{\alpha_3}$ を施すと次の埋め込み行列が得られる:

$$M_{H}(\mathfrak{f}_{4} \to \mathfrak{e}_{6}) = M_{S}(\mathfrak{f}_{4} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 & 0 & 2 \\ 2 & -1 & 1 & -2 & 1 & 2 \\ 1 & 0 & 1 & -1 & 0 & 0 \end{pmatrix}, \quad (5.116a)$$
$$M_{D}(\mathfrak{f}_{4} \to \mathfrak{e}_{6}) = \begin{pmatrix} 0 & 1 & 2 & 2 & 1 & 1 \\ 0 & 0 & -1 & -1 & -1 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 1 & 2 & 2 & 1 & 0 & 0 \end{pmatrix}. \quad (5.116b)$$

基本表現の分岐則

$$f_{1}: 27_{v} = 26 [0, 0, 0, 1] + 1, \qquad (5.117a)$$

$$f_{2}: 351 = 273 [0, 0, 1, 0] + 52 [1, 0, 0, 0] + 26 [0, 0, 0, 1], \qquad (5.117b)$$

$$f_{3}: 2925 = 1274 [0, 1, 0, 0] + 1053 [1, 0, 0, 1] + (273 [0, 0, 1, 0]) \times 2$$

$$+52 [1, 0, 0, 0] \qquad (5.117c)$$

$$f_{4}: 351^{*} = 273 [0, 0, 1, 0] + 52 [1, 0, 0, 0] + 26 [0, 0, 0, 1], \qquad (5.117d)$$

$$f_{5}: 27_{v}^{*} = 26 [0, 0, 0, 1] + 1, \qquad (5.117e)$$

$$f_{6}: 78_{adj} = 52_{adj} [1, 0, 0, 0] + 26_{v} [0, 0, 0, 1]. \qquad (5.117f)$$

図 13: *E*₇の Dynkin 図式

5.4 *E*₇

5.4.1 LIe 代数の構造

ルート系とその E⁸ への等長埋め込み

- 全 root ベクトル
 - sl(8) のルートベクトル 56 個: (1,-1,0,0,0,0,0) とそのすべての置換.
 - sl(8)の70次元表現: (1/2,1/2,1/2,1/2,-1/2,-1/2,-1/2,-1/2)とそのすべての置換.
- 単純ルート

$$\alpha_i = e_i - e_{i+1} \quad (i = 1, \cdots, 6),$$
(5.118a)

$$\alpha_7 = -\frac{1}{2}(e_1 + e_2 + e_3) + \frac{1}{2}(e_4 + e_5 + e_6 + e_7) - \frac{1}{2}e_8.$$
(5.118b)

• 正ルート

$$\alpha_{ij} = e_i - e_j \quad (1 \le i < j \le 8),$$

$$\beta_{ijkl} = e_i + e_j + e_k + e_l - \frac{1}{2}(e_1 + \dots + e_8) \quad (1 \le i < j < k < l \ (5.119a))$$

単純ルートで表すと,

$$\alpha_{ij} = \alpha_i + \alpha_{i+1} + \dots + \alpha_j \quad (1 \le i < j \le 7), \tag{5.120a}$$

$$\alpha_{78} = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + \alpha_5 + 2\alpha_7, \tag{5.120b}$$

$$\alpha_{i8} = \alpha_{78} + \alpha_i + \alpha_{i+1} + \dots + \alpha_6 \quad (i = 1, \dots, 6), \tag{5.120c}$$

$$\beta_{ijkl} = (\alpha_i + \dots + \alpha_3) + (\alpha_j + \dots + \alpha_4) + (\alpha_k + \dots + \alpha_5)$$

$$+ (\alpha_l + \dots + \alpha_6) + \alpha_7. \tag{5.120d}$$

目次へ

5.4.2 表現

	Dynkin weight	次元
	[1, 0, 0, 0, 0, 0, 0]	133 (adjoint)
	[0, 1, 0, 0, 0, 0, 0]	8645
其大耒珇	[0, 0, 1, 0, 0, 0.0]	365750
至中北坑	[0, 0, 0, 1, 0, 0, 0]	27664
	[0, 0, 0, 0, 1, 0, 0]	1539
	[0, 0, 0, 0, 0, 1, 0]	56
	[0, 0, 0, 0, 0, 0, 0, 1]	912

合同類

【定義 5.5 (合同類と合同数)】 e_7 の既約表現は2個の合同類をもち,既約表現 $R = [a_1 \cdots, a_7]$ (Dynkin レベル)に対して次式で定義される合同数により分類される:

$$c(R) \equiv a_4 + a_6 + a_7 \pmod{2}.$$
 (5.121)

[Lemire F, Patera J.: JMP21, 2026 (1980); Slansky R: PLC79, 1 (1981); Dynkin EB: Amer. Math. Soc. Trans. Ser. 2, 6, 111 & 245 (1975)]

【命題 5.6 (合同類と実・擬実表現の対応)】 ℓ7 の表現は、その合同数が0のとき 実表現、1のとき擬実表現となる.

5.4.3 *E*₇₍₊₇₎の56次元基本表現

Lie 代数 56 次元空間を

$$\mathbb{R}^{56} = \mathbb{R}^{28} \oplus \mathbb{R}^{28} \cong (\mathbb{R}^8 \wedge \mathbb{R}^8) \oplus (\mathbb{R}^8 \wedge \mathbb{R}^8) \ni (x^{ij}, y_{ij})$$
(5.122)

と見なし、2つの反対称テンソルの組で座標付けする. $\Lambda \in \mathfrak{sl}(8,\mathbb{R})$ と $\Sigma = (\Sigma_{ijkl} \in \bigwedge^4 \mathbb{R}^8$ に対して、 \mathbb{R}^{56} の無限小変換を次のように対応させる:

$$T = (\Lambda, \Sigma) \mapsto \delta \begin{pmatrix} x^{ij} \\ y_{ij} \end{pmatrix} = \begin{pmatrix} \Lambda \wedge \mathbf{1} & \star \Sigma \\ \Sigma & -{}^{T}\!\Lambda \wedge \mathbf{1} \end{pmatrix} \begin{pmatrix} x^{ij} \\ y_{ij} \end{pmatrix}$$
(5.123)

ここで,

$$(\Lambda \wedge \mathbf{1})^{ij}{}_{kl} = 2\Lambda^{[i}{}_{[k]}\delta^{j]}_{l]}, \quad ({}^{T}\!\Lambda \wedge \mathbf{1})_{ij}{}^{kl} = 2\Lambda^{[k}{}_{[i]}\delta^{l]}_{j]}$$
(5.124)

158

この変換の交換関係は

$$[T_1, T_2] = T_3 = (\Lambda_3, \Sigma_3); \tag{5.125}$$

$$(\Lambda_3)^i{}_j = ([\Lambda_1, \Lambda_2])^i{}_j + \frac{1}{3} \left\{ (\star \Sigma_1)^{iklm} (\Sigma_2)_{jklm} - (\star \Sigma_2)^{iklm} (\Sigma_1)_{jklm} \right\}, (5.126)$$

$$(\Sigma_3)_{ijkl} = 4 \left\{ (\Lambda_1)^m [i(\Sigma_2)_{jkl}]_m - (\Lambda_2)^m [i(\Sigma_1)_{jkl}]_m \right\}$$
(5.127)

*E*₇₍₊₇₎の極大部分群

$$\forall \Lambda, \Sigma = 0 \quad \to \quad \mathrm{SL}(8, \mathbb{R})/\mathbb{Z}_2, \tag{5.128a}$$

$${}^{T}\!\Lambda = -\Lambda, \Sigma = -\star \Sigma \quad \to \quad \mathrm{SU}(8)/\mathbb{Z}_{2}, \tag{5.128b}$$

$${}^{T}\!\Lambda = -\Lambda, \Sigma = \star \Sigma \quad \to \quad \mathrm{SL}(8, \mathbb{R}). \tag{5.128c}$$

不変式

- 2次式: $\Omega(V_2, V_1) = x_1 \cdot y_2 y_1 \cdot x_2$
- $4 \not \subset \mathfrak{C}$: $J(V) = \operatorname{Tr}(xyxy) \frac{1}{4}(x \cdot y)^2 + \frac{1}{6} \star (x \wedge x \wedge x \wedge x + y \wedge y \wedge y \wedge y)$

Killing form $T = (\Lambda, \Sigma)$ において, $\Lambda \ge \Sigma$ をそれぞれ対称部分と反対称部分, 自 己双対部分と反自己双対部分に分ける:

$$\Lambda = S + A; \quad {}^{T}S = S, \quad {}^{T}A = -A, \tag{5.129a}$$

$$\Sigma = U + V; \quad \star U = U, \quad \star V = -V. \tag{5.129b}$$

このとき, *E*₇₍₊₇₎の Killing 形式は

$$Tr(T_1T_2) = 12(S_1 \cdot S_2 - A_1 \cdot A_2) + 2(U_1 \cdot U_2 - V_1 \cdot V_2)$$
(5.130)

ここで, $X \cdot Y = X^{i_1 \cdot i_p} Y_{i_1 \cdots i_p}$. これより, 符号数は+70-63=+7.

基底の変更 ℝ⁵⁶の複素化 ℂ⁵⁶の新しい座標系を

$$\begin{pmatrix} z_{+}^{ij} \\ z_{-}^{ij} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} x^{ij} + iy_{ij} \\ x^{ij} - iy_{ij} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \begin{pmatrix} x^{ij} \\ y_{ij} \end{pmatrix}$$
(5.131)

により導入すると,

$$T(\Lambda, \Sigma) \mapsto T'(S, A, U, V) = \begin{pmatrix} A \wedge \mathbf{1} + iV & S \wedge \mathbf{1} + iU \\ S \wedge \mathbf{1} - iU & A \wedge \mathbf{1} - iV \end{pmatrix}$$
(5.132)

この基底では, SU(8) 部分群は

$$SU(8): \quad T' = \begin{pmatrix} W & 0 \\ 0 & \bar{W} \end{pmatrix}, W^{\dagger}W = I$$
(5.133)

と表される.また,

$$\Omega' = \begin{pmatrix} i & 0\\ 0 & -i \end{pmatrix} \tag{5.134}$$

より,

$$T' \in \mathrm{SU}(8) \iff [T', \Omega'] = 0$$
 (5.135)

となる.

5.4.4 極大部分代数

e7の極大準半単純部分代数は次の通り:

- 1. 正則型: $\mathfrak{e}_6 \oplus \mathfrak{u}_1$, \mathfrak{su}_8 , $\mathfrak{so}_{12} \oplus \mathfrak{su}_2$, $\mathfrak{su}_6 \oplus \mathfrak{su}_3$.
- 2. 特殊型: $\mathfrak{su}_2(1)$, $\mathfrak{su}_2(2)$, $\mathfrak{su}_2(3)$, $\mathfrak{su}_2 \oplus \mathfrak{su}_2$, $\mathfrak{g}_2 \oplus \mathfrak{su}_2$, $\mathfrak{f}_4 \oplus \mathfrak{su}_2$, $\mathfrak{sp}_3 \oplus \mathfrak{g}_2$.

(i) 正則部分代数 SL(8) $\mathfrak{sl}(8)$ のルート系 $\lambda^{jk}(1 \leq j \neq k \leq 8)$ のうち,単純ルート $\alpha'_i(j = 1, \dots, 7)$ は次のように標準的に埋め込まれる:

$$\alpha'_{j} = \lambda^{j\,j+1} = e_{j} - e_{j+1} \quad (1 \le j \le 7) \tag{5.136}$$

これらは、 α_j を用いて

$$\alpha'_{j} = \alpha_{j-1} \ (j = 1, \cdots, 6), \tag{5.137a}$$

$$\alpha_7' = \alpha 78 = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + \alpha_5 + 2\alpha_7,$$
 (5.137b)

と表される.

SL(8)のCartan 部分環 L'_0 を, E^8 に埋め込まれた $\mathfrak{sl}(8)$ のルートスペース $x^1 + \cdots + x^8 = 0$ と同一視すると, L'_0 の自然な基底 $H'_j(=E^j_j - E^8_8, j = 1, \cdots, 7)$ は次のベクトルと対応する.

$$H'_1 = (1, 0, \cdots, 0, -1),$$
 (5.138a)

$$H'_2 = (0, 1, 0, \cdots, 0, -1),$$
 (5.138b)

...,
$$H'_7 = (0, \cdots, 0, 1, -1).$$
 (5.138c)

160

図 14: *E*₈の Dynkin 図式

5.5 *E*₈

5.5.1 Lie 代数の構造

交換関係 $J_{ij}(1 \leq i < j \leq 16)$ を $\mathfrak{so}(16)$ の基底, $Q_a(a = 1, \dots, 128)$ を $\mathfrak{so}(16)$ のス ピノール表現に従う基底として,

$$[J_{ij}, J_{kl}] = \delta_{jk}J_{il} - \delta_{jl}J_{ik} - \delta_{ik}J_{jl} + \delta_{il}J_{jk}, \qquad (5.139a)$$

$$[J_{ij}, Q_a] = \frac{1}{2} (\gamma_{ij})_{ab} Q_b, \qquad (5.139b)$$

$$[Q_a, Q_b] = (\gamma^{ij})_{ab} J_{ij}. \tag{5.139c}$$

ルート系とその \mathbb{E}^8 への埋め込み

● 全ルート系

- 128 個: $(\pm 1/2, \pm 1/2)$ (- 偶数個)

5.5.2 表現

	Dynkin weight	次元
	[1000000]	3875
	[01000000]	6696000 [91]
	[00100000	
基本表現	[00010000]	
	[00001000]	
	[00000100]	
	[00000010]	248
	[00000001]	
	[00000001]	

5.5.3 極大部分代数

e7の極大準半単純部分代数は次の通り:

- 1. 正則型: \mathfrak{su}_9 , \mathfrak{so}_{16} , $\mathfrak{e}_7 \oplus \mathfrak{su}_2$, $\mathfrak{e}_6 \oplus \mathfrak{su}_3$, $\mathfrak{su}_5 \oplus \mathfrak{su}_5$.
- 2. 特殊型: $\mathfrak{su}_2(1)$, $\mathfrak{su}_2(2)$, $\mathfrak{su}_2(3)$, $\mathfrak{su}_3 \oplus \mathfrak{su}_2$, $\mathfrak{f}_4 \oplus \mathfrak{g}_2$, \mathfrak{sp}_2 .

(i) 正則部分代数 D8

基本表現の分岐則

 $f_1: 3875 = 1920 [1000001] + 1820 [00010000] + 135 [20000000] (5.140a)$

6 部分群

6.1 半単純極大部分群

【定義 6.1 (正則部分代数と特殊部分代数)】 単純リー代数 \mathcal{L} の部分代数 \mathcal{L}' に対し て、それぞれの Cartan 部分代数 $\mathcal{H}, \mathcal{H}'$ および Weyl 基底 $\mathcal{E} = \{E_{\alpha}\}, \mathcal{E}' = \{E_{\alpha'}\}$ が存在 して、 $\mathcal{H}' \subset \mathcal{H}, \mathcal{E}' \subset \mathcal{E}$ が成り立つとき、 \mathcal{L}' を \mathcal{L} の正則部分代数 (regular subalgebra) という。また、それ以外の部分代数を特殊部分代数 (special subalgebra) といいう。

【**定理 6.2** (正則部分代数の Dynkin 分類)】 複素単純 Lie 代数 *L* の極大正則部 分代数で半単純と U(1) 因子の積で表されるものは、次の 2 つで尽くされる:

- 1) 半単純でないもの: *L* の Dynkin 図式から単純ルートを一つ取り除いて得られる Dynkin 図式に対応する半単純 Lie 代数と U(1) の直和。
- 2) **半単純なもの**: \mathcal{L} の最高ルートを $\theta = \sum_{i} m^{i} \alpha_{i}$ とするとき、対応する拡張 Dynkin 図式から $m^{i} \ge 2$ となる単純ルート α_{i} を一つ取り除いて得られる Dynkin 図式 に対応する半単純 Lie 代数。

ただし、1) で得られる部分代数が2) で得られる半単純部分代数に含まれる場合が ある。また、例外群に対しては、次の5つの場合に2) で得られる単純部分代数が極 大とならない:

- i) $F_4: SU_2 \times SU_4 \subset SO(9)$
- ii) E_7 : SU₂ × SU₄ × SU₄ ⊂ SU₂ × SO₁₂
- iii) E_8 : SU₂ × SU₈ \subset SU₂ × E_7
- iv) E_8 : SU₃ × SU₂ × SU₆ \subset SU₃ × E_6
- v) E_8 : SU₄ × SO₁₀ \subset SO₁₆

Π

図 15: 拡張 Dynkin 図式

6.2 部分群による表現の既約分解

単純 Lie 代数 (*L*, *L*₀)の正則部分代数 (*L'*, *L'*₀) に対して,

$$\iota: \mathscr{L}' \to \mathscr{L}, \quad \iota(\mathscr{L}'_0) \subset \mathscr{L}_0 \tag{6.1}$$

が成り立つ.ここで、1は埋め込み写像である.

いま, \mathscr{L}_0 の勝手な基底を $H_j(j = 1, \dots, r)$, その双対基底を $h_i \in \mathscr{H}$, 基本ルート 系を $\alpha_j \in \mathscr{H}$, その双対基底を $H^j_{\alpha} \in \mathscr{L}_0$ とする.また,対応する部分代数の基底を, それぞれ, $H'_p, H'^p_{\alpha'} \in \mathscr{L}'_0(p = 1, \dots, r')$, $h'_p, \alpha'_p \in \mathscr{H}'$ で表す.このとき,

$$\iota^{*}(\alpha_{j}) = \sum_{k,p,q} \alpha_{j}(H_{k}) h_{k}(\iota_{*}(H'_{p})) h'_{p}(H'^{q}_{\alpha'}) \alpha'_{q}$$
(6.2)

が成り立つ. ここで,

$$\delta_{pr} = h'_p(H'_r) = \sum_q h'_p(H'^q_{\alpha'}) \alpha'_q(H'_r)$$
(6.3)

目次へ

164

	Maximal subalgebras of classical simple Lie algebras with rank 8 or less	
0.00		1

Rank 1	
$SU_2 \supset U_1$	(R)
(SU ₂ , SO ₃ , Sp ₂ , all isomorphic)	
Rank 2	
$SU_3 \supset SU_2 \times U_1$	(R)
\supset SU ₂	(S)
$Sp_4 \supset SU_2 \times SU_2; SU_2 \times U_1$	(R)
$\supset SU_2$	(S)
(SO ₅ isomorphic to Sp ₄ , SO ₄ \sim SU ₂ \times SU ₂)	
Rank 3	
$SU_4 \supset SU_3 \times U_1$; $SU_2 \times SU_2 \times U_1$	(R)
\supset Sp ₄ ; SU ₂ ×SU ₂	(S)
$SO_7 \supset SU_4$; $SU_2 \times SU_2 \times SU_2$; $Sp_4 \times U_1$	(R)
$\supset G_2$	(S)
$Sp_6 \supset SU_3 \times U_1; SU_2 \times Sp_4$	(R)
\supset SU ₂ ; SU ₂ × SU ₂	(S)
(SO ₆ is isomorphic to SU ₄)	
Rank 4	
$SU_5 \supset SU_4 \times U_1; SU_2 \times SU_3 \times U_1$	(R)
\supset Sp ₄	(S)
$SO_9 \supset SO_8; SU_2 \times SU_2 \times Sp_4; SU_2 \times SU_4; SO_7 \times U_1$	(R)
\supset SU ₂ ; SU ₂ × SU ₂	(S)
$Sp_8 \supset SU_4 \times U_1; SU_2 \times Sp_6; Sp_4 \times Sp_4$	(R)
\supset SU ₂ ; SU ₂ × SU ₂ × SU ₂	(S)
$SO_8 \supset SU_2 \times SU_2 \times SU_2 \times SU_2$; $SU_4 \times U_1$	(R)
\supset SU ₃ ; SO ₇ ; SU ₂ × Sp ₄	(S)

図 16: 古典単純 Lie 代数の極大部分代数 (ランク ≤ 8)

Rank 5	
$SU_6 \supset SU_5 \times U_1; SU_2 \times SU_4 \times U_1; SU_3 \times SU_3 \times U_1$	(R)
\supset SU ₃ ; SU ₄ ; Sp ₆ ; SU ₂ ×SU ₃	(S)
$SO_{11} \supset SO_{10}$; $SU_2 \times SO_8$; $Sp_4 \times SU_4$; $SU_2 \times SU_2 \times SO_7$; $SO_9 \times U_1$	(R)
\supset SU ₂	(S)
$Sp_{10} \supset SU_5 \times U_1; SU_2 \times Sp_8; Sp_4 \times Sp_6$	(R
\supset SU ₂ ; SU ₂ × Sp ₄	(S)
$SO_{10} \supset SU_5 \times U_1$; $SU_2 \times SU_2 \times SU_4$; $SO_8 \times U_1$	(R)
\supset Sp ₄ ; SO ₉ ; SU ₂ ×SO ₇ ; Sp ₄ ×Sp ₄	(S)
Rank 6	
$SU_7 \supset SU_6 \times U_1; SU_2 \times SU_5 \times U_1; SU_3 \times SU_4 \times U_1$	(R
\supset SO ₂	(S)
$SO_{13} \supset SO_{12}$; $SU_2 \times SO_{10}$; $Sp_4 \times SO_8$; $SU_4 \times SO_7$; $SU_2 \times SU_2 \times SO_9$; $SO_{11} \times U_1$	(R
\supset SU ₂	(S)
$Sp_{12} \supset SU_6 \times U_1$; $SU_2 \times Sp_{10}$; $Sp_4 \times Sp_8$; $Sp_6 \times Sp_6$	(R
\supset SU ₂ ; SU ₂ × SU ₄ ; SU ₂ × Sp ₄	(S)
$SO_{12} \supset SU_6 \times U_1$; $SU_2 \times SU_2 \times SO_8$; $SU_4 \times SU_4$; $SO_{10} \times U_1$	(R
$\supset SU_2 \times Sp_6; SU_2 \times SU_2 \times SU_2; SO_{11}; SU_2 \times SO_9; Sp_4 \times SO_7$	(S)
Rank 7	
$SU_8 \supset SU_7 \times U_1; SU_2 \times SU_6 \times U_1; SU_3 \times SU_5 \times U_1; SU_4 \times SU_4 \times U_1$	(R)
\supset SO ₈ ; Sp ₈ ; SU ₂ × SU ₄	(S)
$SO_{15} \supset SO_{14}; SU_2 \times SO_{12}; Sp_4 \times SO_{10}; SO_7 \times SO_8; SU_4 \times SO_9; SU_2 \times SU_2 \times SO_{11}; SO_{13} \times U_1$	(R)
\supset SU ₂ ; SU ₄ ; SU ₂ × Sp ₄	(S)
$Sp_{14} \supset SU_7 \times U_1$; $SU_2 \times Sp_{12}$; $Sp_4 \times Sp_{10}$; $Sp_6 \times Sp_8$	(R)
\supset SU ₂ ; SU ₂ × SO ₇	(S)
$SO_{14} \supset SU_7 \times U_1$; $SU_2 \times SU_2 \times SO_{10}$; $SU_4 \times SO_8$; $SO_{12} \times U_1$	(R
$\supset Sp_4; Sp_6; G_2; SO_{13}; SU_2 \times SO_{11}; Sp_4 \times SO_9; SO_7 \times SO_7$	(S)
Rank 8	
$SU_9 \supset SU_8 \times U_1$; $SU_2 \times SU_7 \times U_1$; $SU_3 \times SU_6 \times U_1$; $SU_4 \times SU_5 \times U_1$	(R)
\supset SO ₉ ; SU ₃ × SU ₃	(S)
$SO_{17} \supset SO_{16}$; $SU_2 \times SO_{14}$; $Sp_4 \times SO_{12}$; $SO_7 \times SO_{10}$; $SO_8 \times SO_9$; $SU_4 \times SO_{11}$;	
$SU_2 \times SU_2 \times SO_{13}$; $SO_{15} \times U_1$	(R)
\supset SU ₂	(S)
$Sp_{16} \supset SU_8 \times U_1$; $SU_2 \times Sp_{14}$; $Sp_4 \times Sp_{12}$; $Sp_6 \times Sp_{10}$; $Sp_8 \times Sp_8$	(R)
\supset SU ₂ ; Sp ₄ ; SU ₂ × SO ₈	(S)
$SO_{16} \supset SU_8 \times U_1; \ SU_2 \times SU_2 \times SO_{12}; \ SU_4 \times SO_{10}; \ SO_8 \times SO_8; \ SO_{14} \times U_1$	(R)
\supset SO ₉ ; SU ₂ × Sp ₈ ; Sp ₄ × Sp ₄ ; SO ₁₅ ; SU ₂ × SO ₁₃ ; Sp ₄ × SO ₁₁ ; SO ₇ × SO ₉	(S)

図 17: 古典単純 Lie 代数の極大部分代数(ランク ≤ 8)(続き)

$G_2 \supset SU_3$	7 = 1 + 3 + 3	(R)
\supset SU ₂ × SU ₂	7 = (2, 2) + (1, 3)	(R)
\supset SU ₂	7 = 7	(S)
F₄⊃ SO₀	26 = 1 + 9 + 16	(P)
\supset SU ₃ × SU ₃	$26 = (8, 1) + (3, 3) + (\overline{3}, \overline{3})$	(P)
\supset SU ₂ × Sp ₆	26 = (2, 6) + (1, 14)	(R)
2 SU	26 = 9 + 17	(2)
\supset SU ₂ × G ₂	26 = (5, 1) + (3, 7)	(S)
$E_6 \supset SO_{10} \times U_1$	27 = 1 + 10 + 16	(R)
⊃ SU ₂ × SU ₄	$27 = (2, \overline{6}) + (1, 15)$	(R)
\supset SU ₃ ×SU ₃ ×SU ₃	$27 = (\overline{3}, 3, 1^{c}) + (3, 1, 3) + (1, \overline{3}, \overline{3})$	(R)
⊃ SU ₃	27 = 27	(S)
$\supset G_2$	27 = 27	(S)
⊃ Sp ₈	27 = 27	(S)
$\supset F_4$	27 = 1 + 26	(S)
$\supset SU_3 \times G_2$	$27 = (\overline{6}, 1) + (3, 7)$	(S)
$E_7 \supset E_6 \times U_1$	$56 = 1 + 1 + 27 + \overline{27}$	(R)
⊃ SU8	$56 = 28 + \overline{28}$	(R)
\supset SU ₂ × SO ₁₂	56 = (2, 12) + (1, 32)	(R)
\supset SU ₃ × SU ₆	$56 = (3, 6) + (\overline{3}, \overline{6}) + (1, 20)$	(R)
⊃ SU₂	56 = 10 + 18 + 28	(S)
\supset SU ₂	56 = 6 + 12 + 16 + 22	(S)
\supset SU ₃	$56 = 28 + \overline{28}$	(S)
\supset SU ₂ × SU ₂	56 = (5, 2) + (3, 6) + (7, 4)	(S)
\supset SU ₂ × G ₂	56 = (4, 7) + (2, 14)	(S)
\supset SU ₂ × F ₄	56 = (4, 1) + (2, 26)	(S)
$\supset G_2 \times Sp_6$	56 = (1, 14') + (7, 6)	(S)
$E_8 \supset SO_{16}$	248 = 120 + 128	(R)
\supset SU ₅ × SU ₅	$248 = (24, 1) + (1, 24) + (10, 5) + (\overline{10}, \overline{5}) + (5, \overline{10}) + (\overline{5}, 10)$	(R)
\supset SU ₃ × E ₆	$248 = (8, 1) + (1, 78) + (3, 27) + (\overline{3}, \overline{27})$	(R)
\supset SU ₂ × E ₇	248 = (3, 1) + (1, 133) + (2, 56)	(R)
⊃ SU ₉	$248 = 80 + 84 + \overline{84}$	(R)
\supset SU ₂	248 = 3 + 15 + 23 + 27 + 35 + 39 + 47 + 59	(S)
\supset SU ₂	248 = 3 + 11 + 15 + 19 + 23 + 27 + 29 + 35 + 39 + 47	(S)
\supset SU ₂	248 = 3 + 7 + 11 + 15 + 17 + 19 + 23 + 23 + 27 + 29 + 35 + 39	(S)
$\supset G_2 \times F_4$	248 = (14, 1) + (1, 52) + (7, 26)	(S)
\supset SU ₂ × SU ₃	248 = (3, 1) + (1, 8) + (7, 8) + (5, 10) + (5, 10) + (3, 27)	(S)
⊃ Sp₄	248 = 10 + 84 + 154	(S)

図 18: 例外単純 Lie 代数の極大部分代数(ランク ≤ 8)(続き)

を考慮すると,

$$\begin{pmatrix} \alpha_1 & \cdots & \alpha_r \end{pmatrix} = \begin{pmatrix} h_1 & \cdots & h_r \end{pmatrix} A,$$
 (6.4a)

$$\begin{pmatrix} \alpha'_1 & \cdots & \alpha'_{r'} \end{pmatrix} = \begin{pmatrix} h'_1 & \cdots & h'_{r'} \end{pmatrix} A', \tag{6.4b}$$

$$B = (B_{pj}): \quad \iota_*(H'_p) = \sum_j B_{pj}H_j,$$
 (6.4c)

と置くとき,

$$M_S = A'^{-1}BA, (6.5a)$$

$$\iota^* \begin{pmatrix} \alpha_1 & \cdots & \alpha_r \end{pmatrix} = \begin{pmatrix} \alpha'_1 & \cdots & \alpha'_{r'} \end{pmatrix} M_S$$
 (6.5b)

が成り立つ. これより, $(\mathcal{L}, \mathcal{L}_0)$ の表現に対するウエイトとその $(\mathcal{L}', \mathcal{L}'_0)$ に対する ウエイトの対応は,

$$\sum_{j} \lambda^{j} \alpha_{j} \mapsto \sum_{p} \lambda'^{p} \alpha'_{p} : \qquad \begin{pmatrix} \lambda'^{1} \\ \vdots \\ \lambda'^{r'} \end{pmatrix} = M_{S} \begin{pmatrix} \lambda^{1} \\ \vdots \\ \lambda^{r} \end{pmatrix}$$
(6.6)

で与えられる.

対応して, Dynkin 基底でのウエイトの対応は, $C, C' \in (\mathcal{L}, \mathcal{L}_0), (\mathcal{L}', \mathcal{L}'_0)$ の Cartan 行列として,

$$M_D = {}^{T}\!C' M_S {}^{T}\!C^{-1}; (6.7a)$$

$$\iota^* \left(f_1 \quad \cdots \quad f_r \right) = \left(f'_1 \quad \cdots \quad f'_{r'} \right) M_D \tag{6.7b}$$

および

$$\sum_{j} m^{j} f_{j} \mapsto \sum_{p} m'^{p} f'_{p} : \qquad \begin{pmatrix} m'^{1} \\ \vdots \\ m'^{r'} \end{pmatrix} = M_{D} \begin{pmatrix} m^{1} \\ \vdots \\ m^{r} \end{pmatrix}$$
(6.8)

なお,部分群がU(1)を含む場合,その部分については, A' = 1 とおく. すなわち, U(1) 電荷を

$$\iota_*(H') = Q = \sum_j Q_H^j H_j \tag{6.9}$$

と置くとき,各ウエイトに対する電荷の値は, $\lambda = \sum_j \lambda^j \alpha_j = \sum_j m^j \alpha_j$ として、

$$\lambda(Q) = Q_S \lambda = Q_D m \tag{6.10}$$

で与えられる. ここで、

$$Q_S = Q_H A, \quad Q_D = Q_S {}^T C^{-1}.$$
 (6.11)

このように,正則部分代数の埋め込みは,Cartan 部分代数の埋め込み $\iota: \mathcal{L}'_0 \to \mathcal{L}_0$ により決定されるが,部分代数が(拡張)Dynkin 図式から標準の手続きにより得られる場合には,次の方法でルート系の構造のみで機械的に決定される.

1. Dynkin 図式から基本ルート α_{\sharp} に対応するノードを一つ取り除く場合: この 場合,基本ルートの対応を与える行列 M_{S} は, \mathcal{L} のルート空間 \mathcal{H} において, $\{\alpha_{a}, a = 1, \dots, \sharp - 1, \sharp + 1, \dots, r\}$ が張る超平面を部分代数 \mathcal{L}' のルート空間 \mathcal{H}' と同一視するとき,垂直射影 $\pi: \mathcal{H} \to \mathcal{H}'$ により与えられる:

$$\iota^* : \quad (\alpha_1, \cdots, \alpha_{\sharp}, \cdots, \alpha_r) \mapsto (\alpha'_1, \cdots, \alpha'_{\sharp-1}, \sum_{j \neq \sharp} c^j \alpha'_j, \alpha'_{\sharp+1}, \cdots, \alpha'_{r-1}),$$
$$c^j = \sum_{k \neq \sharp} (K'^{-1})^{jk} K_{k\sharp} \ (j \neq \sharp) \tag{6.12}$$

この射影は、Dynkin ラベルでみると、ちょうど # 番目の成分を捨て、それ以外の成分の値を保つ操作と一致する:

$$m_j = \langle \lambda, \alpha_j \rangle = \frac{2(\lambda, \alpha_j)}{(\alpha_j, \alpha_j)} = \frac{2(\lambda', \alpha'_j)}{(\alpha'_j, \alpha'_j)} = m'_j \ (j \neq \sharp),$$

$$\pi : \quad [m_1, \cdots, m_r] \mapsto [m_1, \cdots, m_{\sharp-1}][m_{\sharp+1}, \cdots, m_r]$$

ここで、右辺の Dynkin ラベルの分解構造は、Dynkin 図式に依存する.

なお、この射影により、基本表現 $f_j(j \neq \sharp)$ の最高ウエイトは、(適当な基本ルートの並べ替えにより)最大ランクをもつ単純部分代数の対応する基本表現 f'_j の最高ウエイトに写されるが、 f_{\sharp} の最高ウエイトはゼロウエイトに射影される.しかし、基本ルート α_i 方向のWeyl変換に相当する \mathcal{L} の基本ルートの取り替えを行うと、

$$\lambda = f_{\sharp} \mapsto \tilde{\lambda} = \lambda - \langle \lambda, \alpha_{\sharp} \rangle \alpha_{\sharp} = f_{\sharp} - \alpha_{\sharp},$$

$$\pi : \tilde{\lambda} \mapsto \tilde{\lambda}' = -\iota^{*}(\alpha_{\sharp}),$$

$$\alpha_{\sharp} = \sum_{j \neq \sharp} x_{j} \alpha_{j}' : \quad C^{\sharp}_{k} = \langle \alpha_{\sharp}, \alpha_{k}' \rangle = \sum_{j \neq \sharp} x_{j} C'^{j}_{k} \ (k \neq \sharp),$$

$$m_{j}' = \left\langle \tilde{\lambda}, \alpha_{j}' \right\rangle = -\sum_{k \neq \sharp} x_{k} C'^{k}_{j} = -C^{\sharp}_{j} \ (j \neq \sharp)$$

より,新たな基本ルート系では, *f*[#]の最高ウエイトは,適当な既約表現の最高 ウエイトに対応する整ウエイトに射影される.

169

また, U(1) 電荷ベクトル Q_H は,

$$\alpha_a(Q_H) = 0, \quad a \neq i \tag{6.13}$$

により,比例係数を除いて決定される.

2. 拡張 Dynkin 図式から基本ルート α_{\sharp} に対応するノードを一つ取り除く場合: こ の場合, θ を最高ウエイトベクトルとして, 埋め込み行列 M_S は,

$$\iota^*(\tilde{\alpha}_j) = \alpha'_j \ (j = 1, \cdots, r) \tag{6.14}$$

 ϵ_{α_j} について解くことにより決定される. ここで, $\tilde{\alpha}_j$ は, $\{\alpha_1, \dots, \alpha_{\sharp-1}, \alpha_{\sharp+1}, \dots, \alpha_r, -\theta\}$ を適当に並び替えたものである.

 $\theta = \sum_{i} t_i \alpha_i$ のとき, $-\theta = \alpha'_r$ とおくと,

$$\iota^*(\tilde{\alpha}_j) = \alpha'_j \ (j = 1, \cdots, r-1), \quad \iota^*(\alpha_\sharp) = -\frac{1}{t_\sharp} \left(\alpha'_r + \sum_{i=1}^{r-1} \tilde{t}_i \alpha'_i \right)$$

より、埋め込み行列 M_Sの具体形が決まる. Dynkin 基底では、この対応は

$$\iota^*(\tilde{f}_j) = f'_j - \frac{t_j K_{jj}}{K_{kl} t^k t^l} f'_r \ (j = 1, \cdots, r-1),$$
$$\iota^*(f_\sharp) = -\frac{t_\sharp K_{\sharp\sharp}}{K_{kl} t^k t^l} f'_r$$

と表され, これより M_D が直接決まる.

6.3 埋め込み行列の標準化

【命題 6.3 (最高ウエイトルートの幾何学的特徴)】 複素半単純 Lie 代数 (\mathfrak{g} , \mathfrak{h})の 既約表現に対応するウエイト系を $\Lambda \subset \mathfrak{h}_{\mathbb{R}}^*$ とする.このとき,勝手な基本ルート系 Π に関する Λ の最高ウエイト λ は, Λ の中で最長のウエイトとなる.逆に, Λ の任意 の最長ウエイト λ は適当な基本ルート系に関する最高ウエイトとなる.

Proof. 勝手な基本ルート系 II に関する最高ウエイトを λ_0 , Λ の勝手な最長ウエイトを λ_1 とする. このとき, 適当な正ルート α が存在して, $\lambda_0 = \lambda_1 + \alpha$ と表される. したがって, Λ に含まれる λ_0 を基点とする最長 α 系列は, $\lambda_0, \dots, \lambda_0 - p\alpha$ ($p \ge 1$) となり,

$$2(\lambda_0, \alpha) = p(\alpha, \alpha)$$

が成り立つ. したがって,

$$(\lambda_1, \lambda_1) = (\lambda_0, \lambda_0) - 2(\lambda_0, \alpha) + (\alpha, \alpha) = (\lambda_0, \lambda_0) - (p-1)(\alpha, \alpha)$$

となる.したがって、 λ_1 が最長ベクトルであることより、 $p = 1 \operatorname{cr} (\lambda_0, \lambda_0) = (\lambda_1, \lambda_1)$ となる.以上より、最高ウエイトベクトルは最長ウエイトベクトルであることが示された.

つぎに、 α に関する Weyl 変換を w_{α} とすると、 λ_0 と λ_1 は等長なので、 $w_{\alpha}(\lambda_1) = \lambda_0$ となる.これは、 λ_1 が $w_{\alpha}(\Pi)$ に関する最高ウエイトベクトルであることを意味する. したがって、任意の最長ウエイトベクトルは、適当な基本ルート系に関して最高ウ エイトベクトルとなる.

【命題 6.4 (Cartan 部分代数の埋め込み写像の等長性)】 単純 Lie 代数 $(\mathfrak{g}',\mathfrak{h}')$ か ら半単純 Lie 代数 $(\mathfrak{g},\mathfrak{h})$ への埋め込み $\iota:\mathfrak{g}' \to \mathfrak{g}$ が $\iota(\mathfrak{h}') \subset \mathfrak{h}$ を満たすとする. このと き, Cartan 部部代数の写像 $\iota:\mathfrak{h}' \to \mathfrak{h}$ は相似写像となる.

Proof. gの随伴表現は、 ι により g'の表現として次のように既約分解される:

$$\rho_{\mathrm{adj}}|\mathfrak{g}=\rho_{\mathrm{adj}}|\mathfrak{g}'+\oplus_i\rho_i|\mathfrak{g}'.$$

これより, $X, Y \in \mathfrak{h}'$ に対して

$$K(X,Y) \equiv \operatorname{Tr}_{\mathfrak{g}}(\operatorname{ad}(\iota(X))\operatorname{ad}(\iota(Y))) = \operatorname{Tr}_{\mathfrak{g}'}(\operatorname{ad}(X)\operatorname{ad}(Y)) + \sum_{i} \operatorname{Tr}_{i}(\rho_{i}(X)\rho_{i}(Y))$$

ここで、 \mathfrak{g}' が単純で、 $\operatorname{Tr}_i(\rho_i(X)\rho_i(Y)$ は $\operatorname{ad}(\mathfrak{g}')$ で不変なので、 $\operatorname{Tr}_i(\rho_i(X)\rho_i(Y)) = C_iK'(X,Y)$ となる、よって、

$$K(X,Y) = (1 + \sum_{i} C_i)K'(X,Y)$$

となる.

Q.E.D.

【命題 6.5 (直交射影としての埋め込み行列)】 Lie 代数 $(\mathfrak{g}, \mathfrak{h})$ とその部分代数 $\iota: (\mathfrak{g}', \mathfrak{h}') \rightarrow (\mathfrak{g}, \mathfrak{h})$ に対し、 \mathfrak{h} を

$$\mathfrak{h}_{\mathbb{R}} = \iota_*(\mathfrak{h}'_{\mathbb{R}}) \oplus \mathcal{N}$$

と直交分解するとき,対応する双対空間 り☆の分解は,直交分解となる:

$$\mathfrak{h}_{\mathbb{R}}^{*} = \tilde{\mathcal{N}} \oplus \tilde{\mathfrak{h}}_{\mathbb{R}}'; \quad \tilde{\mathcal{N}} \cong \mathfrak{h}'_{\mathbb{R}}$$

ここで,
$$\tilde{V} = \{ \alpha \in \mathfrak{h}_{\mathbb{R}}^* \mid \alpha \mid_V = 0 \}$$
である. さらに, この分解のもとで, $\alpha \in \mathfrak{h}_{\mathbb{R}}^*$ は

 $\alpha = \iota^* \alpha \oplus \nu$

と表される. すなわち, $\alpha \mapsto \alpha' = \iota^* \alpha \operatorname{d}, \mathfrak{h}_{\mathbb{R}}^*$ における $\tilde{\mathcal{N}}$ への直交射影と一致する.

Proof. $\mathfrak{h}_{\mathbb{R}}^*$ の双対分解 $\mathfrak{h}_{\mathbb{R}}^* = \tilde{\mathcal{N}} \oplus \tilde{\mathfrak{h}}_{\mathbb{R}}'$ において,

$$\alpha \in \mathcal{N}, X \in \mathcal{N} \implies (H_{\alpha}, X) = \alpha(X) = 0 \implies H_{\alpha} \in \mathfrak{h}_{\mathbb{R}}'.$$

同様にして、 $\beta \in \tilde{\mathfrak{h}}_{\mathbb{R}}' \Rightarrow H_{\beta} \in \mathcal{N}.$ よって、 $(\alpha, \beta) = (H_{\alpha}, H_{\beta}) = 0$ 、すなわち $\mathcal{N} \perp \tilde{\mathfrak{h}}_{\mathbb{R}}'.$

つぎに,明らかにに写像

$$N \ni \alpha \mapsto \alpha|_{\mathfrak{h}_{\mathbb{R}}^{\prime}} \in \mathfrak{h}_{\mathbb{R}}^{\prime *}$$

は1対1写像等長写像.

Q.E.D.

【命題 6.6 (部分代数による表現の既約分解における最長ウエイトの対応)】 単純 Lie 代数 \mathfrak{g} とその単純部分代数 \mathfrak{g}' の組 ι : ($\mathfrak{g}',\mathfrak{h}'$) \rightarrow ($\mathfrak{g},\mathfrak{h}$) に対応する $\mathfrak{h}_{\mathbb{R}}^{*}$ の直交射影を

$$\pi:\mathfrak{h}_{\mathbb{R}}^{*}\cong\mathfrak{h}_{\mathbb{R}}^{\prime*}\oplus\mathfrak{h}_{\mathbb{R}}^{\prime}\to\mathfrak{h}_{\mathbb{R}}^{\prime*}$$

とする. このとき, g の既約表現に対応するウエイト系 Λ の π による射影は, g' の 既約表現に対応するウエイト系 Λ'_i の合併集合となる. この合併集合において, 長さ が最長となるウエイトベクトル λ' に対して, 常に, $\pi(\lambda) = \lambda'$ となる Λ の最長ウエ イト λ が存在する.

Proof. いま, $\lambda_0 \in \pi^{-1}(\lambda') \cap \Lambda$ が Λ における最長ウエイトでないとすると, gのルート系 Δ に属するルート α で,

 $\lambda_0 - p\alpha, \cdots, \lambda_0, \cdots, \lambda_0 + q\alpha \in \Lambda, \quad p, q \ge 1$

となるものが存在する.もし、 $\alpha' = \pi(\alpha) \neq 0$ なら、これは、

$$\lambda' - p\alpha', \cdots, \lambda', \cdots, \lambda' + q\alpha' \in \Lambda', \quad p, q \ge 1$$

を意味するので、一般論より、 λ' は最長ウエイトでないことになる.よって、 $\pi(\alpha) = 0$. この条件を満たす α のうち、 $\lambda_0 + \alpha$ が最長となるウエイト λ を取れば、題意が満た される. Q.E.D.

6.4 埋め込み行列の例

【公式 6.7 $(SO(n) \rightarrow SL(n))$ 】 $SO(n) \circ SL(n) \land o$ 標準埋め込みに対し、両者 の Dynkin ラベルは次のように対応する:

 $\begin{array}{rcl} n=2r & : & A_{2r-1} & D_r \\ (r \ge 2) & [a_1 \cdots a_{2r-1}] & \mapsto & [a_1 + a_{2r-1} \cdots a_{r-1} + a_{r+1} \ a_{r-1} + 2a_r + a_{r+1}] \\ n=2r+1 & : & A_{2r} & B_r \\ (r \ge 1) & [a_1 \cdots a_{2r}] & \mapsto & [a_1 + a_r \cdots a_{r-1} + a_{r+2} \ 2a_r + 2a_{r+1}] \\ \\ \not{\tabular} t \not{\t$

6.5 等方群

6.5.1 Lorentz $\# SO_0(D-1,1)$

【命題 6.8 (ベクトル表現における光的ベクトルの等方群)】 D次元 Minkowski 時空 $E^{D-1,1}$ のベクトルを $X = (X^1, \dots, X^{D-1}, X^0)$ と成分表示する. このとき、光 的ベクトル $k = (0, \dots, 0, 1, 1) \in LC_+$ に対して、光的ベクトルの集合

$$\Sigma_{D-2} \equiv \left\{ k \cdot X = -2 \mid X \cdot X = 0, X \in E^{D-1,1} \right\} = \mathrm{LC}_{+} \cap H^{D-1}$$
(6.15)

は、D-2次元 Euclid 空間 E^{D-2} と同型な部分多様体となり、 $x = (X^1, \dots, X^{D-2})$ がその大域的な Descartes 座標系を与える.特に、 Σ_{D-2} の計量は

$$ds^{2}(\Sigma_{D-2}) = (dX^{1})^{2} + \dots + (dX^{D-2})^{2}$$
(6.16)

と表される.

 $E^{D-1,1}$ の固有 Lorentz 変換群 SO₀(D-1,1)の $k \in LC_+$ における等方群 G_k は, Σ_{D-2} に有効かつ推移的に作用し, Isom₀(Σ_{D-2}) \cong ISO(D-2) と同型となる. その 変換行列の具体的な表式は

$$\Lambda = \begin{pmatrix} R & 0 \\ 0 & I_2 \end{pmatrix} \times \begin{pmatrix} I_{D-2} & -\boldsymbol{a} & \boldsymbol{a} \\ \hline \boldsymbol{T}_{\boldsymbol{a}} & 1 - \gamma & \gamma \\ \boldsymbol{T}_{\boldsymbol{a}} & -\gamma & 1 + \gamma \end{pmatrix}$$
(6.17)

で与えられる.ここで,

$$R \in SO(D-2), \quad \boldsymbol{a} \in \mathbb{R}^{D-2}, \quad \gamma = \frac{1}{2}\boldsymbol{a} \cdot \boldsymbol{a}$$
 (6.18)

である.

$r \setminus t$	А	В	С	D	Е	F	G
	r(r+2)	r(2r+1)	r(2r+1)	r(2r-1)			
1	3	(3)	-	-			
2	8	10	(10)	3 + 3			14
3	15	21	21	(15)			
4	24	36	36	28		52	
5	35	55	55	45			
6	48	78	78	66	78		
7	63	105	105	91	133		
8	80	136	136	120	248		
9	99	171	171	153			
10	120	210	210	190			

表 6: 低ランクの単純 Lie 代数の次元

7 具体例

7.1 SU(2)

7.1.1 Lie 代数

SL(2)のWeyl 基底は

$$H_1 = E_{11} - E_{22}, \quad E^+ = E_{12}, \quad E^- = E_{21}.$$
 (7.1)

交換関係は,

$$[H_1, E^{\pm}] = \pm 2E^{\pm}, \quad [E^+, E^-] = H_1 = H_{\alpha_1}.$$
 (7.2)

よって,ルート系は基本ルート α₁ とその (−1) 倍からなる:

$$\Delta^{+} = \{\alpha_1 = 2h_1\}, \quad \Delta^{-} = \{-\alpha_1\}$$
(7.3)

Weyl 基底を用いると, SU(2)のLie 代数の生成元は

$$iH_1, \quad A = E^+ - E^-, \quad iS = i(E^+ + E^-).$$
 (7.4)

7.1.2 同型対応 $\iota:\mathfrak{su}_2 \to \mathfrak{so}_3$

so₃のWeyl基底は

$$H'_1 = -iA_{12}, \quad E'^{\pm} = -\frac{i}{\sqrt{2}}(A_{31} \mp iA_{23}),$$
(7.5)

$$[H'_1, E'^{\pm}] = \pm E'^{\pm}, \quad [E'^+, E'^-] = H'_1 \tag{7.6}$$

でルート系は

$$\alpha'_1 = h'_1, \quad E'_{\pm \alpha'} = E'^{\pm}.$$
 (7.7)

よって, 同型対応は

$$\iota: H_1 \mapsto 2H_1', \quad E^{\pm} \mapsto \sqrt{2}E'^{\pm}. \tag{7.8}$$

埋め込み行列で表すと,

$$M_H(\mathfrak{su}_2 \to \mathfrak{so}_3) = [2], \quad M_S(\mathfrak{su}_2 \to \mathfrak{so}_3) = [1], \quad M_D(\mathfrak{su}_2 \to \mathfrak{so}_3) = [1].$$
(7.9)

7.1.3 表現

基本表現

Dynkin label [1]
$$\mapsto$$
 $\mathbf{2}_s$: $\begin{pmatrix} 1/2 \\ (-1/2) \end{pmatrix}$ (7.10)

5次元表現 5次元ユニタリ表現は、

$$iH_1 \mapsto i \text{diag}[4, 2, 0, -2, -4],$$
 (7.11a)

$$A \mapsto X_5 - {}^T\!X_5, \tag{7.11b}$$

$$iS \mapsto i(X_5 + {}^T\!X_5)$$
 (7.11c)

ここで、

$$X_{5} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 0 & \sqrt{6} & 0 & 0 & 0 \\ 0 & 0 & -\sqrt{6} & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 \end{pmatrix},$$
 (7.12)

この表現は \mathfrak{so}_3 の実表現で、適当な基底の変換により、 \mathfrak{so}_5 の実行列により表される:

$$iH_1 \mapsto 2A_{12} + 4A_{34},$$
 (7.13a)

$$A \mapsto -2A_{13} + 2A_{24} - 6A_{35}, \tag{7.13b}$$

$$iS \mapsto -2A_{23} + 2A_{14} - 6A_{45}.$$
 (7.13c)

一般の既約ユニタリ表現 最高ウエイト [n = 2j]の既約ユニタリ表現は

$$iH \mapsto i \times \operatorname{diag}[n, n-2, \cdots, -n+2, -n],$$
 (7.14a)

$$A \mapsto X_{n+1} - X_{n+1}^{\dagger},$$
 (7.14b)

$$iS \mapsto i(X_{n+1} + X_{n+1}^{\dagger}).$$
 (7.14c)

ここで,

$$(X_{n+1})_{jk} = \delta_{j-1\,k} a_k \ (1 \le j, k \le n+1); \tag{7.15a}$$

$$|a_k|^2 = k(n+1-k), \quad k = 1, 2, \cdots, n,$$
 (7.15b)

$$a_k = -a_{n+1-k}, k \neq (n+1)/2$$
 (7.15c)

最後の条件が満たされると、nが偶数の時、 $H, E^{\pm} \in \mathfrak{so}_{n+1}, n$ が奇数の時、 $H, E^{\pm} \in \mathfrak{sp}_{(n+1)/2}$ となる.

7.2 SU(3)

7.2.1 Lie 代数

ルート系と Weyl 基底 SL $(3, \mathbb{C})$ の Weyl 基底は

$$\mathcal{L}_0$$
 : $H_1 = E_{11} - E_{33}, \quad H_2 = E_{22} - E_{33},$ (7.16a)

$$\Delta^+ : E_{jk}^+ = E_{jk} \ (j < k), \tag{7.16b}$$

$$\Delta^{-} : E_{jk} = E_{jk} \ (j < k), \tag{7.16b}$$

$$\Delta^{-} : E_{jk} = E_{kj} \ (j < k). \tag{7.16c}$$

交換関係は, $H \in \langle H_1, H_2 \rangle$ に対して,

$$\begin{bmatrix} H, E_{12}^{\pm} \end{bmatrix} = \pm \alpha_1(H) E_{12}^{\pm}, \quad \begin{bmatrix} H, E_{23}^{\pm} \end{bmatrix} = \pm \alpha_2(H) E_{23}^{\pm}, \quad \begin{bmatrix} H, E_{13}^{\pm} \end{bmatrix} = \pm (\alpha_1 + \alpha_2)(H) E_{13}^{\pm}$$
(7.17)
よって、ルート系は

基本ルート II :
$$(\alpha_1 \ \alpha_2) = (h_1 \ h_2) \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix},$$
 (7.18a)

ルート系 Δ :
$$E_{\pm\alpha_1} = E_{12}^{\pm}$$
, $E_{\pm\alpha_2} = E_{23}^{\pm}$, $E_{\pm(\alpha_1 + \alpha_2)} = E_{13}^{\pm}$. (7.18b)

levelDynkin labelsweights2
$$[1 \ 1]$$
 $(1 \ 1)$ 1 $[-1 \ 2] \ [2 \ -1]$ $(1 \ 0) \ (0 \ 1)$ 0 $[0 \ 0] \ [0 \ 0]$ $(0 \ 0) \ (0 \ 0)$ -1 $[-2 \ 1] \ [1 \ -2]$ $(-1 \ 0) \ (0 \ -1)$ -2 $[-1 \ -1]$ $(-1 \ -1)$

SU(3) の Lie 代数の基底は

$$iH_j \ (j = 1, 2), \quad A_j = E_{kl}^+ - E_{kl}^-, \quad S_j = i(E_{kl}^+ + E_{kl}^-) \quad (\{j, k, l\} = \{1, 2, 3\}, k < l).$$
(7.20)

Killing 計量は

$$((\alpha_i, \alpha_j)) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
(7.21)

交換関係 基底を

$$X^{\pm} = \frac{1}{\sqrt{2}} E_{12}^{\pm}, \quad Y^{\pm} = \frac{1}{\sqrt{2}} E_{23}^{\pm}, \quad Z^{\pm} = \frac{1}{\sqrt{2}} E_{13}^{\pm}, \tag{7.22}$$

$$H_{\alpha_1} = H_1 - H_2, \quad H_{\alpha_2} = H_2 \tag{7.23}$$

と表すとき, 交換関係は

$$[H_1, X^{\pm}] = \pm X^{\pm}, \quad [H_2, X^{\pm}] = \mp X^{\pm},$$

$$[H_1, Y^{\pm}] = \pm Y^{\pm}, \quad [H_2, Y^{\pm}] = \pm 2Y^{\pm},$$

$$[H_1, Z^{\pm}] = \pm 2Y^{\pm}, \quad [H_2, Z^{\pm}] = \pm Y^{\pm},$$

$$[X^+, X^-] = H_{\alpha_1}, \quad [Y^+, Y^-] = H_{\alpha_2}, \quad [Z^+, Z^-] = H_{\alpha_1} + H_{\alpha_2},$$

$$[X^{\pm}, Y^{\pm}] = \pm \frac{1}{\sqrt{2}} Z^{\pm}, \quad [X^{\pm}, Y^{\mp}] = 0,$$

$$[X^{\mp}, Z^{\pm}] = \pm \frac{1}{\sqrt{2}} Y^{\pm}, \quad [Y^{\mp}, Z^{\pm}] = \mp \frac{1}{\sqrt{2}} X^{\pm},$$

$$[X^{\pm}, Z^{\pm}] = [Y^{\pm}, Z^{\pm}] = 0$$

$$(7.24)$$

構造定数が完全反対称となる基底 基底 F_1, \cdots, F_8 を

$$F_{1} = \frac{i}{2}A_{3}, \ F_{3} = -\frac{i}{2}S_{3}, \ F_{3} = \frac{1}{2}(H_{1} - H_{2}), \ F_{4} = \frac{i}{2}S_{2}, \ F_{5} = \frac{i}{2}A_{2},$$

$$F_{6} = \frac{i}{2}A_{1}, \ F_{7} = -\frac{i}{2}S_{1}, \ F_{8} = -\frac{\sqrt{3}}{6}(H_{1} + H_{2})$$
(7.25)

により定義すると, 交換関係は

$$[F_j, F_k] = i f_{jkl} F_l, \quad f_{jkl} = f_{[jkl]}.$$
(7.26)

構造定数のゼロでない成分は

$$f_{147} = f_{516} = f_{246} = f_{257} = f_{345} = f_{637} = \frac{1}{2},$$

$$f_{123} = 1, \quad f_{458} = f_{678} = \frac{\sqrt{3}}{2}$$
(7.27)

およびその反対称化.

7.2.2 表現

Cartan 行列は

$$(C_{ij}) = (2K_{ij}) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
 (7.28)

よって、基本表現 $f^j = (C^{-1})^{jk} \alpha_k$ は、

$$[1,0] = \mathbf{3}_v \quad : \quad f^1 = h_1 = \frac{1}{3}(2\alpha_1 + \alpha_2), \tag{7.29a}$$

$$[0,1] = \mathbf{3}_v^* \quad : \quad f^2 = h_1 + h_2 = \frac{1}{3}(\alpha_1 + 2\alpha_2). \tag{7.29b}$$

179

Dynkin ラベル [*m*, *n*] の表現の次元は

$$\dim([m,n]) = \frac{1}{2}(m+1)(n+1)(m+n+2).$$
(7.30)

具体的な低次元の表現の次元は次の表の通り(複素共役表現は省略):

level	Representation				
	triality $= 0$	triality= 1	triality $= 2$		
1		$[1,0] = (2/3,1/3) = 3_v$	$[0,1] = (1/3,2/3) = 3_v^*$		
2	$[1,1] = (1,1) = 8_{adj}$	$[0,2] = (2/3,4/3) = 6^*$	[2,0] = (4/3,2/3) = 6		
3	[3,0] = (2,1) = 10	[2,1] = (5/3,4/3) = 15	$[1,2] = (4/3,5/3) = \mathbf{15^*}$		
	$[0,3] = (1,2) = 10^*$				
4	[2,2] = (2,2) = 27	[4,0] = (8/3,4/3) = 15	$[0,4] = (4/3,8/3) = \mathbf{15^*}$		
		[3,1] = (5/3,7/3) = 24	$[3,1] = (7/3,5/3) = \mathbf{24^*}$		
5	[4,1] = (3,2) = 35	$[0,5] = (5/3,10/3) = 21^*$	[5,0] = (10/3, 5/3) = 21		
	$[1,4] = (2,3) = 35^*$	[3,2] = (8/3,7/3) = 42	$[2,3] = (7/3,8/3) = 42^*$		

表現のテンソル積の既約分解

$$(\mathbf{8} \times \mathbf{8})_s = \mathbf{27} [2, 2] + \mathbf{8}_{adj} + \mathbf{1},$$
 (7.31)

$$(\mathbf{8} \times \mathbf{8})_a = \mathbf{10} [3, 0] + \mathbf{10}^* [0, 3] + \mathbf{8}_{adj}.$$
 (7.32)

7.2.3 極大半単純部分代数

su₃の極大部分代数のうち、半単純代数およびu₁因子の直和となるものは, so₃か su₂⊕u₁に同型で, すべて, その標準埋め込みと共役である. このことは, su₃のベ クトル表現をこれらの部分代数に関して既約分解した場合の, 既約表現の組み合わ せの可能性を分類することにより示される.

i) 正則部分代数: $\mathfrak{su}_2 \oplus \mathfrak{u}_1$

(A) normal embedding

$$SA_{1} = \langle F_{1}, F_{2}, F_{3} \rangle \oplus \langle F_{8} \rangle = \langle A_{3}, S_{3}, i(H_{1} - H_{2}) \rangle$$

$$\cong \mathfrak{su}_{2} \oplus \mathfrak{u}_{1}.$$
(7.33)

ここで, SU(2)の複素化 SL(2, C) の生成元の埋め込みは

180

$$\langle H', E_{\alpha'}, E_{-\alpha'} \rangle \mapsto \iota(H') = H_1 - H_2$$
 (7.34)
これより, 埋め込み行列は

$$M_H(\mathfrak{su}_2 \to \mathfrak{su}_3 : N) = \begin{pmatrix} 1 & -1 \end{pmatrix}, \tag{7.35a}$$

$$M_S(\mathfrak{su}_2 \to \mathfrak{su}_3 : N) = A_{(2)}(-1)M_H A_{(3)} = \begin{pmatrix} 1 & -1/2 \end{pmatrix},$$
 (7.35b)

$$M_D(\mathfrak{su}_2 \to \mathfrak{su}_3 : N) = {}^T\!C(_2)M_S {}^T\!C^{-1}(_3) = \begin{pmatrix} 1 & 0 \end{pmatrix}$$
 (7.35c)

また, U(1)の埋め込みによるU(1) 電荷Qは

$$\lambda(Q) = 3a\lambda^2 = \begin{pmatrix} 0 & 3a \end{pmatrix} \begin{pmatrix} \lambda^1 \\ \lambda^2 \end{pmatrix}.$$
 (7.36)

Dynkin 基底表示 $\lambda = m^1 f_1 + m^2 f_2$ では

$$\lambda(Q) = Q_D \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}; \quad Q_D = C_{A1} \begin{pmatrix} 0 & 3a \end{pmatrix} {}^T\!C_{A2}^{-1} = \begin{pmatrix} 2a & 4a \end{pmatrix}.$$
(7.37)

よって, $\lambda(Q)$ が常に整数であることを要請すると,a = 1/2となり,

$$Q_H(\mathfrak{su}_2 \to \mathfrak{su}_3 : \mathbf{N}) = \begin{pmatrix} 1/2 & 1/2 \end{pmatrix} \Rightarrow Q_D(\mathfrak{su}_2 \to \mathfrak{su}_3 : \mathbf{N}) = \begin{pmatrix} 1 & 2 \end{pmatrix}.$$
(7.38)

SU(2) 部分と合わせると、SU(3)Dynkin ウェイト $[m^1, m^2]$ とSU(2) × U(1)Dynkin ウェイト $[m']_Q$ の対応は、次式で与えられる:

$$\begin{pmatrix} m'\\Q \end{pmatrix} = \begin{pmatrix} 1 & 0\\1 & 2 \end{pmatrix} \begin{pmatrix} m^1\\m^2 \end{pmatrix}.$$
 (7.39)

(B) Canonical embedding \mathfrak{su}_3 の最高ウエイトが \mathfrak{su}_2 の最高ウエイトに移される ように、ルート基底の取り替え(Weyl変換)て得られる埋め込み行列は

$$M_H(\mathfrak{su}_2 \to \mathfrak{su}_3 : \mathbf{C}) = \begin{pmatrix} 1 & 0 \end{pmatrix},$$
 (7.40a)

$$M_S(\mathfrak{su}_2 \to \mathfrak{su}_3 : \mathbf{C}) = A_{(2)}(-1)M_H A_{(3)} = \begin{pmatrix} 1/2 & 1/2 \end{pmatrix},$$
 (7.40b)

$$M_D(\mathfrak{su}_2 \to \mathfrak{su}_3 : \mathbf{C}) = {}^T\!C(_2)M_S {}^T\!C^{-1}(_3) = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
 (7.40c)

 \mathfrak{u}_1 電荷ベクトルQは, $M_D G Q_D = 0$ より,

$$Q_H(\mathfrak{su}_3: \mathcal{C}) = \begin{pmatrix} -1/2 & 1 \end{pmatrix}, \quad Q_S(\mathfrak{su}_3: \mathcal{C}) = \begin{pmatrix} -3/2 & 3/2 \end{pmatrix},$$
$$Q_D(\mathfrak{su}_3: \mathcal{C}) = \begin{pmatrix} -1/2, 1/2 \end{pmatrix}.$$
(7.41)

ii) 特殊部分代数: so₃

$$\mathfrak{so}(3,\mathbb{C}) \cong \langle H_1, A_1 - A_3, S_1 - S_3 \rangle.$$
(7.42)

Weyl 基底は

$$H' = H_1, \quad E'_{\pm} = E^{\pm}_{12} - E^{\pm}_{23} = \pm \frac{1}{2}(A_3 - A_1) + \frac{i}{2}(S_1 - S_3);$$
 (7.43a)

$$[H', E'_{\pm}] = \pm E'_{\pm}, \quad [E'_{+}, E'_{-}] = H'.$$
 (7.43b)

これより, ルート系は

基本ルート:
$$\alpha' = h' (h'(H') = 1),$$
 (7.44a)

$$\mathbb{E}\mathcal{W} - \mathbb{h} : \Delta^+ = \{\alpha'\}. \tag{7.44b}$$

埋め込みテンソルは,

$$M_S = (1 \ 1), \quad M_D = (2 \ 2).$$
 (7.45)

この埋め込みは, 共役変換

$$T^{-1} = \begin{pmatrix} 1/\sqrt{2} & i/\sqrt{2} & 0\\ 0 & 0 & i\\ -1/\sqrt{2} & i/\sqrt{2} & 0 \end{pmatrix} \in \mathrm{SU}(3),$$
(7.46)

$$TJ_3 \,{}^{T}\!T = I_3$$
 (7.47)

により,特殊部分代数となる標準埋め込み

$$\mathfrak{so}(3) = \langle A_1, A_2, A_3 \rangle, \tag{7.48}$$

$$H' = iA_3, \quad E'_{\pm} = \frac{1}{\sqrt{2}}(A_1 \pm iA_2),$$
 (7.49)

に移される.

iii) その他の特殊極大部分代数 次の部分代数は、すべて so3 と同型で、標準埋め込 みと共役になる.

$$SA_2 = \langle 2F_2, 2F_5, 2F_7 \rangle = \langle S_3, A_2, S_1 \rangle, \qquad (7.50a)$$

$$SA_3 = \langle 2F_2, 2F_4, 2F_6 \rangle = \langle S_3, -S_2, -A_1 \rangle, \qquad (7.50b)$$

$$SA_4 = \langle 2F_1, 2F_4, 2F_7 \rangle = \langle -A_3, -S_2, S_1 \rangle,$$
 (7.50c)

$$SA_5 = \langle 2F_1, 2F_5, 2F_6 \rangle = \langle -A_3, -A_2, -A_1 \rangle.$$
 (7.50d)

7.3 $SU(4) \cong SO(6)$

7.3.1 Lie 代数の構造

SL(4, C) の Weyl 基底は

$$\mathscr{L}_0: \quad H_j := E_{jj} - E_{44} \ (j = 1, 2, 3), \tag{7.51a}$$

$$\mathscr{L}_{\pm}: \quad E_{jk}^{\pm} \ (1 \le j < k \le 3), \ E_{j}^{\pm} \ (j = 1, 2, 3); \tag{7.51b}$$

$$E_{jk}^+ = E_{jk}, \ E_{jk}^- = E_{kj}, \ E_j^+ = E_{j4}, \ E_j^- = E_{4j}.$$
 (7.51c)

基本ルート系は, $h_j(H_k) = \delta_k^j$ として,

$$\Pi: (\alpha_1 \ \alpha_2 \ \alpha_3) = (h_1 \ h_2 \ h_3) \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 2 \end{pmatrix}.$$
(7.52)

SU(4) の基底は, Weyl 基底を用いると,

$$iH_j, \quad A_{jk} = E_{jk}^+ - E_{jk}^-, \quad iS_{jk} = i(E_{jk}^+ + E_{jk}^-), \quad A_{j4} = E_j^+ - E_j^-, \quad iS_{j4} = i(E_j^+ + E_j^-).$$
(7.53)

7.3.2 基本表現

基本表現系は

4 :
$$f_1 = h_1 = \frac{1}{4}(3\alpha_1 + 2\alpha_2 + \alpha_3),$$
 (7.54a)

6 = [2] :
$$f_2 = h_1 + h_2 = \frac{1}{2}(\alpha_1 + 2\alpha_2 + \alpha_3),$$
 (7.54b)

$$\mathbf{4}^* = \begin{bmatrix} 3 \end{bmatrix} : f_3 = h_1 + h_2 + h_3 = \frac{1}{4}(\alpha_1 + 2\alpha_2 + 3\alpha_3).$$
 (7.54c)

正ルートおよびその Dynkin 成分は

levelDynkin labelweight3
$$[1 \ 0 \ 1]$$
 $(1 \ 1 \ 1)$ 2 $[-1 \ 1 \ 1]$ $[1 \ 1 \ -1]$ $(0 \ 1 \ 1)$ $(1 \ 1 \ 0)$ 1 $[2 \ -1 \ 0]$ $[-1 \ 2 \ -1]$ $[0 \ -1 \ 2]$ $(1 \ 0 \ 0)$ $(0 \ 0 \ 1)$ $(0 \ 0 \ 1)$ 0 $[0 \ 0 \ 0]$ $[0 \ 0 \ 0]$ $[0 \ 0 \ 0]$ $(0 \ 0 \ 0)$ $(0 \ 0 \ 0)$ (7.55) -1 $[-2 \ 1 \ 0]$ $[1 \ -2 \ 1]$ $[0 \ 1 \ -2]$ $(-1 \ 0 \ 0)$ $(0 \ 0 \ -1 \ 0)$ $(0 \ 0 \ -1)$ -2 $[1 \ -1 \ -1]$ $[-1 \ -1 \ 1]$ $(0 \ -1 \ -1)$ $(-1 \ -1 \ 0)$ -3 $[-1 \ 0 \ -1]$ $(-1 \ -1 \ -1)$

dim	Dynkin label	alias(SU(4))	alias(SO(6))
4_{v}	[100]	vector	spinor: 4_{s}
6	[010]	spinor	vector: 6_{v}
$\mathbf{4^{*}}_{v}$	[001]	vector	spinor: $\mathbf{4^*}_{s}$
10	[200]	$(2) = [2]_{s}$	$\in 4_{\mathrm{s}} \times 4_{\mathrm{s}}$
10^*	[002]		$\in 4{^*}_{\rm s} \times 4{^*}_{\rm s}$
${f 15}_{ m adj}$	[101]	adjoint	$\in 4_{s} \times \mathbf{4^{*}}_{s}$
20	[020]		$(2)_{\rm tf} = [2]_{\rm s,tf}$
64	[111]		$(2,1)_{\rm tf}$

表 7: SU(4) の既約表現

 f_i に双対的な \mathcal{L}_0 の基底は

$$F_1 = H_1 - H_2, \ F_2 = H_2 - H_3, \ F_3 = H_3.$$
 (7.56)

レベルベクトル $\bar{R} \in \mathscr{L}_0$ は

$$\bar{R} = \begin{bmatrix} 3 \ 4 \ 3 \end{bmatrix} = 3F_1 + 4F_2 + 3F_3. \tag{7.57}$$

7.3.3 su₄とso₆の同型対応

Dynkin 図式より, $\mathfrak{su}_4 \geq \mathfrak{so}_6$ は同型となるが,具体的な対応は, \mathfrak{so}_6 のスピノール 表現 $\mathbf{4} = [1, 0, 0]$ が \mathfrak{so}_6 から \mathfrak{su}_4 へ同型対応を与えることより得られる. まず, $\Gamma_a(a = 1, \dots, 6)$ を \mathscr{E}^6 の γ 行列

$$\Gamma_a \Gamma_b + \Gamma_b \Gamma_a = 2\delta_{ab}$$

とするとき,

$$SO(6) \ni \Lambda \mapsto U \in SU(4): \quad \Gamma_b \Lambda^b{}_a = U \Gamma_a U^{-1}$$

$$(7.59)$$

が成り立つ.

特に, 無限小変換に対して,

$$\delta\Lambda_{ab} = \omega_{ab} \mapsto \delta U = \frac{1}{4}\omega_{ab}\Gamma_{ab}.$$
(7.60)

目次へ

(7.58)

これより, Cartan 部分代数の対応は

$$-iA_{12} \mapsto -\frac{i}{2}\Gamma_{12} = \frac{1}{2}\sigma_3 \otimes 1 \otimes 1,$$
 (7.61a)

$$-iA_{34} \mapsto -\frac{i}{2}\Gamma_{34} = \frac{1}{2}1 \otimes \sigma_3 \otimes 1,$$
 (7.61b)

$$-iA_{56} \mapsto -\frac{i}{2}\Gamma_{56} = \frac{i}{2}1 \otimes 1 \otimes \sigma_3$$
 (7.61c)

ここで,最後の項は,Clifford 代数 Cl₆ のテンソル積表現.SU(4) の4次元複素表現, すなわち SO(6) の右カイラルスピノール表現の基底を,テンソル積表現もとで

$$e_1 = (+++), \quad e_2 = (+--), \quad e_3 = (-+-), \quad e_4 = (--+)$$
 (7.62)

と取ると,この対応は

以上より、同型対応 $\iota:\mathfrak{su}_4 \to \mathfrak{so}_6$ に対応する Cartan 部分代数の生成元の対応は

$$\begin{pmatrix} H_1' \\ H_2' \\ H_3' \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}$$
(7.64)

7.3.4 極大半単純部分代数

 $\mathfrak{su}_4 (\cong \mathfrak{so}_6)$ の極大部分代数で、半単純代数と \mathfrak{u}_1 因子の和で表されるものは

1. 正則型: $\mathfrak{su}_3 \oplus \mathfrak{u}_1, \mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{u}_1$

- 2. 特殊型: \mathfrak{sp}_2 , $\mathfrak{su}_2 \oplus \mathfrak{su}_2$
- (i) 正則埋め込み $\mathfrak{su}_3 \oplus \mathfrak{u}_1 \rightarrow \mathfrak{su}_4$:

(A) normal embedding 標準埋め込み $\iota : \mathfrak{su}_3 \oplus \mathfrak{u}_1 \rightarrow \mathfrak{su}_4$ による Cartan 部分代数の対応は

$$H'_{j} = E_{jj} - E_{33} = H_{j} - H_{3} \ (j = 1, 2), \quad H'_{3} = E_{11} + E_{22} + E_{33} - 3E_{44} = H_{1} + H_{2} + H_{3}.$$
(7.65)

となる. これより, $\mathfrak{su}_3 \rightarrow \mathfrak{su}_4$ の埋め込み行列は

$$M_H(\mathfrak{su}_3 \to \mathfrak{su}_4 : \mathbf{N}) = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix},$$
(7.66a)

$$M_S(\mathfrak{su}_3 \to \mathfrak{su}_4 : \mathrm{N}) = A(\mathfrak{sl}_3)^{-1} M_H A(\mathfrak{sl}_4) = \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & -2/3 \end{pmatrix},$$
 (7.66b)

$$M_D(\mathfrak{su}_3 \to \mathfrak{su}_4 : \mathbf{N}) = {}^T\!C(\mathfrak{sl}_3)M_S \, {}^T\!C(\mathfrak{sl}_4)^{-1} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix}$$
(7.66c)

で与えられる.また,U₁電荷は

$$Q_H = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \quad Q_S = \begin{pmatrix} 0 & 0 & 4 \end{pmatrix}, \quad Q_D = (\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}.$$
 (7.67)

(B) canonical embedding 最高ウエイトを最高ウエイトに写す埋め込みは

$$M_H(\mathfrak{su}_3 \to \mathfrak{su}_4 : \mathcal{C}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
(7.68a)

$$M_S(\mathfrak{su}_3 \to \mathfrak{su}_4) = A(\mathfrak{sl}_3)^{-1} M_H A(\mathfrak{sl}_4) = \begin{pmatrix} 2/3 & 1/3 & 0\\ 1/3 & -1/3 & 1 \end{pmatrix}, \quad (7.68b)$$

$$M_D(\mathfrak{su}_3 \to \mathfrak{su}_4) = {}^T\!C(\mathfrak{sl}_3)M_S \, {}^T\!C(\mathfrak{sl}_4)^{-1} = \begin{pmatrix} 1 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(7.68c)

電荷ベクトルは

$$Q_H = \begin{pmatrix} 1 & -3 & 1 \end{pmatrix}, \quad Q_S = \begin{pmatrix} 4 & -4 & 0 \end{pmatrix}, \quad Q_D = \begin{pmatrix} 1 & -2 & -1 \end{pmatrix}.$$
 (7.69)

(ii) 正則埋め込み $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{u}_1 \rightarrow \mathfrak{su}_4$:

(A) normal embedding 標準埋め込み $\iota:\mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{u}_1 \rightarrow \mathfrak{su}_4$ による Cartan 部 分代数の対応は

$$H_{1}' = E_{11} - E_{22} = H_{1} - H_{2}, \quad H_{2}' = E_{33} - E_{44} = H_{3}, \quad H_{3}' = E_{11} + E_{22} - E_{33} - E_{44} = H_{1} + H_{2} - H_{3}.$$
(7.70)

目次へ

となる. これより、 $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \rightarrow \mathfrak{su}_4$ の埋め込み行列は

$$M_H(\mathfrak{su}_2 \oplus \mathfrak{su}_2 \to \mathfrak{su}_4 : \mathbf{N}) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
(7.71a)

$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{4} : \mathrm{N}) = A(\mathfrak{sl}_{2} \oplus \mathfrak{sl}_{2})^{-1}M_{H}A(\mathfrak{sl}_{4}) = \begin{pmatrix} 1 & -1/2 & 0 \\ 0 & -1/2 & 1 \end{pmatrix}(7.71\mathrm{b})$$
$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{4} : \mathrm{N}) = {}^{T}C(\mathfrak{sl}_{2} \oplus \mathfrak{sl}_{2})M_{S} {}^{T}C(\mathfrak{sl}_{4})^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.(7.71\mathrm{c})$$

また, U₁ 電荷は

$$Q_H = \begin{pmatrix} 1 & 1 & -1 \end{pmatrix}, \quad Q_S = \begin{pmatrix} 0 & 2 & 0 \end{pmatrix}, \quad Q_D = \begin{pmatrix} 1 & 2 & 1 \end{pmatrix}.$$
 (7.72)

(B) canonical embedding 最高ウエイトを最高ウエイトに写す埋め込みは

$$M_H(\mathfrak{su}_2 \oplus \mathfrak{su}_2 \to \mathfrak{su}_4 : \mathbf{N}) = \begin{pmatrix} 1 & 0 & 1-\\ 0 & 1 & 0 \end{pmatrix},$$
(7.73a)

$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{4} : \mathrm{N}) = A(\mathfrak{sl}_{2} \oplus \mathfrak{sl}_{2})^{-1} M_{H} A(\mathfrak{sl}_{4}) = \begin{pmatrix} 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{pmatrix} \mathcal{S}_{2} \mathcal{S}_{4}$$
$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{4} : \mathrm{N}) = {}^{T} C(\mathfrak{sl}_{2} \oplus \mathfrak{sl}_{2}) M_{S} {}^{T} C(\mathfrak{sl}_{4})^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}. \quad (7.73c)$$

また, U₁ 電荷は

$$Q_H = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}, \quad Q_S = \begin{pmatrix} 2 & -2 & 2 \end{pmatrix}, \quad Q_D = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}.$$
 (7.74)

(iii) 特殊型理め込み $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \rightarrow \mathfrak{su}_4$: $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \circ \mathfrak{su}_4 \sim \mathfrak{o}$ 埋め込みは,次の対応の結合により得られる:

Cartan 部分代数の標準生成元の対応は

$$\begin{pmatrix} H_1' \\ H_2' \end{pmatrix} \mapsto \begin{pmatrix} 2H_1'' \\ 2H_2'' \end{pmatrix} \mapsto \begin{pmatrix} -2iA_{12} \\ -2iA_{34} \end{pmatrix} \mapsto \begin{pmatrix} H_1 + H_2 - H_3 \\ H_1 - H_2 + H_3 \end{pmatrix}.$$
 (7.76)

よって,

$$\begin{pmatrix} H_1' \\ H_2' \end{pmatrix} = M_H \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}; \quad M_H = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$
(7.77)

これより, 埋め込み行列は

$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{4}) = A(\mathfrak{sl}_{2} \oplus \mathfrak{sl}_{2})^{-1}M_{H}A(\mathfrak{sl}_{4}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}, (7.78a)$$
$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{4}) = {}^{T}C(\mathfrak{sl}_{2} \oplus \mathfrak{sl}_{2})M_{S} {}^{T}C(\mathfrak{sl}_{4})^{-1} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix} (7.78b)$$

この埋め込みが正則埋め込み $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \rightarrow \mathfrak{su}_4$ と異なることは、 \mathfrak{su}_4 の基本表現の 分岐則が異なることで確認できる:

$$4_{v}(\mathfrak{su}_{4}) = \mathbf{2} \times \mathbf{1} + \mathbf{1} \times \mathbf{2} \quad (\mathfrak{su}_{2} \oplus \mathfrak{su}_{2}), \tag{7.79a}$$

$$= \mathbf{2} \times \mathbf{2} \quad (\mathfrak{so}_3 \oplus \mathfrak{so}_3) \tag{7.79b}$$

(iv) 特殊埋め込み: $\mathfrak{sp}_2 \rightarrow \mathfrak{su}_4$: $\mathfrak{sp}_2 \mathcal{O} \mathfrak{su}_4 \mathcal{O}$ 四型の込みは、 $\mathfrak{sp}_2 \mathfrak{c} \mathfrak{so}_5 \mathcal{O}$ 同型対応と $\mathfrak{so}_5 \mathcal{O} \mathfrak{so}_6 \mathcal{O}$ 標準埋め込みより与えられる:

$$\begin{aligned} \mathfrak{so}_{5} & \xrightarrow{j} \mathfrak{so}_{6} \\ \cong & & \bigcirc \\ \mathfrak{sp}_{2} & \xrightarrow{\iota} > \mathfrak{su}_{4} \end{aligned} \tag{7.80}$$

まず, $j:\mathfrak{so}_5 \to \mathfrak{so}_6$ に対応する埋め込み行列を求める. \mathfrak{so}_6 の Cartan 部分代数の 生成元を

 $\mathcal{L}_0(\mathfrak{so}_6): \quad H_1 = -iA_{12}, \quad H_2 = -iA_{34}, \quad H_3 = -iA_{56}$ (7.81)

と取ると,基本ルート系は

$$\alpha_1 = h_2 - h_3, \quad \alpha_2 = h_1 - h_2, \quad \alpha_3 = h_2 + h_3,$$
(7.82)

$$\Leftrightarrow \quad (\alpha_1 \ \alpha_2 \ \alpha_3) = (h_1 \ h_2 \ h_3) A(\mathfrak{so}_6); \quad A(\mathfrak{so}_6) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix} \quad (7.83)$$

で与えられる.ただし、基本ルートの順序は、Cartan 行列

$$C(\mathfrak{so}_6) = \begin{pmatrix} 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2 \end{pmatrix}$$
(7.84)

が $C(\mathfrak{su}_4)$ と一致するように取ってある.これにより、 \mathfrak{su}_4 と \mathfrak{so}_6 の同型対応が自動的に取り入れられる.

一方, so₅の Cartan 部分代数は

$$\mathcal{L}_0(\mathfrak{so}_5): \quad H_1' = -iA_{12}, \quad H_2' = -iA_{34} \tag{7.85}$$

で与えられ、 $\mathcal{L}_0(\mathfrak{so}_6)$ の部分代数となる. 生成元の間の関係は

$$\begin{pmatrix} H_1' \\ H_2' \end{pmatrix} = M_H \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}; \quad M_H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$
 (7.86)

また, 505の基本ルート系は

$$(\alpha'_1 \ \alpha'_2) = (h'_1 \ h'_2) A(\mathfrak{so}_5) : A(\mathfrak{so}_5) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$
 (7.87)

で与えられる.

以上より, 埋め込み行列は

$$M_S(\mathfrak{so}_5 \to \mathfrak{su}_4) = A(\mathfrak{so}_5)^{-1} M_H A(\mathfrak{su}_4) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix},$$
(7.88a)

$$M_D(\mathfrak{so}_5 \to \mathfrak{su}_4) = {}^{T}\!C(\mathfrak{so}_5)M_S(\mathfrak{so}_5 \to \mathfrak{su}_4) {}^{T}\!C(\mathfrak{su}_4)^{-1} = M_S.$$
(7.88b)

7.4 SU(5)

7.4.1 Lie 代数の構造

基底 複素 LIe 代数 $\mathfrak{sl}(5,\mathbb{C})$ の自然な基底は,

$$H_j = E_{jj} - E_{55} \ (j = 1, 2, 3, 4), \quad E_{jk} \ (j \neq k = 1, \cdots, 5).$$
 (7.89)

su(5)の基底は,

 $iH_j (j = 1, 2, 3, 4), \quad A_{jk} = E_{jk} - E_{kj} (j < k), \quad iS_{jk} = i(E_{jk} + E_{kj}) (j < k).$ (7.90)

ルート系とWeyl基底 基本ルート系は

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{pmatrix} \Leftrightarrow \begin{pmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 4 & 3 & 2 & 1 \\ -1 & 3 & 2 & 1 \\ -1 & -2 & 2 & 1 \\ -1 & -2 & -3 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix}$$
(7.91)

正ルートは

$$\Delta^+: \quad \lambda^{jk} = \alpha_j + \alpha_{j+1} + \dots + \alpha_{k-1} \ (1 \le j < k \le 5) \tag{7.92}$$

Weyl 基底は

$$\Delta^+ \quad \mapsto \quad E_{\lambda^{jk}} = E_{jk} \ (j < k), \tag{7.93a}$$

$$\Delta^{-} \mapsto E_{-\lambda^{jk}} = E_{kj} \ (j < k). \tag{7.93b}$$

Killing 計量

$$K(H_j, H_k) = \delta_{jk} + 1 \ (j, k = 1, 2, 3, 4). \implies (K(\alpha_j, \alpha_k)) = \frac{1}{2} \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$
(7.94)

対応して, Cartan 行列は

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix} \Rightarrow {}^{T}\!C^{-1} = \frac{1}{5} \begin{pmatrix} 4 & 3 & 2 & 1 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 6 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}.$$
(7.95)

7.4.2 表現

基本表現

• $[1, 0, 0, 0] = \mathbf{5}_v$: dim = 5, highest level= 2

hl	Dyinkin lables	weights	
2	[1, 0, 0, 0]	$\left(4/5,3/5,2/5,1/5 ight)$	
1	[-1, 1, 0, 0]	$\left(-1/5,3/5,2/5,1/5 ight)$	(7.06)
0	$\left[0,-1,1,0\right]$	$\left(-1/5, -2/5, 2/5, 1/5\right)$	(1.90)
-1	$\left[0,0,-1,1\right]$	$\left(-1/5, -2/5, -3/5, 1/5\right)$	
-2	$\left[0,0,0,-1\right]$	(-1/5, -2/5, -3/5, -4/5)	

• $[0, 0, 0, 1] = \mathbf{5}^*_{v}$: dim = 5, highest level= 2.

hl	Dyinkin lables	weights	
2	$\left[0,0,0,1\right]$	(1/5, 2/5, 3/5, 4/5)	
1	$\left[0,0,1,-1\right]$	(1/5, 2/5, 3/5, -1/5)	(7 07)
0	[0, 1, -1, 0]	(1/5, 2/5, -2/5, 1/5)	(1.51)
-1	[1, -1, 0, 0]	(1/5, -3/5, -2/5, -1/5)	
-2	[-1, 0, 0, 0]	(-4/5, -3/5, -3/5, -1/5)	

• $[0, 1, 0, 0] = \mathbf{10}_{[2]}$: dim = 10, highest level= 3.

hl	Dyinkin lables	weights
3	$\left[0,0,1,0\right]$	(3/5, 6/5, 4/5, 2/5)
2	$\left[0,1,-1,1\right]$	(3/5, 1/5, 4/5, 2/5)
1	[0, 1, 0, -1], [1, -1, 0, 1]	(3/5, 1/5, -1/5, 2/5), (-2/5, 1/5, 4/5, 2/5)
0	[1, -1, 1, -1], [-1, 0, 0, 1]	(3/5, 1/5, -1/5, -3/5), (-2/5, 1/5, -1/5, 2/5)
-1	[1, 0, -1, 0], [-1, 0, 1, -1]	(-2/5, 1/5, -1/5, -3/5), (-2/5, -4/5, -1/5, 2/5)
-2	[-1, 1, -1, 0]	$\left(-2/5, -4/5, -1/5, -3/5\right)$
-3	[0, -1, 0, 0]	$\left(-2/5, -4/5, -6/5, -3/5\right)$
		(7.98)

• $[0, 1, 0, 0] = \mathbf{10}_{[3]} = \mathbf{10}_{[2]}$: dim = 10, highest level= 3.

5次元ベクトル表現のウェイト系 C⁵の基底ベクトルを

$$e_i = (\delta_{ij}; j = 1, \dots, 5)$$

と取ると,

$$H_j e_k = \delta_{jk} e_k \, (1 \leqslant j, k \leqslant 4), \quad H_j e_5 = -e_5 \, (1 \leqslant j \leqslant 4)$$

より, e1,...,e5 に対応するウェイトは

$$e_j \mapsto h_j (j = 1, 2, 3, 4), \quad e_5 \mapsto -(h_1 + h_2 + h_3 + h_4).$$
 (7.100)

これは, Dynkin label[1,0,0,0] に対するウェイト系と一致. よって,

$$\mathbf{5}_{v} \mapsto [1, 0, 0, 0] \tag{7.101}$$

次に, su(5) の5次元ベクトル表現

$$\mathbf{5}_v: \quad \mathfrak{su}(5) \ni A \mapsto A \in M(5, \mathbb{C}), \quad A^{\dagger} = -A \tag{7.102}$$

の複素共役表現は、 $A^* = -{}^T\!A$ より、その $SL(5,\mathbb{C})$ への拡張は、5次元ベクトル表現の逆転置表現となる。したがって、対応するウエイト系は、 $\lambda \mapsto -\lambda$ となる。これは、

$$\mathbf{5}^*_v \mapsto [0, 0, 0, 1] \cong \mathbf{5}_{[4]} \tag{7.103}$$

を意味する.

10次元反対称表現のウェイト系 $\mathbb{C}^5 \wedge \mathbb{C}^5 \cong \mathbb{C}^{10}$ の基底を

 $e_{ij} = e_i \wedge e_j$

と取ると、 $\mathfrak{su}(5)$ の Cartan 部分代数の元 H の作用は、 $h_5 = -(h_1 + h_2 + h_3 + h_4)$ として、

$$He_{jk} = (h_j + h_k)(H)e_{kl} \ (1 \le j < k \le 5)$$
(7.104)

よって, ウェイト系は

$$\mathbf{10}_{[2]}: \quad e_{jk} \mapsto h_j + h_k.$$

これは, Dynkin label[0,1,0,0] を最高ウエイトとする既約表現と一致:

$$\mathbf{10}_{[2]} \mapsto [0, 1, 0, 0]. \tag{7.105}$$

次に, $\mathfrak{su}(5)$ の $\mathbb{C}^5 \wedge \mathbb{C}^5 \wedge \mathbb{C}^5 \cong \mathbb{C}^{10}$ へのテンソル表現において, 基底を

$$\hat{e}^{jk} = \frac{1}{3!} \epsilon^{jklmn} e_{lmn}$$

と表すと、Cartan 部分代数の元 H の作用は

$$H\hat{e}^{jk} = \frac{1}{3!} \epsilon^{jklmn} (h_l + h_m + h_n) (H) e_{lmn} = \frac{1}{2} \epsilon^{jklmn} h_l (H) e_{lmn}$$

= $-(h_j + h_k) (H) \hat{e}^{jk}$

これより, **10**_[2] の SL(5, C) に対する逆転値表現, したがって, SU(5) に対する複素 共役表現となっている:

$$\mathbf{10}_{[3]} \cong \mathbf{10}^*_{[2]} \mapsto [0, 0, 1, 0] \tag{7.106}$$

既約表現のテンソル積

$$(5^* \times 5^*)_s = 15^*,$$
 (7.107)

$$(5^* \times 5^*)_a = 10^*,$$
 (7.108)

$$(10 \times 10)_s = 50^* [0200] + 5^*,$$
 (7.109)

$$(10 \times 10)_a = 45^* [1010],$$
 (7.110)

 $5^* \times 10 = 45 [0101] + 5, \qquad (7.111)$

$$\mathbf{5} \times \mathbf{10} = \mathbf{40} [1100] + \mathbf{10}^* [0010]$$
(7.112)

目次へ

dim	С	Highest weight
5	1	[1,0,0,0] = (4/5,3/5,2/5,1/5)
10	2	[0, 1, 0, 0] = (3/5, 6/5, 4/5, 2/5)
15	2	[2, 0, 0, 0] = (8/5, 6/5, 4/5, 2/5)
24	0	[1, 0, 0, 1] = (1, 1, 1, 1)
35	2	[0, 0, 0, 3] = (3/5, 6/5, 9/5, 12/5)
40	2	[0, 0, 1, 1] = (3/5, 6/5, 9/5, 7/5)
45	1	[0, 1, 0, 1] = (4/5, 8/5, 7/5, 6/5)
50	1	[0, 0, 2, 0] = (4/5, 8/5, 12/5, 6/5)
70	1	[2, 0, 0, 1] = (9/5, 8/5, 7/5, 6/5)
70	1	[0, 0, 0, 4] = (4/5, 8/5, 12/5, 16/5)
75	0	[0, 1, 1, 0] = (1, 2, 2, 1)
105	1	[0, 0, 1, 2] = (4/5, 8/5, 12/5, 11/5)
126	0	[2, 0, 1, 0] = (2, 2, 2, 1)
126	0	[5,0,0,0] = (4,3,2,1)
160	2	[3, 0, 0, 1] = (13/5, 11/5, 9/5, 7/5)
175	0	[1, 2, 0, 0] = (2, 3, 2, 1)
175	1	[0,3,0,0] = (9/5,18/5,12/5,6/5)
175	2	[1, 1, 0, 1] = (8/5, 11/5, 9/5, 7/5)
200	0	[2, 0, 0, 2] = (2, 2, 2, 2)
210	1	[6,0,0,0] = (24/5, 18/5, 12/5, 6/5)
210	2	[1, 0, 2, 0] = (8/5, 11/5, 14/5, 7/5)
224	0	[3, 1, 0, 0] = (3, 3, 2, 1)
280	1	[1, 1, 1, 0] = (9/5, 13/5, 12/5, 6/5)
280	1	[3,0,1,0] = (14/5, 13/5, 12/5, 6/5)
315	2	[0, 2, 1, 0] = (8/5, 16/5, 14/5, 7/5)
315	2	[1, 0, 0, 4] = (8/5, 11/5, 14/5, 17/5)
330	2	[7, 0, 0, 0] = (28/5, 21/5, 14/5, 7/5)

表 8: \mathfrak{su}_5 の 400 次元以下の既約表現. C は合同類数. 複素共役表現は省略(複素共役変換で、 $[a_1a_2a_3a_4] \rightarrow [a_4a_3a_2a_1], C \rightarrow -C$).

7.4.3 極大半単純部分代数

sl₅の部分代数で半単純代数とU(1)因子の直和となるものは,

- 1. 正則部分代数: $\mathfrak{su}_4 \oplus \mathfrak{u}_1$, $\mathfrak{su}_3 \oplus \mathfrak{su}_2 \oplus \mathfrak{u}_1$
- 2. 特殊部分代数: $\mathfrak{so}_5 = \mathfrak{sp}_2$
- (i) 正則部分代数 $\mathfrak{su}_4 \oplus \mathfrak{u}_1$:

(A) normal embedding 標準的埋め込み $\mathfrak{su}_4 \subset \mathfrak{su}_5$ に対応する, Cartan 部分代数の対応は

$$H_1' = E_{11} - E_{44} = H_1 - H_4, \tag{7.113a}$$

$$H_2' = E_{22} - E_{44} = H_2 - H_3, \tag{7.113b}$$

$$H_3' = E_{33} - E_{44} = H_3 - H_4, (7.113c)$$

$$Q = E_{11} + E_{22} + E_{33} + E_{44} - 5E_{55} = H_1 + H_2 + H_3 + H_4$$
(7.113d)

$$M_H(\mathfrak{su}_4 \to \mathfrak{su}_5 : \mathbf{N}) = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix},$$
(7.114a)

$$M_{S}(\mathfrak{su}_{4} \to \mathfrak{su}_{5}: \mathbf{N}) = A(\mathfrak{sl}_{4})^{-1} M_{H} A(\mathfrak{sl}_{5}) = \begin{pmatrix} 1 & 0 & 0 & -1/4 \\ 0 & 1 & 0 & -1/2 \\ 0 & 0 & 1 & -3/4 \end{pmatrix}, (7.114b)$$
$$M_{D}(\mathfrak{su}_{4} \to \mathfrak{su}_{5}: \mathbf{N}) = {}^{T}\!C(\mathfrak{sl}_{4}) M_{S} {}^{T}\!C(\mathfrak{sl}_{5})^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
(7.114c)

電荷ベクトルは

$$Q_H = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \quad Q_S = \begin{pmatrix} 0 & 0 & 0 & 5 \end{pmatrix}, \quad Q_D = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}.$$
 (7.115)

(B) canonical embedding 最高ウエイトを最高ウエイトに写す埋め込み行列は

$$M_H(\mathfrak{su}_4 \to \mathfrak{su}_5 : \mathbf{C}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
(7.116a)

$$M_{S}(\mathfrak{su}_{4} \to \mathfrak{su}_{5}: \mathbf{C}) = A(\mathfrak{sl}_{4})^{-1} M_{H} A(\mathfrak{sl}_{5}) = \begin{pmatrix} 1 & -1/4 & 1/4 & 0\\ 0 & 1/2 & 1/2 & 0\\ 0 & 1/4 & -1/4 & 1 \end{pmatrix} (7.116b)$$
$$M_{D}(\mathfrak{su}_{4} \to \mathfrak{su}_{5}: \mathbf{C}) = {}^{T}\!C(\mathfrak{sl}_{4}) M_{S} {}^{T}\!C(\mathfrak{sl}_{5})^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(7.116c)

電荷ベクトルは

$$Q_H = \begin{pmatrix} 1 & 1 & -4 & 1 \end{pmatrix}, \quad Q_S = \begin{pmatrix} 0 & 5 & -5 & 0 \end{pmatrix}, \quad Q_D = \begin{pmatrix} 1 & 2 & -2 & -1 \end{pmatrix}.$$
 (7.117)

(C) Slansky embedding (B)の行列に3個のWeyl変換 $w_{\alpha_4}, w_{\alpha_2+\alpha_3}, w_{\alpha_3}$ を施 すと $(1 \quad 1 \quad 0 \quad 0)$

$$M_{H}(\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{5}) = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 1 & 1 & -4 \end{pmatrix},$$
(7.118a)

$$M_{S}(\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{5}) = \begin{pmatrix} 1 & 0 & -1/4 & 1/4 \\ 1 & -1 & 1/2 & 1/2 \\ 1 & -1 & 1/4 & -1/4 \\ 0 & 0 & 5 & -5 \end{pmatrix},$$
(7.118b)

$$M_H D\mathfrak{su}_4 \oplus \mathfrak{u}_1 \to \mathfrak{su}_5) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & -1 & -1 \\ 1 & 2 & 3 & -1 \end{pmatrix},$$
(7.118c)

基本表現の分岐則

$$f_1: \mathbf{5}_{\boldsymbol{v}} : \mathbf{4}[1,0,0](+1) + \mathbf{1}(-4),$$
 (7.119a)

$$f_2: \mathbf{10} : \mathbf{6}[0, 1, 0](+2) + \mathbf{4}(-3),$$
 (7.119b)

$$f_3: \mathbf{10}^*: \mathbf{6}[0, 1, 0](-2) + \mathbf{4}^*(+3),$$
 (7.119c)

$$f_4: \mathbf{5}^*_{\boldsymbol{v}} : \mathbf{4}^*[0,0,1](-1) + \mathbf{1}(+4).$$
 (7.119d)

次元 [Dynkin label]	$SU(4) \times U(1) 分解$
5[1, 0, 0, 0]	$4[1,0,0]_{(1)} + 1_{(-4)}$
10 [0, 1, 0, 0]	$6[0,1,0]_{(2)} + 4[1,0,0]_{(-3)}$
15 [2,0,0,0]	$10[2,0,0]_{(2)} + 4[1,0,0]_{(-3)} + 1_{(-8)}$
$\mathbf{24_{adj}}\left[1,0,0,1\right]$	${f 15_{adj}}_{(0)}+{f 4_{v(5)}}+{f 4^*_{v(-5)}}+{f 1_{(0)}}$
35 [3,0,0,0]	$20 [3, 0, 0]_{(3)} + 10 [2, 0, 0]_{(-2)} + 4_{\boldsymbol{v}(-7)} + 1_{(-12)}$
40 [1, 1, 0, 0]	$20 [1, 1, 0]_{(3)} + 10 [2, 0, 0]_{(-2)} + 6 [0, 1, 0]_{(-2)} + 4_{\boldsymbol{v}(-7)}$
45 [1,0,1,0]	$20 \left[1, 1, 0 \right]_{(-1)} + 15 \left[1, 0, 1 \right]_{(-1)} + 6 \left[0, 1, 0 \right]_{(-6)} + 4^*_{\boldsymbol{v}(-1)}$
50 [0, 2, 0, 0]	$20 [1, 1, 0]_{(-1)} + 20 [0, 2, 0]_{(4)} + 10 [2, 0, 0]_{(-6)}$
70 [2,0,0,1]	$36 [2,0,1]_{(1)} + 15 [1,0,1]_{(-4)} + 10 [2,0,0]_{(6)}$
	$+ m{4}_{m{v}(1)} + m{4}^{*}_{m{v}(0)} + m{1}_{(-4)}$
70 $[4, 0, 0, 0]$	$35[4,0,0]_{(4)} + 20[3,0,0]_{(-1)} + 10[2,0,0]_{(-6)}$
	$+ 4_{m{v}(-1)} + 1_{(-16)}$
75 $[0, 1, 1, 0]$	$20 \left[1, 1, 0\right]_{(-5)} + 20^* \left[0, 1, 1\right]_{(5)} + 20 \left[0, 2, 0\right]_{(0)} + 15_{\mathbf{adj}_{(0)}}$

表 9: SU(5)の低次元表現とその部分群 SU(4) × U(1) に関する既約分解。

(ii) 正則部分代数 $\mathfrak{su}_3 \oplus \mathfrak{su}_2 \oplus \mathfrak{u}_1$:

(A) normal embedding 5次元のうち [1,2,3] を \mathfrak{su}_3 に、 [4,5] を \mathfrak{su}_2 に割り当て る埋め込みでは、Cartan 部分代数の対応は

$$H_1' = E_{11} - E_{33} = H_1 - H_3, (7.120a)$$

$$H_2' = E_{22} - E_{33} = H_2 - H_3, \tag{7.120b}$$

$$H_3' = E_{44} - E_{55} = H_4, \tag{7.120c}$$

$$Y_H = -\frac{2}{3}(E_{11} + E_{22} + E_{33}) + (E_{44} + E_{55}) = -\frac{1}{3}\left[2(H_1 + H_2 + H_3) - (\Im H_2)\mathrm{Od}\right]$$

よって、埋め込み行列は、

$$M_{H}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{5}) = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
(7.121a)

$$M_{S}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{5}) = \begin{pmatrix} 1 & 0 & -1/3 & 0 \\ 0 & 1 & -2/3 & 0 \\ 0 & 0 & -1/2 & 1 \end{pmatrix},$$
(7.121b)

$$M_D(\mathfrak{su}_3 \oplus \mathfrak{su}_2 \to \mathfrak{su}_5) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
 (7.121c)

また、hyper charge は

$$Y_H = \begin{pmatrix} -2/3 & -2/3 & -2/3 & 1 \end{pmatrix},$$
 (7.122a)

$$Y_S = \begin{pmatrix} 0 & 0 & -5/3 & 0 \end{pmatrix},$$
 (7.122b)

$$Y_D = \begin{pmatrix} -2/3 & -4/3 & -2 & -1 \end{pmatrix}.$$
 (7.122c)

(B) canonical embedding 5次元のうち [1,3,5] を \mathfrak{su}_3 に、[2,4] を \mathfrak{su}_2 に割り当 てる Slansky 型埋め込みでは、Cartan 部分代数の対応は

$$H_1' = E_{11} - E_{55} = H_1, (7.123a)$$

$$H_2' = E_{33} - E_{55} = H_3, \tag{7.123b}$$

$$H'_{3} = E_{22} - E_{44} = H_2 - H_4, \tag{7.123c}$$

$$Y_{H} = -\frac{2}{3}(E_{11} + E_{33} + E_{55}) + (E_{22} + E_{44}) = -\frac{1}{3}\left[2(H_1 + H_3) - 3(H_2 + (7H_2)]\right]$$
は、

$$M_{H}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{5}) = \begin{pmatrix} 1 & 0 & -0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix},$$
(7.124a)

$$M_{S}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{5}) = \begin{pmatrix} 2/3 & 1/3 & -1/3 & -1/3 \\ 1/3 & -1/3 & 1/3 & 2/3 \\ -1/2 & 1/3 & 1/2 & -1/2 \end{pmatrix}, \quad (7.124b)$$

$$M_D(\mathfrak{su}_3 \oplus \mathfrak{su}_2 \to \mathfrak{su}_5) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$
 (7.124c)

次元 [Dynkin labe]l	$SU(3) \times SU(2) \times U(1) 分解$
5[1,0,0,0]	$({f 3},{f 1})_{(-3/2)}+({f 1},{f 2})_{(1)}$
10 [0, 1, 0, 0]	$({f 3},{f 2})_{(1/3)}+({f 3}^*,{f 1})_{(-4/3)}+{f 1}_{(2)}$
15 [2,0,0,0]	$({f 6},{f 1})_{(-4/3)}+({f 3},{f 2})_{(1/3)}+({f 1},{f 3})_{(2)}$
$24_{\mathbf{adj}}\left[1,0,0,1 ight]$	$(\mathbf{8_{adj}},1)_{(0)} + (1,\mathbf{3_{adj}})_{(0)} + (3,2)_{(-5/3)} + (\mathbf{3^*},2)_{(5/3)} + 1_{(0)}$
40[1, 1, 0, 0]	$({f 6},{f 2})_{(-1/3)}+({f 3},{f 3})_{(4/3)}+({f 8},{f 1})_{(-2)}+({f 3}^*,{f 2})_{(-1/3)}$
	$+({f 3},{f 1})_{\ (4/3)}+({f 1},{f 2})_{(3)}$
45 [1,0,1,0]	$({f 8},{f 2})_{(-1)}+({f 3}^*,{f 3})_{(2/3)}+({f 6},{f 1})_{(2/3)}+({f 3},{f 2})_{(7/3)}$
	$+ ({f 3},{f 1})_{(-8/3)} + ({f 3}^*,{f 1})_{(2/3)} + ({f 1},{f 2})_{(-1)}$
50[0,2,0,0]	$({f 6},{f 3})_{(2/3)}+({f 8},{f 2})_{(-1)}+({f 3},{f 2})_{(7/3)}+({f 3}^*,{f 1})_{(2/3)}+{f 1}_{(4)}$
75[0,1,1,0]	$({f 8},{f 3}+{f 1}))_{(0)}+({f 6},{f 2})_{(-5/3)}+({f 6}^*,{f 2})_{(5/3)}+({f 3},{f 2})_{(-5/3)}+({f 3}^*,{f 2})_{(5/3)}$
	$+({f 3},{f 1})_{(10/3)}+({f 3}^*,{f 1})_{(-10/3)}+{f 1}_{(0)}$

表 10: SU(5)の低次元表現とその部分群 U(1) × SU(2) × SU(3) に関する既約分解。

また、hyper charge は

$$Y_H = \begin{pmatrix} -2/3 & 1 & -2/3 & 1 \end{pmatrix},$$
(7.125a)

$$Y_S = \begin{pmatrix} -5/3 & 5/3 & -5/3 & 5/3 \end{pmatrix},$$
(7.125b)

$$Y_D = \begin{pmatrix} -2/3 & 1/3 & -1/3 & 2/3 \end{pmatrix}.$$
 (7.125c)

(iii) 特殊部分代数 $\mathfrak{so}_5 \cong \mathfrak{sp}_2$: この部分代数は、5次の正方行列としての埋め込み $j:\mathfrak{so}_5 \to \mathfrak{su}_5$ より得られる。ただし、Gauss 分解と整合的な写像を得るには、 $j(\mathfrak{so}_5)$ を共役変換により、 $JX + {}^TXJ = 0$ を満たす \mathfrak{sl}_5 の部分代数に移す必要がある。結果 として得られる Cartan 部分代数の対応 $\iota:_{\iota}(\mathfrak{so}_{\nabla}) \to_{\iota}(\mathfrak{sl}_{\nabla})$ は、

$$H'_1 = -iA_{12} \mapsto E_{11} - E_{55} = H_1,$$
 (7.126a)

$$H_2' = -iA_{34} \mapsto E_{22} - E_{44} = H_2 - H_4. \tag{7.126b}$$

よって、埋め込み行列は

$$M_H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}, \tag{7.127a}$$

$$M_S = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$
 (7.127b)

$$M_D = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 \end{pmatrix}$$
(7.127c)

表現の分岐則

$$5 = 5[1,0], (7.128)$$

$$10 = 10[0,2], (7.129)$$

$$10^* = 10[0,2], (7.130)$$

$$\mathbf{5}^* = \mathbf{5}[1,0], \tag{7.131}$$

$$\mathbf{24}_{\mathbf{adj}}[1,0,0,1] = \mathbf{10}_{\mathbf{adj}}[0,2] + \mathbf{14}[2,0].$$
(7.132)

7.5 SU(6)

7.5.1 Lie 代数の構造

基底 複素 Lie 代数 $\mathfrak{sl}(6,\mathbb{C})$ の自然な基底は

$$H_j = E_{jj} - E_{66} \ (j = 1, \cdots, 5), \quad E_{jk} \ (j \neq k = 1, \cdots, 6).$$
 (7.133)

 \mathfrak{su}_6 の基底は,

$$iH_j (j = 1, \cdots, 5), \quad A_{jk} = E_{jk} - E_{kj} (j < k), \quad iS_{jk} = i(E_{jk} + E_{kj}) (j < k).$$
(7.134)

ルート系 基本ルート系は

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \\ h_5 \end{pmatrix}$$
(7.135)

正ルートは

$$\Delta^{+}: \quad \lambda^{jk} = \alpha_{j} + \alpha_{j+1} + \dots + \alpha_{k-1} \ (1 \le j < k \le 6)$$
(7.136)

Weyl 基底は

$$\Delta^+ \quad \mapsto \quad E_{\lambda^{jk}} = E_{jk} \ (j < k), \tag{7.137a}$$

$$\Delta^{-} \mapsto E_{-\lambda^{jk}} = E_{kj} \ (j < k). \tag{7.137b}$$

Killing 計量

$$K(H_j, H_k) = \frac{1}{2} (() \,\delta_{jk} + 1) \,(j, k = 1, \cdots, 5). \tag{7.138}$$

$$\Rightarrow (K(\alpha_j, \alpha_k)) = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 \\ 0 & -1 & -1$$

$$(\alpha_j, \alpha_k)) = \begin{pmatrix} -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 00 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 & & & \end{pmatrix}$$
(7.139)

目次へ

7.5.2 表現

Cartan 行列は

$$C = K \implies C^{-1} = \frac{1}{6} \begin{pmatrix} 5 & 4 & 3 & 2 & 1 \\ 4 & 8 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 8 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}.$$
 (7.140)

$$f_1 = (5/6, 2/3, 1/2, 1/3, 1/6) : \mathbf{6}_v$$
(7.141a)
$$f_1 = (2/2, 4/2, 1, 2/2, 1/2) : \mathbf{15}$$
(7.141b)

$$f_2 = (2/3, 4/3, 1, 2/3, 1/3) : \mathbf{15}$$
(7.141b)
$$f_2 = (1/2, 1, 3/2, 1, 1/2) : \mathbf{20}$$
(7.141c)

$$f_3 = (1/2, 1, 3/2, 1, 1/2) : 20$$
(7.141c)
$$f_{-} = (1/2, 2/2, 1, 4/2, 2/2) : 15^*$$
(7.141d)

$$f_4 = (1/3, 2/3, 1, 4/3, 2/3)$$
 : **15*** (7.141d)

$$f_5 = (1/6, 1/3, 1/2, 2/3, 5/6) : 6^* v$$
(7.141e)
[1, 0, 0, 0, 1] = (1, 1, 1, 1, 1) ; 35_{adj}. (7.141f)

7.5.3 極大準半単純部分代数

so₆の極大準半単純部分代数は

- 1. 正則型: $\mathfrak{su}_5 \oplus \mathfrak{u}_1$, $\mathfrak{su}_4 \oplus \mathfrak{su}_2 \oplus \mathfrak{u}_1$, $\mathfrak{su}_3 \oplus \mathfrak{su}_3 \oplus \mathfrak{u}_1$
- 2. 特殊型: \mathfrak{su}_3 , \mathfrak{su}_4 , \mathfrak{sp}_3 , $\mathfrak{su}_3 \oplus \mathfrak{su}_2$
- (i) 正則型部分代数 su₅ ⊕ u₁:

(A) normal embedding Dynkin 図式で α_1 に対応するノードを \mathfrak{u}_1 に置き換える と、一般公式より

$$M_H(\mathfrak{su}_5 \oplus \mathfrak{u}_1 \to \mathfrak{su}_6) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 5 & -1 & -1 & -1 & -1 \end{pmatrix},$$
(7.142a)

$$M_{S}(\mathfrak{su}_{5} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} -4/5 & 1 & 0 & 0 & 0 \\ -3/5 & 0 & 1 & 0 & 0 \\ -2/5 & 0 & 0 & 1 & 0 \\ -1/5 & 0 & 0 & 0 & 1 \\ 6 & 0 & 0 & 0 & 0 \end{pmatrix},$$
(7.142b)
$$M_{D}(\mathfrak{su}_{5} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$
(7.142c)

基本表現の分岐則

$$f_{1}: \mathbf{6}_{v} : \mathbf{5} [1, 0, 0, 0](-1) + \mathbf{1} [0](+5),$$
(7.143a)

$$f_{2}: \mathbf{15} : \mathbf{10} [0, 1, 0, 0](-2) + \mathbf{5} [1, 0, 0, 0](4),$$
(7.143b)

$$f_{3}: \mathbf{20} : \mathbf{10} [0, 1, 0, 0] + 3 + \mathbf{10}^{*} [0, 0, 1, 0](-3),$$
(7.143c)

$$f_{4}: \mathbf{15}^{*} : \mathbf{10}^{*} [0, 0, 1, 0](+2) + \mathbf{5}^{*} [0, 0, 0, 1](-4),$$
(7.143d)

$$f_{5}: \mathbf{6}_{v}^{*} : \mathbf{5}^{*} [0, 0, 0, 1](+1) + \mathbf{1} [0](-5).$$
(7.143e)

(ii) 正則型部分代数 $\mathfrak{su}_4 \oplus \mathfrak{su}_2 \oplus \mathfrak{u}_1$:

(A) normal embedding Dynkin 図式で α_5 に対応するノードを \mathfrak{u}_1 に置き換えると、一般公式より

$$M_{H}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & -2 \end{pmatrix},$$
(7.144a)
$$M_{S}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} 1 & 0 & 0 & -1/4 & 0 \\ 0 & 1 & 0 & -1/2 & 0 \\ 0 & 0 & 1 & -3/4 & 0 \\ 0 & 0 & 0 & -1/2 & 1 \\ 0 & 0 & 0 & 3 & 0 \end{pmatrix},$$
(7.144b)

$$M_D(\mathfrak{su}_4 \oplus \mathfrak{su}_2 \oplus \mathfrak{u}_1 \to \mathfrak{su}_6) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 2 & 3 & 4 & 2 \end{pmatrix}.$$
 (7.144c)

(B) Slansky embedding (A)の行列において、 \mathfrak{su}_2 成分と \mathfrak{su}_4 成分の順序を入れ 替え、さらに4個の Weyl 変換 $w_{\alpha_1+\alpha_2+\alpha_3}, w_{\alpha_3+\alpha_4+\alpha_5}, w_{\alpha_2+\alpha_3}, w_{\alpha_3+\alpha_4}$ を順次施すと、 つぎの埋め込み行列を得る:

$$M_{H}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} 0 & 0 & 1 & 0 & -1 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 1 & 1 & -2 & 1 & -2 \end{pmatrix},$$
(7.145a)

$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} 0 & -1/2 & 1/2 & 1/2 & -1/2 \\ -1 & 3/4 & 1/4 & -1/4 & 1/4 \\ -1 & 1/2 & -1/2 & 1/2 & 1/2 \\ -1 & 1/4 & -1/4 & 1/4 & -1/4 \\ 0 & 3 & -3 & 3 & -3 \end{pmatrix}, \quad (7.145b)$$
$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ -1 & -1 & -1 & -1 & -1 \\ 1 & 2 & 0 & 1 & -1 \end{pmatrix}. \quad (7.145c)$$

基本表現の分岐則

(iii) 正則型部分代数 $\mathfrak{su}_3 \oplus \mathfrak{su}_3 \oplus \mathfrak{u}_1$:

(A) normal embedding Dynkin 図式において α_3 に対応するノードを \mathfrak{u}_1 に置き 換えることにより,次の埋め込み行列が得られる:

$$M_{H}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{3} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & -1 & -1 \end{pmatrix}, \quad (7.147a)$$

$$M_{S}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{3} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} 1 & 0 & -1/3 & 0 & 0 \\ 0 & 1 & -2/3 & 0 & 0 \\ 0 & 0 & -2/3 & 1 & 0 \\ 0 & 0 & -1/3 & 0 & 1 \\ 0 & 0 & 2 & 0 & 0 \end{pmatrix}, \quad (7.147b)$$

$$M_{D}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{3} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 2 & 3 & 2 & 1 \end{pmatrix}. \quad (7.147c)$$

(B) Slansky embedding (A) で求めた行列に3個の Weyl 変換 $w_{\alpha_1+\alpha_2}, w_{\alpha_2+\alpha_3}, w_{\alpha_4}$ を施すと次の埋め込み行列が得られる:

$$M_{H}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{3} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & -1 & 1 & -1 & 1 \end{pmatrix},$$
(7.148a)
$$\begin{pmatrix} -1/3 & -2/3 & 2/3 & 1/3 & -1/3 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & -1 & 1 & -1 & 1 \end{pmatrix}$$

$$M_{S}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{3} \oplus \mathfrak{u}_{1} \to \mathfrak{su}_{6}) = \begin{pmatrix} -2/3 & -1/3 & 1/3 & -1/3 & 1/3 \\ -2/3 & 2/3 & 1/3 & -1/3 & 1/3 \\ -1/3 & 1/3 & -1/3 & 1/3 & 2/3 \\ 2 & -2 & 2 & -2 & 2 \end{pmatrix}, \quad (7.148b)$$

$$M_D(\mathfrak{su}_3 \oplus \mathfrak{su}_3 \oplus \mathfrak{u}_1 \to \mathfrak{su}_6) = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ -1 & -1 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$
 (7.148c)

基本表現の分岐則

$$f_{1}: \mathbf{6}_{v} : (\mathbf{3}, \mathbf{1})(+1) + (\mathbf{1}, \mathbf{3})(-1),$$
(7.149a)

$$f_{2}: \mathbf{15} : (\mathbf{3}, \mathbf{3})(0) + (\mathbf{3}^{*}, \mathbf{1})(+2) + (\mathbf{1}, \mathbf{3}^{*})(-2),$$
(7.149b)

$$f_{3}: \mathbf{20} : (\mathbf{3}, \mathbf{3}^{*})(-1) + (\mathbf{3}^{*}, \mathbf{3})(+1) + (\mathbf{1}, \mathbf{1})((+3) + (-3)),$$
(7.149c)

$$f_{4}: \mathbf{15}^{*} : (\mathbf{3}^{*}, \mathbf{3}^{*})(0) + (\mathbf{3}, \mathbf{1})(-2) + (\mathbf{1}, \mathbf{3})(+2),$$
(7.149d)

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1$$

$$f_5: \mathbf{6}^*_{\boldsymbol{v}} : (\mathbf{3}^*, \mathbf{1})(-1) + (\mathbf{1}, \mathbf{3}^*)(+1).$$
 (7.149e)

(iv) 特殊型部分代数 su3:

Normal embedding \mathfrak{su}_6 の $\mathbf{6}$ [1,0,0,0,0]表現において、基本ルート α_a に双対的な Cartan 部分代数の基底を H_{α_a} とするとき、

$$H_{\alpha_1} \mapsto [5/6, -1/6, -1/6, -1/6, -1/6, -1/6],$$
 (7.150a)

$$H_{\alpha_2} \mapsto [2/3, 2/3, -1/3, -1/3, -1/3, -1/3],$$
 (7.150b)

$$H_{\alpha_3} \mapsto [1/2, 1/2, 1/2, -1/2, -1/2, -1/2],$$
 (7.150c)

$$H_{\alpha_4} \mapsto [1/3, 1/3, 1/3, 1/3, -2/3, -2/3],$$
 (7.150d)

$$H_{\alpha_5} \mapsto [1/6, 1/6, 1/6, 1/6, -5/6].$$
 (7.150e)

同様に, su3 の 6 次元表現 6 [2,0] に対し,

$$H_{\alpha'_1} \mapsto [4/3, 1/3, -2/3, 1/3, -2/3, -2/3],$$
 (7.151a)

$$H_{\alpha'_2} \mapsto [2/3, 2/3, 2/3, -1/3, -1/3, -4/3].$$
 (7.151b)

両者を比較して,

$$H_{\alpha_i'} = \sum_a (M_S)_{ia} H_{\alpha_a} \tag{7.152}$$

より,

$$M_H(\mathfrak{su}_3 \to \mathfrak{su}_6) = \begin{pmatrix} 2 & 1 & 0 & 0 & -1 \\ 0 & 1 & 2 & -1 & 0 \end{pmatrix},$$
(7.153a)

$$M_S(\mathfrak{su}_4 \to \mathfrak{su}_6) = \begin{pmatrix} 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix},$$
(7.153b)

$$M_D(\mathfrak{su}_4 \to \mathfrak{su}_6) = \begin{pmatrix} 2 & 2 & 0 & 1 & 0 \\ 0 & 1 & 3 & 2 & 2 \end{pmatrix}.$$
 (7.153c)

基本表現の分岐則

$$f_1: \mathbf{6}_{\boldsymbol{v}} : \mathbf{6}[2,0],$$
 (7.154a)

$$f_{2}: \mathbf{15} : \mathbf{15} [2,1],$$

$$f_{2}: \mathbf{15} : \mathbf{15} [2,1],$$

$$f_{2}: \mathbf{10} [2,0] + \mathbf{10}^{*} [0,2]$$

$$(7.154b)$$

$$(7.154c)$$

$$f_3: \mathbf{20} : \mathbf{10}[2,0] + \mathbf{10}^*[0,2],$$
 (7.154c)

$$f_4: \mathbf{15}^*: \mathbf{15}^* [2,1],$$
 (7.154d)

$$f_5: \mathbf{6}^*_{\boldsymbol{v}} : \mathbf{6}^* [0, 2].$$
 (7.154e)

(v) 特殊型部分代数 su4:

Natural embedding $\mathfrak{su}_3 \mathcal{O} \mathbf{6} [1,0,1]$ 表現において,

$$H_{\alpha'_{1}} \mapsto [1/2, 1/2, -1/2, 1/2, -1/2], \qquad (7.155a)$$

$$H_{\alpha'_2} \mapsto [1, 0, 0, 0, 0, 0],$$
 (7.155b)

$$H_{\alpha'_3} \mapsto [1/2, 1/2, 1/2, -1/2, -1/2, -1/2].$$
 (7.155c)

これを \mathfrak{su}_6 の表現 6 [1,0,0,0,0] と比較して,

$$H_{\alpha_i'} = \sum_a (M_S)_{ia} H_{\alpha_a} \tag{7.156}$$

より,

$$M_H(\mathfrak{su}_4 \to \mathfrak{su}_6) = \begin{pmatrix} 1 & 1 & 0 & 0 & -1 \\ 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 & -1 \end{pmatrix},$$
(7.157a)

$$M_S(\mathfrak{su}_4 \to \mathfrak{su}_6) = \begin{pmatrix} 0 & 1 & -1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix},$$
(7.157b)

$$M_D(\mathfrak{su}_4 \to \mathfrak{su}_6) = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 & 0 \end{pmatrix}.$$
 (7.157c)

基本表現の分岐則

$$f_1: \mathbf{6}_{v} : \mathbf{6}[0, 1, 0],$$
 (7.158a)

$$f_2: \mathbf{15} : \mathbf{15} [1, 0, 1],$$
 (7.158b)

$$f_3: \mathbf{20} : \mathbf{10} [2, 0, 0] + \mathbf{10}^* [0, 0, 2],$$
 (7.158c)

$$f_4: \mathbf{15}^*: \mathbf{15}[1,0,1],$$
 (7.158d)

$$f_5: \mathbf{6}^*_{\boldsymbol{v}} : \mathbf{6}[0, 1, 0].$$
 (7.158e)

(vi) 特殊型部分代数 sp₃:

Normal embedding \mathfrak{sp}_3 の6次元表現 $\mathbf{6}_v$ [1,0,0] において,基本ルート系に双対 な Cartan 部分代数の基底 $H_{\alpha'_i}$ は次のように表現される:

$$H_{\alpha_1'} \mapsto [1, 0, 0, 0, 0, -1],$$
 (7.159a)

$$H_{\alpha'_{2}} \mapsto [1, 1, 0, 0, -1, -1], \qquad (7.159b)$$

$$H_{\alpha'_3} \mapsto [1/2, 1/2, 1/2, -1/2, -1/2, -1/2]$$
 (7.159c)

これを su₆ の 6 次元表現と比較して,

$$H_{\alpha_i'} = \sum_a (M_S)_{ia} H_{\alpha_a} \tag{7.160}$$

より,

$$M_H(\mathfrak{sp}_3 \to \mathfrak{su}_6) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix},$$
(7.161a)

$$M_S(\mathfrak{su}_4 \to \mathfrak{su}_6) = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix},$$
(7.161b)

$$M_D(\mathfrak{su}_4 \to \mathfrak{su}_6) = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$
 (7.161c)

基本表現の分岐則

$$f_1: \mathbf{6}_{v} : \mathbf{6}[1,0,0],$$
 (7.162a)

$$f_1: \mathbf{0}_v : \mathbf{0}_{[1,0,0]}, \qquad (7.102a)$$

$$f_2: \mathbf{15} : \mathbf{14}_{[0,1,0]} + \mathbf{1}, \qquad (7.162b)$$

$$f_3: \mathbf{20} : \mathbf{14}_{[0,0,1]} + \mathbf{6}_{[1,0,0]}, \qquad (7.162c)$$

$$f_3: \mathbf{20} : \mathbf{14}[0,0,1] + \mathbf{6}[1,0,0], \qquad (7.162c)$$

$$f_{4}: \mathbf{15}^{*}: \mathbf{14}[0, 1, 0] + \mathbf{1}, \qquad (7.162d)$$

$$f_5: \mathbf{6}^*_{\boldsymbol{v}} : \mathbf{6} [1, 0, 0].$$
 (7.162e)

(vii) $\mathfrak{su}_3 \oplus \mathfrak{su}_2$:

Normal embedding $\mathfrak{su}_3 \oplus \mathfrak{su}_2 \circ 6$ 次元表現 $(\mathbf{3}, \mathbf{2})$ [1,0][1] の基底を

$$e_1 = (2/3, 1/2) \otimes (1/2), \ e_2 = (-1/3, 1/3) \otimes (1/2), \ e_3 = (2/3, 1/3) \otimes (-1/2), \\ e_4 = (-1/3, -2/3) \otimes (-1/2), \ e_5 = (-1/3, 1/3) \otimes (-1/2), \ e_6 = (-1/3, -2/3) \otimes (7.163)$$

とおくと、 \mathfrak{su}_3 の基本ルート系を $\alpha'_1, \alpha'_2, \mathfrak{su}_2$ の基本ルートを α'_3 とすると、それらに 双対な $\mathfrak{su}_3 \oplus \mathfrak{su}_2$ の Cartan 部分代数の生成元 $H_{\alpha'_i}$ の表現は

$$H_{\alpha'_1} \mapsto [2/3, -1/3, 2/3, -1/3, -1/3, -1/3],$$
 (7.164a)

$$H_{\alpha'_1} \mapsto [1/3, 1/3, 1/3, -2/3, 1/3, -2/3],$$
 (7.164b)

$$H_{\alpha'_1} \mapsto [1/2, 1/2, -1/2, 1/2, -1/2, -1/2]$$
 (7.164c)

となる.これを su6 の 6 次元表現と比較して,

$$H_{\alpha_i'} = \sum_a (M_S)_{ia} H_{\alpha_a} \tag{7.165}$$

より,次の埋め込み行列を得る:

$$M_H(\mathfrak{su}_3 \oplus \mathfrak{su}_2 \to \mathfrak{su}_6) = \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \end{pmatrix},$$
(7.166a)

$$M_{S}(\mathfrak{su}_{3} \oplus \mathfrak{su}_{2} \to \mathfrak{su}_{6}) = \begin{pmatrix} 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 1 & 0 \end{pmatrix},$$
(7.166b)

$$M_D(\mathfrak{su}_3 \oplus \mathfrak{su}_2 \to \mathfrak{su}_6) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & 2 & 1 \end{pmatrix}.$$
 (7.166c)

基本表現の分岐則

$$f_{1}: \mathbf{6}_{v} : (\mathbf{3}, \mathbf{2}) [1, 0], \qquad (7.167a)$$

$$f_{2}: \mathbf{15} : (\mathbf{6}, \mathbf{1}) [2, 0] + (\mathbf{3}^{*}, \mathbf{3}) [0, 1], \qquad (7.167b)$$

$$f_{3}: \mathbf{20} : (\mathbf{8}, \mathbf{2}) [1, 1] + (\mathbf{1}, \mathbf{4}), \qquad (7.167c)$$

$$f_{4}: \mathbf{15}^{*} : (\mathbf{6}^{*}, \mathbf{1}) [0, 2] + (\mathbf{3}, \mathbf{3}) [1, 0], \qquad (7.167d)$$

$$f_{5}: \mathbf{6}_{v}^{*} : (\mathbf{3}^{*}, \mathbf{2}) [0, 1]. \qquad (7.167e)$$

7.6 SO(4)

7.6.1 Lie 代数

実 Lie 群 SO(4) の Lie 代数は,

$$\Omega_i := \frac{1}{2} \epsilon_{ijk} A_{jk}, \quad K_i := A_{i4} \tag{7.168}$$

とおくと,

$$[\Omega_i, \Omega_j] = -\epsilon_{ijk}\Omega_k, \quad [\Omega_i, K_j] = -\epsilon_{ijk}K_k, \quad [K_i, K_j] = -\epsilon_{ijk}\Omega_k.$$
(7.169)

これより,

$$\Omega_i^{(\pm)} := \frac{1}{2} (\Omega_i \mp K_i) \tag{7.170}$$

とおくと,

$$[\Omega_i^{(\pm)}, \Omega_j^{(\pm)}] = -\epsilon_{ijk}\Omega_k^{(\pm)}, \quad [\Omega_i^{(\pm)}, \Omega_j^{(\mp)}] = 0.$$
(7.171)

したがって,

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$
 (7.172)

so(4, ℝ) の複素化 **so**(4) の標準基底は,

$$J_j \equiv -i\Omega_j, \quad K_j \tag{7.173}$$

で, Cartan 部分代数 \mathcal{L}_0 は

$$\mathcal{L}_0 = \langle H_1, H_2 \rangle; \quad H_1 = -iA_{12} = -i\Omega_3 = J_3, \ H_2 = -iA_{34} = -iK_3.$$
 (7.174)

標準の基本ルートは

$$(\alpha_1 \ \alpha_2) = (h_1 \ h_2) \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$
 (7.175)

Weyl 基底は,

$$E_{\pm\alpha_1} = \Omega_1^{(+)} \pm i\Omega_2^{(+)}; \quad [E_{\alpha_1}, E_{-\alpha_1}] = 2(i\Omega_3^{(+)}) = H_1 - H_2 \quad (7.176a)$$

$$E_{\pm\alpha_2} = \Omega_1^{(-)} \pm i\Omega_2^{(-)}; \quad [E_{\alpha_2}, E_{-\alpha_2}] = 2(i\Omega_3^{(-)}) = H_1 + H_2. \quad (7.176b)$$

7.6.2 同型対応 $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \rightarrow \mathfrak{so}_4$:

 $\sigma_1, \sigma_2, \sigma_3$ を Pauli 行列として,

$$\sigma : x \in E^4 \to \sigma(x) := x_4 - i(x_1\sigma_1 + x_2\sigma_2 + x_3\sigma_3) \in M(2, \mathbb{C})$$
(7.177)

とおくと,

$$\det \sigma(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2, \quad \sigma(x)\sigma(x)^{\dagger} = \det \sigma(x)$$
(7.178)

より、 σ は S^3 からSU(2)への同相写像を与える:

$$\sigma: S^3 \simeq \mathrm{SU}(2). \tag{7.179}$$

この対応により, SU(2) の SU(2) への左作用および右作用から誘導される S³ の変換は,

$$\frac{i}{2}(\sigma_i)_L \mapsto \Omega_i^+, \quad -\frac{i}{2}(\sigma_i)_R \mapsto \Omega_i^- \tag{7.180}$$

となる. これより, 写像

$$\phi: \operatorname{SU}(2) \times \operatorname{SU}(2) \ni (A, B) \to O \in \operatorname{SO}(4);$$

$$A\sigma(x)B^{\dagger} = \sigma(Ox)$$
(7.181)

は局所同型写像となり,

$$\phi^{-1}(1) = \{(1,1), (-1,-1)\} \cong \mathbb{Z}_2.$$
 (7.182)

よって,

$$SO(4) \cong SU(2) \times SU(2)/\mathbb{Z}_2.$$
 (7.183)

埋め込み行列は、SU(2)の Cartan 部分代数の生成元を $h' = \sigma_3$ と取ると、

$$(\alpha_1 \ \alpha_2) = (h_1 \ h_2) A; \quad A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},$$
 (7.184a)

$$(\alpha') = (h_1')(2), \tag{7.184b}$$

$$\iota_* \begin{pmatrix} H'_L \\ H'_R \end{pmatrix} = B \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
(7.184c)

より,

$$M_S = A'^{-1}BA = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}.$$
 (7.185)

7.6.3 Hopf fibring:

 $Z = (z_1, z_2) \in \mathbb{C}^2$ に対して,

$$\sigma(Z) = \begin{pmatrix} z_2 & i\bar{z}_1 \\ iz_1 & \bar{z}_2 \end{pmatrix}$$
(7.186)

とおくと, Hopf fibring は

$$p: S^3 \ni Z \mapsto [z_1, z_2] \in \mathbb{C}P^1, \tag{7.187a}$$

$$U(1) \rhd S^3 : Z \to e^{i\psi}Z. \tag{7.187b}$$

また、 $\mathbb{C}P^1 \ge S^2$ の対応は

$$\mathbb{C}P^1 \ni [z_1, z_2] \mapsto \left(\frac{2z_1 \bar{z}_2}{|z_1|^2 + |z_2|^2}, \frac{|z_2|^2 - |z_1|^2}{|z_2|^2 + |z_1|^2}\right) \in S^2.$$
(7.188)

これより, S^2 の標準的な角度座標 (θ, ϕ) を用いて

$$\frac{z_1}{z_2} = e^{i\phi} \tan\frac{\theta}{2}.$$
 (7.189)

したがって, $Z \in S^3$ は

$$z_1 = e^{i(\psi+\phi)/2} \sin\frac{\theta}{2}, \quad z_2 = e^{i(\psi-\phi)/2} \cos\frac{\theta}{2}.$$
 (7.190)

ここで、 θ, ϕ, ψ の標準的な変域は

$$0 \le \theta \le \pi, \quad 0 \le \phi < 2\pi, \quad 0 \le \psi < 4\pi.$$
(7.191)

S³の標準計量は、これらを用いて、

$$ds^{2}(S^{3}) = \frac{1}{4}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + \frac{1}{4}(d\psi - \cos\theta d\phi)^{2}.$$
 (7.192)

また, 左不変微分形式 ω が, $Z_0 = (0,1)$,

$$U(\theta, \phi, \psi) = \begin{pmatrix} e^{i(\psi-\phi)/2}\cos\frac{\theta}{2} & ie^{-i(\psi+\phi)/2}\sin\frac{\theta}{2} \\ ie^{i(\psi+\phi)/2}\sin\frac{\theta}{2} & e^{-i(\psi-\phi)/2}\cos\frac{\theta}{2} \end{pmatrix}$$
$$= \begin{pmatrix} e^{-i\phi/2} & 0 \\ 0 & e^{i\phi/2} \end{pmatrix} \begin{pmatrix} \cos\frac{\theta}{2} & i\sin\frac{\theta}{2} \\ i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \begin{pmatrix} e^{i\psi/2} & 0 \\ 0 & e^{-i\psi/2} \end{pmatrix}$$
(7.193)

とおくとき、左不変微分形式 ω が

$$\omega = \operatorname{Tr}(A\sigma(dZ_0));$$

$$\sigma(dZ) = U(\theta, \phi, \psi)\sigma(dZ_0) = dU(\theta, \phi, \psi)\sigma(Z_0)$$
(7.194)

より,

$$\omega = \frac{i}{2} \operatorname{Tr} \left[A \begin{pmatrix} \omega^3 & \omega^1 - i\omega^2 \\ \omega^1 + i\omega^2 & -\omega^3 \end{pmatrix} \right].$$
(7.195)

ここで,

$$\omega^{1} = d\theta \cos \psi - d\phi \sin \theta \sin \psi, \qquad (7.196a)$$

$$\omega^2 = d\theta \sin \psi + d\phi \sin \theta \cos \psi, \qquad (7.196b)$$

$$\omega^3 = d\psi - d\phi \cos\theta. \tag{7.196c}$$

よって、 $\omega^1, \omega^2, \omega^3$ が左不変微分形式の基底となる. $A \ge \omega^I$ との対応は

$$A = -i\sigma_I \to \omega^I. \tag{7.197}$$

 $U = U(\alpha, \beta, \gamma)$ の右作用に対応する変換をfとおくと,

$$\omega = \text{Tr}A\sigma(Z)^{-1}\sigma(dZ) \tag{7.198}$$

に対して,

$$f^*\omega = \operatorname{Tr} A\sigma(f(Z))^{-1}\sigma(df(Z)) = \operatorname{Tr} AU^{-1}\sigma(Z)^{-1}\sigma(dZ)U$$

= $\operatorname{Tr} UAU^{-1}\sigma(Z)^{-1}\sigma(dZ).$ (7.199)

これより

$$f^*\omega^1 = (\cos\beta\cos\gamma + \cos\alpha\sin\beta\sin\gamma)\omega^1 + (\sin\beta\cos\gamma - \cos\alpha\cos\beta\sin\gamma)\omega^2 + \sin\alpha\sin\gamma\omega^3,$$
(7.200a)
$$f^*\omega^2 = (\cos\beta\sin\gamma - \cos\alpha\sin\beta\cos\gamma)\omega^1 + (\sin\beta\sin\gamma - \cos\alpha\cos\beta\cos\gamma)\omega^2 - \sin\alpha\cos\gamma\omega^3,$$
(7.200b)

$$f^*\omega^3 = -\sin\alpha\sin\beta\ \omega^1 + \sin\alpha\cos\beta\ \omega^2 + \cos\alpha\ \omega^3. \tag{7.200c}$$

7.7 SO(3,1)

 η_{ab} を Minkowski 計量 ($\eta_{00} = -1, \eta_{11} = \eta_{22} = \eta_{33} = 1$ として,この節では,添え 字の上げ下げはこの計量を用いて行うものとする.また, $\Lambda \in SO(3,1)$ の行列成分を Λ^{a}_{b} と表記する.対応して,

$$(E_a^{\ b})^c_{\ d} = \delta^c_a \delta^b_d. \tag{7.201}$$

7.7.1 Lie 代数

生成元

$$\omega^a{}_b \equiv \delta \Lambda^a{}_b : \quad \omega_{ab} \equiv \eta_{ac} \omega^c{}_b = -\omega_{ba} \tag{7.202}$$

より,

$$\delta\Lambda = \frac{1}{2}\omega_{ab}\Omega^{ab} \Rightarrow \Omega^{ab} \equiv E^{ab} - E^{ba}.$$
(7.203)

 $Ω_j と N_j を$

$$\Omega_j = \frac{1}{2} \epsilon_{jkl} \Omega^{kl}, \quad N_j = \Omega^{0j}$$
(7.204)

と定義すると,

$$[\Omega_i, \Omega_j] = -\epsilon_{ijk}\Omega_k, \quad [\Omega_i, N_j] = -\epsilon_{ijk}N_k, \quad [N_i, N_j] = \epsilon_{ijk}\Omega_k.$$
(7.205)

SO(3,1)の複素化はSO(4,C)となり、Lie 代数の対応は

$$\mathfrak{so}(3,1) \to \mathfrak{so}(4): \quad \Omega_j \mapsto \Omega_j = iJ_j, \quad N_j \mapsto iK_j.$$
 (7.206)

7.7.2 2重被覆写像 $SL(2, \mathbb{C}) \to SO(3, 1)$

 $\sigma_a \epsilon$

$$\sigma_0 = I_2, \ \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(7.207)

として、4次元ベクトル $X = (X^a)$ に対し、エルミート行列 $\sigma(X)$ を

215

$$\sigma(X) = X^a \sigma_a \in \mathcal{H}(2) \tag{7.208}$$

と定義する. このとき, $\mathbb{R}^4 \ni X \mapsto \sigma(X) \in \mathcal{H}(2)$ は全単射で,

$$\det(\sigma(X)) = -\eta_{ab}X^a X^b = -X \cdot X \tag{7.209}$$

より,

$$\operatorname{SL}(2,\mathbb{C}) \ni V \mapsto \sigma(\Lambda X) = V\sigma(X)V^{\dagger} \in \operatorname{H}(2)$$
 (7.210)

によって定義される l 次変換 Λ は Lorentz 変換となる. これにより定義される対応 $V \mapsto \Lambda$ は、2 重被覆全射準同形写像 SL(2, \mathbb{C}) \rightarrow SO₀(3, 1) を与える.

特に, 無限小変換に対して,

$$\delta V = \frac{1}{4} \sigma^{ab} \delta \Lambda_{ab} \tag{7.211}$$

が成り立つ. ここで,

$$\sigma^{ab} \equiv \frac{1}{2} (\sigma^a \sigma_b - \sigma^b \sigma_a). \tag{7.212}$$

よって、Lie 代数の対応は、

$$\mathfrak{so}_{3,1} \to \mathfrak{sl}_2:$$
 $\begin{array}{ccc} \Omega_j = iJ_j & \mapsto & i\sigma_j/2, \\ N_j = iK_j & \mapsto & -\sigma_j/2. \end{array}$ (7.213)

7.7.3 表現の同型対応: $4_v : \mathfrak{so}(3,1) \rightarrow ([1],[1]) : \mathfrak{so}(3,\mathbb{C}) \oplus \mathfrak{so}(3,\mathbb{C})$

複素化 $\mathfrak{so}(3,1) \rightarrow \mathfrak{so}(4,\mathbb{C})$ による自然な埋め込みにより得られる $\mathfrak{so}(4,\mathbb{C})$ の基底 $\{J, K\}$ から,新たな基底を

$$\boldsymbol{J}^{(\pm)} = \frac{1}{2} \left(\boldsymbol{J} \pm i \boldsymbol{K} \right) = -i \boldsymbol{\Omega}^{(\pm)}$$
(7.214)

により定義すると, **so**(4, ℂ) は

$$\mathfrak{so}(4,\mathbb{C}) \cong \mathfrak{so}(3,\mathbb{C}) \oplus \mathfrak{so}(3,\mathbb{C}) \ni J^{(+)} \oplus J^{(-)}$$
 (7.215)

と既約成分に直和分解される.対応して,無限小 Lorentz 変換は

$$\delta\Lambda = i\left(\boldsymbol{\alpha} \cdot \boldsymbol{J} + \boldsymbol{\beta} \cdot \boldsymbol{K}\right) = i(\boldsymbol{\alpha} - i\boldsymbol{\beta}) \cdot \boldsymbol{J}^{(+)} + i(\boldsymbol{\alpha} + i\boldsymbol{\beta}) \cdot \boldsymbol{J}^{(-)} \mapsto i(\boldsymbol{\alpha} - i\boldsymbol{\beta}) \cdot \frac{\boldsymbol{\sigma}}{2} \oplus i(\boldsymbol{\alpha} + i\boldsymbol{\beta}) \cdot \frac{\boldsymbol{\sigma}}{2}.$$
(7.216)

これを同型対応

$$\mathfrak{so}(3,1) \to \mathfrak{sl}(2,\mathbb{C}): i \mathbf{J} \mapsto i \boldsymbol{\sigma}/2, \quad i \mathbf{K} \mapsto -\boldsymbol{\sigma}/2, \quad (7.217)$$

$$\delta\Lambda \mapsto \delta V = i(\boldsymbol{\alpha} + i\boldsymbol{\beta}) \cdot \boldsymbol{\sigma}/2 \tag{7.218}$$

と比較して, SO(3,1)の4次元ベクトル表現とSL(2,C)×SL(2C)の既約表現([1],[1])の対応

$$\operatorname{SO}(3,1) \ni \Lambda \mapsto (V^{\dagger})^{-1} \oplus V \in \operatorname{SL}(2,\mathbb{C}) \oplus \operatorname{SL}(2,\mathbb{C})$$
 (7.219)
目次へ

を得る.具体的な表現空間の対応は

$$\mathbb{R}^4 \ni X = (X^a) \mapsto \phi = (\phi_{ab}) \in M(2, \mathbb{C}) :$$
(7.220)

$$\phi = {}^{T}\!\!(\sigma(X)\sigma_2) \iff X^a = \operatorname{Tr}(\sigma_2\sigma^a\phi)$$
(7.221)

と表される.以上の議論を図式で表すと、以下のようになる:

$$\begin{array}{c} \operatorname{SO}(3,1) \\ \Lambda; \{i\boldsymbol{J}, i\boldsymbol{K}\} \end{array} \xrightarrow{\simeq} & \operatorname{SL}(2,\mathbb{C}) \\ V; \{i\boldsymbol{\sigma}/2, -\boldsymbol{\sigma}/2\} \\ \downarrow \otimes \mathbb{C} \\ \operatorname{SO}(4,\mathbb{C}) \\ \Lambda \end{array} \xrightarrow{\simeq} & \operatorname{SO}(3,\mathbb{C}) \times \operatorname{SO}(3,\mathbb{C}) \\ \left\{i\boldsymbol{J}^{(+)}, i\boldsymbol{J}^{(-)}\right\} \xrightarrow{\simeq} & \operatorname{SL}(2,\mathbb{C}) \times \operatorname{SL}(2,\mathbb{C}) \\ (V^{\dagger})^{-1} \oplus V : \{(\boldsymbol{\sigma}/2,0), (0,\boldsymbol{\sigma}/2)\} \\ (7.222) \end{array}$$

7.8 SO(5) \cong Sp₂

7.8.1 Lie 代数の構造

代数とルート系は

$$\mathcal{L}_0$$
 : $H_1 = -iA_{12}, \quad H_2 = -iA_{34},$ (7.223)

基本ルート :
$$\alpha_1 = h_1 - h_2$$
, $\alpha_2 = h_2$, (7.224)

$$\mathbb{E}\mathcal{N} - \mathbb{h} : \Delta^{+} = \{\alpha_{1}, \alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{1} + 2\alpha_{2}\}..$$
(7.225)

Weyl 基底は

$$\Delta^{+} : E_{\alpha_{1}} = E_{12-}^{+} = \frac{1}{2} \left\{ -(A_{13} + A_{24}) + i(-A_{23} + A_{14}) \right\}, \qquad (7.226a)$$

$$E_{\alpha_2} = E_2^+ = -\frac{i}{\sqrt{2}} (A_{53} + iA_{54}), \qquad (7.226b)$$

$$E_{\alpha_1+\alpha_2} = E_1^+ = -\frac{i}{\sqrt{2}}(A_{51} + iA_{52}), \qquad (7.226c)$$

$$E_{\alpha_1+2\alpha_2} = E_{12+}^+ = \frac{1}{2} \left\{ A_{13} - A_{42} + i(A_{23} + A_{14}) \right\}, \qquad (7.226d)$$

$$\Delta^{-} : E_{-\alpha_{1}} = E_{12-}^{-} = \frac{1}{2} \{ A_{13} + A_{24} + i(-A_{23} + A_{14}) \}, \qquad (7.226e)$$

$$E_{-\alpha_2} = E_2^- = -\frac{i}{\sqrt{2}} (A_{53} - iA_{54}), \qquad (7.226f)$$

$$E_{-\alpha_1-\alpha_2} = E_1^- = -\frac{i}{\sqrt{2}}(A_{51} - iA_{52}), \qquad (7.226g)$$

$$E_{-\alpha_1-2\alpha_2} = E_{12+}^- = \frac{1}{2} \left\{ -A_{13} + A_{42} + i(A_{23} + A_{14}) \right\}.$$
 (7.226h)

7.8.2 \mathfrak{sp}_2 と \mathfrak{so}_5 の同型対応

 $\mathfrak{sp}_2 \subset \mathfrak{su}_4$ の Cartan 部分代数とルート系は

$$\mathcal{L}_0$$
 : $H_1 = E_{11} - E_{44}, \quad H_2 = E_{22} - E_{33},$ (7.227a)

基本ルート :
$$\alpha_1 = h_1 - h_2$$
, $\alpha_2 = 2h_2$, (7.227b)

$$\mathbb{E}\mathcal{N} - \mathbb{h} : \Delta^+ = \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2\}.$$
(7.227c)

したがって、
$$\mathfrak{sp}_2$$
と \mathfrak{so}_5 のルート系は α_1 と α_2 の入れ替えで1対1対応する. すな

目次へ

わち,

$$\mathcal{M}_H(\mathfrak{sp}_2 \to \mathfrak{so}_5) = \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix},$$
(7.228a)

$$M_S(\mathfrak{sp}_2 \to \mathfrak{so}_5) = M_D(\mathfrak{sp}_2 \to \mathfrak{so}_5) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
 (7.228b)

7.8.3 複素表現

 \mathfrak{so}_5 の Cartan 行列は

$$C(\mathfrak{so}_5) = \begin{pmatrix} 2 & -2\\ -1 & 2 \end{pmatrix}.$$
(7.229)

 \mathfrak{so}_5 の基本表現 $f^j = (C^{-1})^{jk} \alpha_k$ は,

$$\begin{bmatrix} 1,0 \end{bmatrix} = \mathbf{5}_{v}: \begin{array}{cccc} 2 & [1,0] & (1,1) \\ 1 & [-1,2] & (0,1) \\ 0 & [0,0] & (0,0) \\ -1 & [1,-2] & (0,-1) \\ -2 & [-1,0] & (-1,-1) \end{array}$$
(7.230)

$$\begin{bmatrix} 0,1 \end{bmatrix} = \mathbf{4}_s: \begin{array}{ccc} 3/2 & [0,1] & (1/2,1) \\ 1/2 & [1,-1] & (1/2,0) \\ -1/2 & [-1,1] & (-1/2,0) \\ -3/2 & [0,-1] & (-1/2,-1) \\ \end{bmatrix}$$
(7.231)

$$\begin{bmatrix} 0,2 \end{bmatrix} = \mathbf{10}_{adj} : \begin{array}{cccc} 3 & \begin{bmatrix} 0,2 \end{bmatrix} & (1,2) \\ 2 & \begin{bmatrix} 1,0 \end{bmatrix} & (1,1) \\ 1 & \begin{bmatrix} -1,2 \end{bmatrix}, \begin{bmatrix} 2,-2 \end{bmatrix} & (0,1), (1,0) \\ 0 & \begin{bmatrix} 0,0 \end{bmatrix}^2 & (0,0)^2 \\ -1 & \begin{bmatrix} 1,-2 \end{bmatrix}, \begin{bmatrix} -2,2 \end{bmatrix} & (0,-1), (-1,0) \\ -2 & \begin{bmatrix} -1,0 \end{bmatrix} & (-1,-1) \\ -3 & \begin{bmatrix} 0,-2 \end{bmatrix} & (-1,-2) \end{array}$$
(7.232)

目次へ

dim	Dynkin label	alias
5_v	[10]	vector
4_{s}	[01]	spinor
10_{adj}	[02]	$adjoint=[2]_a = [3]_a$
14	[20]	$(2) = [2]_{s,tf}$
16	[11]	$\in {f 5}_{ m v} imes {f 4}_{ m s}$
20	[03]	$\in 10_{\mathrm{adj}} imes 4_{\mathrm{s}}$
30	[30]	$(3) = [3]_{s,tf}$
35	[12]	(2,1)
40	[21]	

表 11: SO(5)の既約表現

7.8.4 極大半単純部分代数

 $\mathfrak{so}_5 \cong \mathfrak{sp}_2$ の極大半単純部分代数は

- 1. 正則半単純部分代数: $\mathfrak{su}_2 \oplus \mathfrak{u}_1, \mathfrak{su}_2 \oplus \mathfrak{su}_2 \cong \mathfrak{so}_4$
- 2. 特殊半単純部分代数: su₂
- (i) 正則部分代数 $\mathfrak{su}_2 \oplus \mathfrak{u}_1$:
- (A) normal embedding この埋め込みは,次の写像の結合で得られる:

$$\mathfrak{su}_{2} \oplus \mathfrak{u}_{1} \xrightarrow{\iota} > \mathfrak{sp}_{2} \qquad (7.233)$$

$$\downarrow \cong \qquad \cong \uparrow$$

$$\mathfrak{so}_{3} \oplus \mathfrak{so}_{2} \xrightarrow{j} \mathfrak{so}_{5}$$

ここで、 $j:\mathfrak{so}_3 \oplus \mathfrak{so}_2 \to \mathfrak{so}_5$ は、 $\mathfrak{so}_2 \oplus \mathfrak{so}_3 \subset \mathfrak{so}_5$ と言う分解により与える:

$$\mathfrak{so}_3$$
 : $2H'_1 = -2iA_{34} = 2H_2$, $E_{\pm \alpha'_1} = E_{\pm \alpha_2}$, (7.234a)

$$\mathfrak{so}_2$$
 : $H'_2 = -iA_{12} = H_1$ (7.234b)

目次へ

よって, 埋め込み行列は

$$M_H(\mathfrak{su}_2 \oplus \mathfrak{u}_1 \to \mathfrak{so}_5 : \mathbf{N}) = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix},$$
 (7.235a)

$$M_S(\mathfrak{su}_2 \oplus \mathfrak{u}_1 \to \mathfrak{so}_5 : \mathbf{N}) = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix},$$
 (7.235b)

$$M_D(\mathfrak{su}_2 \oplus \mathfrak{u}_1 \to \mathfrak{so}_5 : \mathbf{N}) = \begin{pmatrix} 0 & 1 \\ 1 & 1/2 \end{pmatrix}.$$
 (7.235c)

(B) canonical embedding 最高ウエイトを最高ウエイトに写す埋め込み行列は

$$M_H(\mathfrak{su}_2 \oplus \mathfrak{u}_1 \to \mathfrak{so}_5 : \mathbf{C}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix},$$
 (7.236a)

$$M_S(\mathfrak{su}_2 \oplus \mathfrak{u}_1 \to \mathfrak{so}_5 : \mathbf{C}) = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}, \qquad (7.236b)$$

$$M_D(\mathfrak{su}_2 \oplus \mathfrak{u}_1 \to \mathfrak{so}_5 : \mathbf{C}) = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} ..$$
 (7.236c)

(ii) 正則部分代数 su2⊕ su2: この埋め込みは、次の写像の結合で得られる:

$$\mathfrak{su}_2 \oplus \mathfrak{su}_2 \xrightarrow{\iota} > \mathfrak{sp}_2 \qquad (7.237)$$

$$\downarrow \cong \qquad \cong^{\uparrow}_{j \longrightarrow} \mathfrak{so}_5$$

 $so_4 = \mathfrak{su}_{2L} \oplus \mathfrak{su}_{2R}$ と表すとき, Cartan 部分代数の生成元の対応は

$$\begin{pmatrix} H'_L \\ H'_R \end{pmatrix} = M_H \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}; \quad M_H = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
(7.238)

よって, 埋め込み行列は

$$M_S(\mathfrak{su}_2 \oplus \mathfrak{su}_2 \to \mathfrak{so}_5) = \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix}, \qquad (7.239a)$$

$$M_D(\mathfrak{su}_2 \oplus \mathfrak{su}_2 \to \mathfrak{so}_5) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$
 (7.239b)

(iii) 特殊部分代数 \mathfrak{su}_2 : この埋め込みは, $\mathfrak{su}_2 \cong \mathfrak{so}_3$ の5次元ユニタリ表現より 得られる.この表現は実表現なので,適当な基底を用いると, \mathfrak{so}_5 に属する実行列で 表される.結果として, \mathfrak{su}_2 のCartan部分代数の基底を H'_1 , \mathfrak{so}_5 の対応する基底を H_1, H_2 として,埋め込みは

$$(H_1') = M_H \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}; \quad M_H = \begin{pmatrix} 4 & 2 \end{pmatrix}$$
(7.240)

で与えられるので, 埋め込み行列は

$$M_S(\mathfrak{su}_2^{\max} \to \mathfrak{so}_5) = \begin{pmatrix} 1 & 1 \end{pmatrix},$$
 (7.241a)

$$M_D(\mathfrak{su}_2^{\max} \to \mathfrak{so}_5) = \begin{pmatrix} 4 & 3 \end{pmatrix}.$$
 (7.241b)

以上で、 \mathfrak{su}_2 の \mathfrak{so}_5 への3種類の埋め込みが現れたが、これらが共役でないことは、 \mathfrak{so}_5 の表現の分岐則を見ると明らかとなる:

7.9 SO(7)

7.9.1 Lie 代数の構造

代数とルート系は

$$\mathcal{L}_{0} : H_{1} = -iA_{12}, \quad H_{2} = -iA_{34}, \quad H_{3} = -iA_{56}$$
(7.242)

$$\pm \wedge \mathcal{V} - \wedge : \alpha_{1} = h_{1} - h_{2}, \quad \alpha_{2} = h_{2} - h_{3}, \quad \alpha_{3} = h_{3},$$

$$\begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} \end{pmatrix} = \begin{pmatrix} h_{1} & h_{2} & h_{3} \end{pmatrix} A; \quad A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} (7.243)$$

$$\alpha_{1} + 2\alpha_{2} + 2\alpha_{3}$$

$$\alpha_{1} + \alpha_{2} + 2\alpha_{3}$$

$$E \mathcal{V} - \wedge \Delta^{+} : \alpha_{1} + \alpha_{2} + \alpha_{3}, \alpha_{2} + 2\alpha_{3}$$

$$\alpha_{1} + \alpha_{2}, \alpha_{2} + \alpha_{3}$$

$$\alpha_{1}, \alpha_{2}, \alpha_{3}$$
(7.244)

Weyl 基底は

$$\Delta^{\pm} : E_{\pm\alpha_1} = E_{12-}^{\pm} = \frac{1}{2} \left\{ \mp (A_{13} + A_{24}) + i(-A_{23} + A_{14}) \right\}, \quad (7.245a)$$

$$E_{\pm\alpha_2} = E_{23-}^{\pm} = \frac{1}{2} \left\{ \mp (A_{25} + A_{36}) + i(-A_{45} + A_{36}) \right\}.$$
(7.245b)

$$E_{\pm\alpha_3} = E_3^{\pm} = -\frac{i}{\sqrt{2}} (A_{75} \pm iA_{76}), \qquad (7.245c)$$

$$E_{\pm(\alpha_1+\alpha_2)} = E_{13-}^{\pm} = \frac{1}{2} \left\{ \mp (A_{15} + A_{26}) + i(-A_{25} + A_{16}) \right\}, \quad (7.245d)$$

$$E_{\pm(\alpha_2+\alpha_3)} = E_2^{\pm} = -\frac{i}{\sqrt{2}} (A_{73} \pm iA_{74}), \qquad (7.245e)$$

$$E_{\pm(\alpha_1+\alpha_2+\alpha_3)} = E_1^{\pm} = -\frac{i}{\sqrt{2}}(A_{71}\pm iA_{72}).$$
(7.245f)

$$E_{\pm(\alpha_2+2\alpha_3)} = E_{23+}^{\pm} = \frac{1}{2} \left\{ \mp (-A_{25} + A_{36}) + i(A_{45} + A_{36}) \right\}.$$
(7.245g)

$$E_{\pm(\alpha_1+\alpha_2+2\alpha_3)} = E_{13+}^{\pm} = \frac{1}{2} \left\{ \mp (-A_{15} + A_{26}) + i(A_{25} + A_{16}) \right\}, (7.245h)$$
$$E_{\pm(\alpha_1+2\alpha_2+2\alpha_3)} = E_{12+}^{\pm} = \frac{1}{2} \left\{ \mp (-A_{13} + A_{24}) + i(A_{23} + A_{14}) \right\}. (7.245i)$$

目次へ

7.9.2 表現

Cartan 行列は

$$C = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -2 \\ 0 & -1 & 2 \end{pmatrix}.$$
 (7.246)

よって、基本表現 $f_j = \sum_k (C^{-1})_j^k \alpha_k$ は、

$$\begin{bmatrix} 1, 0, 0 \end{bmatrix} = \mathbf{7}_{v} : \text{ level Dynkin label weight} \\ 3 & \begin{bmatrix} 1, 0, 0 \end{bmatrix} & (1, 1, 1) \\ 2 & \begin{bmatrix} -1, 1, 0 \end{bmatrix} & (0, 1, 1) \\ 1 & \begin{bmatrix} 0, -1, 2 \end{bmatrix} & (0, 0, 1) \\ 0 & \begin{bmatrix} 0, 0, 0 \end{bmatrix} & (0, 0, 0) \\ -1 & \begin{bmatrix} 0, 1, -2 \end{bmatrix} & (0, 0, -1) \\ -2 & \begin{bmatrix} 1, -1, 0 \end{bmatrix} & (0, -1, -1) \\ -3 & \begin{bmatrix} -1, 0, 0 \end{bmatrix} & (-1, -1, -1)$$
 (7.247)

$$\begin{bmatrix} 0, 0, 1 \end{bmatrix} = \mathbf{8}_{s} : \text{ level } \text{ Dynkin label } \text{ weight} \\ 3 & \begin{bmatrix} 0, 0, 1 \end{bmatrix} & (1/2, 1, 3/2) \\ 2 & \begin{bmatrix} 0, 1, -1 \end{bmatrix} & (1/2, 0, 1/2) \\ 1 & \begin{bmatrix} 1, -1, 1 \end{bmatrix} & (1/2, 0, 1/2) \\ 0 & \begin{bmatrix} -1, 0, 1 \end{bmatrix}, \begin{bmatrix} 1, 0, -1 \end{bmatrix} & (-1/2, 0, 1/2), (1/2, 0, -1/2) \\ -1 & \begin{bmatrix} -1, 1, -1 \end{bmatrix} & (-1/2, 0, -1/2) \\ -2 & \begin{bmatrix} 0, -1, 1 \end{bmatrix} & (-1/2, -1, -1/2) \\ -3 & \begin{bmatrix} 0, 0, -1 \end{bmatrix} & (-1/2, -1, -3/2) \\ \begin{bmatrix} 0, 1, 0 \end{bmatrix} = \mathbf{21}_{adj} : \text{ level } \text{ Dynkin label } \text{ weight} \\ 5 & \begin{bmatrix} 0, 1, 0 \end{bmatrix} & (1, 2, 2) \\ 4 & \begin{bmatrix} 1, 1, 2 \end{bmatrix} & (1, 1, 2) \\ 3 & \begin{bmatrix} -1, 0, 2 \end{bmatrix}, \begin{bmatrix} 1, 0, 0 \end{bmatrix} & (0, 1, 2), (1, 1, 1) \\ 2 & \begin{bmatrix} -1, 1, 0 \end{bmatrix}, \begin{bmatrix} 1, 1, -2 \end{bmatrix} & (0, 1, 1), (1, 1, 0) \\ 1 & \begin{bmatrix} 0, -1, 2 \end{bmatrix}, \begin{bmatrix} -1, 2, -2 \end{bmatrix}, \begin{bmatrix} 2, -1, 0 \end{bmatrix} & (0, 0, 1), (0, 1, 0), (1, 0, 0) \\ 0 & \begin{bmatrix} 0, 0, 0 \end{bmatrix}^{3} \end{bmatrix} & (0, 0, 0)^{3} \\ \vdots & \vdots \\ \end{bmatrix}$$

dim	Dynkin label	alias
7_{v}	[100]	vector
8_{s}	[001]	spinor
21_{adj}	[010]	$adj=[2]_a$
35	[002]	$[3]_{\mathrm{a}}$

表 12: SO(7)の既約表現

7.9.3 極大半単純部分代数

507の半単純代数とU(1)因子の直和で表される部分代数の中で極大なものは

1. 正則型: $\mathfrak{su}_4 \cong \mathfrak{so}_6$, $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2$, $\mathfrak{sp}_2 \oplus \mathfrak{u}_1$.

2. 特殊型: g₂.

(i) 正則型部分代数 su4: su4 の so7 への埋め込みは次の合成写像より得られる:

$$\mathfrak{su}_4 \xrightarrow{\cong} \mathfrak{so}_6 \xrightarrow{j} \mathfrak{so}_7$$
 (7.250)

この対応は、 $\mathcal{L}_0(\mathfrak{su}_4) = \langle H'_1, H'_2, H'_3 \rangle$ 、 $\mathcal{L}_0(\mathfrak{so}_7) = \langle H_1, H_2, H_3 \rangle$ として、

$$\begin{pmatrix} H_1' \\ H_2' \\ H_3' \end{pmatrix} = M_H \begin{pmatrix} -iA_{12} \\ -iA_{34} \\ -iA_{56} \end{pmatrix} = M_H \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}; \quad M_H = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$
(7.251)

よって,

$$M_{S}(\mathfrak{su}_{4} \to \mathfrak{so}_{7}) = A(\mathfrak{sl}_{4})^{-1}M_{H}A(\mathfrak{so}_{7}) = \begin{pmatrix} 0 & 0 & 1/2 \\ 1 & 0 & 0 \\ 0 & 1 & -1/2 \end{pmatrix}, \quad (7.252a)$$
$$M_{D}(\mathfrak{su}_{4} \to \mathfrak{so}_{7}) = {}^{T}\!C(\mathfrak{sl}_{4})M_{S} {}^{T}\!C(\mathfrak{so}_{7})^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}. \quad (7.252b)$$

(ii) 正則型部分代数 sp2 ⊕ u1: この部分代数の埋め込みは,

$$\mathfrak{sp}_2 \oplus \mathfrak{su}_1 \xrightarrow{\cong} \mathfrak{so}_5 \oplus \mathfrak{so}_2 \xrightarrow{\cong} \mathfrak{so}_2 \oplus \mathfrak{so}_5 \xrightarrow{j} \mathfrak{so}_7 \qquad (7.253)$$

目次へ

目次へ

により得られる.この埋め込みのうち、 $\mathfrak{so}_5 \oplus \mathfrak{so}_2 \to \mathfrak{so}_7$ は、Gauss 分解の構造を保ち、Cartan 部分代数の対応

$$\begin{pmatrix} H_1' \\ H_2' \\ H_3 \end{pmatrix} = \begin{pmatrix} -iA_{34} \\ -iA_{56} \\ -iA_{12} \end{pmatrix} = M_H \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}; \quad M_H = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
(7.254)

を与える.よって,埋め込み行列は

$$M_{S}(\mathfrak{so}_{5} \to \mathfrak{so}_{7}) = A(\mathfrak{so}_{5})^{-1}M_{H}[2,3]A(\mathfrak{so}_{7}) = \begin{pmatrix} -1 & 1 & 0\\ -1 & 0 & 1 \end{pmatrix}, \quad (7.255a)$$

$$M_D(\mathfrak{so}_5 \to \mathfrak{so}_7) = {}^T\!C(\mathfrak{so}_5)M_S \, {}^T\!C(\mathfrak{so}_7)^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
(7.255b)

U(1) 電荷ベクトルは

$$Q_H = [1, 0, 0], \quad Q_S = [1, 0, 0], \quad Q_D = [1, 1, 1/2].$$
 (7.256)

(iii) 正則型部分代数 su2 ⊕ su2 ⊕ su2: この埋め込みは,次の写像の合成で得られる:

$$\iota:\mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2 \xrightarrow{\cong} \mathfrak{so}_4 \oplus \mathfrak{so}_3 \xrightarrow{j} \mathfrak{so}_7 \tag{7.257}$$

これより、埋め込み l による Cartan 部分代数の対応は

$$\iota_* \begin{pmatrix} H_1' \\ H_2' \\ H_3' \end{pmatrix} = M_H \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}; \quad M_H = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$
(7.258)

よって,

$$M_{S}(\mathfrak{su}_{2}^{3} \to \mathfrak{so}_{7}) = A(\mathfrak{su}_{2}^{3})^{-1}M_{H}A(\mathfrak{so}_{7})) = \begin{pmatrix} 1 & -1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix}, \quad (7.259a)$$
$$M_{D}(\mathfrak{su}_{2}^{3} \to \mathfrak{so}_{7}) = {}^{T}\!C(\mathfrak{su}_{2}^{3})M_{S} {}^{T}\!C(\mathfrak{so}_{7})^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}. \quad (7.259b)$$

目次へ

(iv) 特殊型部分代数 g_2 : これより, $\mathcal{L}_0(\mathfrak{so}_7)$ の基底を $H_j = -iA_{2j-12j}$ (j = 1, 2, 3), $\mathcal{L}_0(\mathfrak{g}_2)$ の基底 H'_1, H'_2 を基本ルート系 α'_1, α'_2 の双対基底に取るとき, Cartan 部分代 数の対応は

$$j_* \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = M_H \begin{pmatrix} H'_1 \\ H'_2 \\ H'_3 \end{pmatrix}; \quad M_H = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$
(7.260)

これより, 埋め込み行列は

$$M_S(\mathfrak{g}_2 \to \mathfrak{so}_7) = M_H A(\mathfrak{so}_7) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix},$$
(7.261a)

$$M_D(\mathfrak{g}_2 \to \mathfrak{so}_7) = {}^T\!C(\mathfrak{g}_2)M_S {}^T\!C(\mathfrak{so}_7)^{-1} = \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1 \end{pmatrix}$$
(7.261b)

7.10 SO(8)

7.10.1 Lie 代数の構造

 \mathfrak{so}_8 の Weyl 基底は、 \mathfrak{so}_8 の標準生成元 $A_{ab}(a, b = 1, \cdots, 8)$ を用いて表すと、

$$\mathcal{L}_{0}: \quad H_{j} := -iA_{2j-1\,2j} \ (j = 1, 2, 3, 4), \tag{7.262a}$$
$$\mathcal{L}_{\pm}: \quad E_{jk\eta}^{\pm} = \frac{1}{2} \left[\pm \left(-\eta A_{2j-1\,2k-1} + A_{2j\,2k} \right) - i \left(\eta A_{2j\,2k-1} + A_{2j-1\,2k} \right) \right] \tag{7.262b}$$
$$(1 \le j < k \le 4, \eta = \pm 1) \tag{7.262b}$$

 \mathfrak{sl}_8 の Gauss 分解と整合的な表示を用いると,

$$H_{j} = E_{jj} - E_{9-j9-j} (j = 1, 2, 3, 4),$$

$$E_{12+}^{\pm} = E_{17}^{\pm} - E_{28}^{\pm}, \quad E_{23+}^{\pm} = E_{26}^{\pm} - E_{37}^{\pm}, \quad E_{13+}^{\pm} = E_{16}^{\pm} - E_{38}^{\pm}, \quad (7.263b)$$

$$E_{14+}^{\pm} = E_{15}^{\pm} - E_{48}^{\pm}, \quad E_{24+}^{\pm} = E_{25}^{\pm} - E_{47}^{\pm}, \quad E_{34+}^{\pm} = E_{35}^{\pm} - E_{46}^{\pm}, \quad (7.263c)$$

$$E_{12-}^{\pm} = E_{12}^{\pm} - E_{78}^{\pm}, \quad E_{23-}^{\pm} = E_{23}^{\pm} - E_{67}^{\pm}, \quad E_{13-}^{\pm} = E_{13}^{\pm} - E_{68}^{\pm}, \quad (7.263d)$$

$$E_{14-}^{\pm} = E_{14}^{\pm} - E_{58}^{\pm}, \quad E_{24-}^{\pm} = E_{24}^{\pm} - E_{57}^{\pm}, \quad E_{34-}^{\pm} = E_{34}^{\pm} - E_{56}^{\pm}. \quad (7.263e)$$

基本ルート系は、 $h_j(H_k) = \delta_{jk}$ として、

$$\Pi: (\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4) = (h_1 \ h_2 \ h_3 \ h_4) \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$
(7.264)

7.10.2 表現

基本表現系は

$$f_1 = h_1 = \alpha_1 + \alpha_2 + \frac{1}{2}(\alpha^3 + \alpha^4),$$
 (7.265a)

$$f_2 = h_1 + h_2 = \alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4, \tag{7.265b}$$

$$f_3 = \frac{1}{2}(h_1 + h_2 + h_3 - h_4) = \frac{1}{2}(\alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4), \qquad (7.265c)$$

$$f_4 = \frac{1}{2}(h_1 + h_2 + h_3 + h_4) = \frac{1}{2}(\alpha_1 + 2\alpha_2 + \alpha_3 + 2\alpha_4).$$
(7.265d)

 f_j に双対的な \mathcal{L}_0 の基底 F_j は

$$F_1 = H_1 - H_2, \ F_2 = H_2 - H_3, \ F_3 = H_3 - H_4, \ F_4 = H_3 + H_4.$$
 (7.266)

目次へ

レベルベクトル $\bar{R} \in \mathscr{L}_0$ は

$$\bar{R} = \begin{bmatrix} 6 \ 10 \ 6 \ 6 \end{bmatrix} = 6f_1 + 10f_2 + 6f_3 + 6f_4. \tag{7.267}$$

随伴表現 [0100]

Dynkin weight level $[0\ 1\ 0\ 0] \qquad \alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4 = h_1 + h_2,$ 5(7.268a) $[1 - 1 1 1] \qquad \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = h_1 + h_3,$ 4 (7.268b) $[-1\ 0\ 1\ 1] \qquad \alpha_2 + \alpha_3 + \alpha_4 = h_2 + h_3,$ 3 (7.268c) $[1 \ 0 \ -1 \ 1] \qquad \alpha_1 + \alpha_2 + \alpha_4 = h_1 + h_4,$ (7.268d) $[1 \ 0 \ 1 \ -1] \qquad \alpha_1 + \alpha_2 + \alpha_3 = h_1 - h_4,$ (7.268e)2 $\begin{bmatrix} -1 \ 1 \ -1 \ 1 \end{bmatrix}$ $\alpha_2 + \alpha_4 = h_2 + h_4,$ (7.268f) $\begin{bmatrix} 1 \ 1 \ -1 \ -1 \end{bmatrix} \quad \alpha_1 + \alpha_2 = h_1 - h_3,$ (7.268g) $[-1\ 1\ 1\ -1] \qquad \alpha_2 + \alpha_3 = h_2 - h_4,$ (7.268h)1 $[2 - 1 0 0] \quad \alpha_1,$ (7.268i) $\begin{bmatrix} -1 \ 2 \ -1 \ -1 \end{bmatrix} \alpha_2,$ (7.268j)[0 - 1 2 0](7.268k) α_3 , [0 - 1 0 2](7.2681) $\alpha_4.$

 8_v 表現 [1000]

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
 & [-1 & 1 & 0 & 0] \\
 & [0 & -1 & 1 & 1] \\
8_v : & [0 & 0 & -1 & 1] & [0 & 0 & 1 & -1] \\
 & [0 & 1 & -1 & -1] \\
 & [1 & -1 & 0 & 0] \\
 & [-1 & 0 & 0 & 0]
\end{bmatrix}$$
(7.269)

		-
\dim	Dynkin label	alias
8_v	[1000]	vector
8_{s}	[0001]	spinor
$\mathbf{8'}_s$	[0010]	spinor
28_{adj}	[0100]	$adj=[2]_a$
56	[0011]	$[3]_{a}$

表 13: SO(8) の既約表現

8_s表現 [0001]

$$\begin{bmatrix}
0 & 0 & 0 & 1\\
& [0 & 1 & 0 & -1]\\
& [1 & -1 & 1 & 0]\\
8_s: & [-1 & 0 & 1 & 0] & [1 & 0 & -1 & 0]\\
& & [-1 & 1 & -1 & 0]\\
& & [0 & -1 & 0 & 1]\\
& & [0 & 0 & 0 & -1]
\end{bmatrix}$$
(7.270)

これは実表現.

8′ 表現 [0 0 1 0]

$$\begin{bmatrix}
0 & 0 & 1 & 0\\
& [0 & 1 & -1 & 0]\\
& [1 & -1 & 0 & 1]\\
8'_{s}: & [-1 & 0 & 0 & 1] & [1 & 0 & 0 & -1]\\
& & [-1 & 1 & 0 & -1]\\
& & [0 & -1 & 1 & 0]\\
& & [0 & 0 & -1 & 0]
\end{bmatrix}$$
(7.271)

これは実表現.

7.10.3 極大半単純部分代数

so8の極大半単純部分代数は

1. 正則部分代数: $\mathfrak{su}_4 \oplus \mathfrak{u}_1$, $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2$

2. 特殊部分代数: \mathfrak{so}_7 , \mathfrak{su}_3 , $\mathfrak{su}_2 \oplus \mathfrak{sp}_2$

230

(i): 正則部分代数 $\mathfrak{u}_4 = \mathfrak{su}_4 \oplus \mathfrak{u}_1$: \mathfrak{so}_8 は, $\mathfrak{su}_4 \oplus \mathfrak{u}_1$ に同型な部分代数の共役類を 6 つ持つ. これらは, $\alpha_1, \alpha_3, \alpha_4$ の置換と 1 対 1 に対応する \mathfrak{so}_8 の外部自己同型写像に より互いに移りあう.

クラス A $\mathfrak{u}_1 \mathfrak{e} \mathfrak{so}_8 \mathfrak{co} 1-2 軸 \mathfrak{coonstructure} \mathfrak{so}_6 \mathfrak{e} 3-8 部分空間 \mathfrak{coonstructure} \mathfrak{coonstructure} \mathfrak{so}_8 \mathfrak{so}_6 \cong \mathfrak{su}_4 \mathfrak{so}_9$ 、埋め込み $j: \mathfrak{su}_4 \oplus \mathfrak{u}_1 \cong \mathfrak{so}_2 \oplus \mathfrak{so}_6 \to \mathfrak{so}_8 \mathfrak{so}_8 \mathfrak{so}_8 \mathfrak{so}_6 \mathfrak{so}_8 \mathfrak{so}_6 \mathfrak{so}_8 \mathfrak{so}_8 \mathfrak{so}_6 \mathfrak{so}_8 \mathfrak{so}_$

$$M_{H}(\mathfrak{so}_{6} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{8}) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \end{pmatrix},$$
(7.272a)
$$M_{S}(\mathfrak{so}_{6} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{8}) = \begin{pmatrix} -1 & 1 & 1/2 & 1/2 \\ -1/2 & 0 & 1 & 0 \\ -1/2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \end{pmatrix},$$
(7.272b)

$$M_D(\mathfrak{so}_6 \oplus \mathfrak{u}_1 \to \mathfrak{so}_8) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \end{pmatrix}$$
(7.272c)

で与えられる.ここで, Dynkin ラベルの so₆ 部分は, D3 としてのラベルである. A3 のラベルは, 第1 成分と第2 成分の入れ替えで得られる.

クラス A での基本表現の分岐則: *D*4 → *A*3 + *U*1

 $f_1: \mathbf{8}_{\boldsymbol{v}} [1000] : \mathbf{6} [0, 1, 0]_{(0)} + \mathbf{1}_{((+2)+(-2))},$ (7.273a)

$$f_2: \mathbf{28}_{adj} [0100 : \mathbf{15} [1,0,1]_{(0)} + \mathbf{6} [0,1,0]_{((+2)+(-2))} + \mathbf{1}_{(0)}, \quad (7.273b)$$

 $f_3: \mathbf{8}'_{\mathbf{s}}[0010] : \mathbf{4}[1,0,0]_{(+1)} + \mathbf{4}^*[0,0,1]_{(-1)},$ (7.273c)

$$f_4: \mathbf{8}_{s}[0001] : \mathbf{4}^{*}[0,0,1]_{(+1)} + \mathbf{4}[1,0,0]_{(-1)}.$$
(7.273d)

この埋め込みから、 $\alpha_3 \ge \alpha_4 \ge \lambda$ れ替えることにより、クラスAのもう一つの埋め込みが得られる. \mathfrak{u}_1 因子を無視して、 \mathfrak{su}_4 の埋め込みのみを考えると、これら2つの埋め込みは同値となる.

目次へ

クラス B これは、Dynkin 図式で α_4 に対応するノードを \mathfrak{u}_1 に置き換えて得られる 極大正則部分代数と同型で、埋め込み行列は

$$M_{H}(\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{8}) = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix},$$
(7.274a)
$$M_{S}(\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{8}) = \begin{pmatrix} 1 & 0 & 0 & -1/2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1/2 \\ 0 & 0 & 0 & 2 \end{pmatrix},$$
(7.274b)
$$M_{D}(\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{8}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
(7.274c)

クラスBでの基本表現の分岐則: *D*4 → *A*3 + *U*1

$$f_1: \mathbf{8}_{\boldsymbol{v}}[1000] : \mathbf{4}[1,0,0]_{(+1)} + \mathbf{4}^*[0,0,1]_{(-1)}, \qquad (7.275a)$$

$$f_2: \mathbf{28}_{adj} [0100 : \mathbf{15} [1,0,1]_{(0)} + \mathbf{6} [0,1,0]_{((+2)+(-2))} + \mathbf{1}_{(0)}, \quad (7.275b)$$

$$f_3: \mathbf{8}'_{\boldsymbol{s}}[0010] : \mathbf{4}^*[0,0,1]_{(+1)} + \mathbf{4}[1,0,0]_{(-1)}, \qquad (7.275c)$$

$$f_4: \mathbf{8}_s[0001] : \mathbf{6}[0, 1, 0]_{(0)} + \mathbf{1}_{((+2)+(-2))}.$$
 (7.275d)

この埋め込みから、 $\alpha_1 \ge \alpha_3 \ge \alpha_1$ を入れ替えることにより、クラスBのもう一つの埋め込みが得られる. \mathfrak{u}_1 因子を無視して、 \mathfrak{su}_4 の埋め込みのみを考えると、これら2つの埋め込みは同値となる.

(B-n) natural embedding 対応 $\mathbb{C}^4 \to \mathbb{R}^8 : (z_1, \dots, z_4) \mapsto (x_1, y_1, \dots, x_4, y_4)$ $(z_j = x_j - iy_j)$ により U(4) を SO(8) を埋め込むと,

$$E_{jk} \mapsto E_{2j-1\,2k-1} + E_{2j\,2k},$$
 (7.276a)

$$iE_{jk} \mapsto E_{2j-1\,2k} - E_{2j\,2k-1}$$
 (7.276b)

より, 複素化 $GL(4, \mathbb{C}) = SL(4, \mathbb{C}) \times GL(1, \mathbb{C}) \ge SO(8, \mathbb{C})$ の Lie 代数の Weyl 基底は 次のように対応する:

$$-1 \mapsto S_1 + S_2 + S_3 + S_4,$$
 (7.277a)

$$H_j \mapsto S_j - S_4 \ (j = 1, 2, 3),$$
 (7.277b)

$$E_{jk}^{\pm} \mapsto E_{jk-}^{\pm} \ (1 \le j < k \le 3).$$
 (7.277c)

これより、基本表現系の双対基底の対応は

$$GL(4, \mathbb{C}) \qquad SO(8, \mathbb{C})$$

$$H \qquad H \qquad H \qquad (7.278a)$$

$$H_1 = H_1 - H_2 \quad \mapsto \quad S_1 - S_2 = H_1, \tag{7.278a}$$

$$H_2 = H_2 - H_3 \quad \mapsto \quad S_2 - S_3 = H_2, \tag{7.278b}$$

$$H_2 = H_2 - H_3 \quad \mapsto \quad S_2 - S_3 = H_2, \tag{7.278b}$$

$$H_3 = H_3 \quad \mapsto \quad S_3 - S_4 = H_3, \tag{7.278c}$$

$$H_4 = -1 \quad \mapsto \quad S_1 + S_2 + S_3 + S_4 = H_1 + 2H_2 + H_3 + 2H_4 \quad (7.278d)$$

となる.対応する埋め込み行列は、(7.274)と一致。よって, su4の埋め込み行列は

(B-s) Slansky embedding (B-n)の埋め込み行列に3個の Weyl 変換 $w_{\alpha_1+\alpha_2+\alpha_4}$, $w_{\alpha_4}, w_{\alpha_2}$ を施すと、つぎの埋め込み行列を得る:

$$M_{H}(\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{8}) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 \\ -1 & 1 & 1 & -1 \end{pmatrix}$$
(7.279a)

$$M_{S}(\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{8}) = \begin{pmatrix} -1/2 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 1 \\ 1/2 & 0 & 1/2 & 0 \\ -2 & 0 & 2 & 0 \end{pmatrix}$$
(7.279b)
$$\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}$$

$$M_D(\mathfrak{su}_4 \oplus \mathfrak{u}1 \to \mathfrak{so}_8) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$
(7.279c)

クラス C これは、Dynkin 図式で α_3 に対応するノードを \mathfrak{u}_1 に置き換えて得られる 極大正則部分代数と同型で、埋め込み行列は

$$M_{H}(\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{8}) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix},$$
(7.280a)
$$M_{S}(\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{8}) = \begin{pmatrix} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1/2 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$
(7.280b)
$$M_{D}(\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{8}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix}$$
(7.280c)

クラス C での基本表現の分岐則: $D4 \rightarrow A3 + U1$

$$f_1: \mathbf{8}_{\boldsymbol{v}}[1000] : \mathbf{4}[1,0,0]_{(+1)} + \mathbf{4}^*[0,0,1]_{(-1)},$$
(7.281a)

$$f_2: \mathbf{28}_{adj} [0100 : \mathbf{15} [1,0,1]_{(0)} + \mathbf{6} [0,1,0]_{((+2)+(-2))} + \mathbf{1}_{(0)}, \quad (7.281b)$$

$$f_3: \mathbf{8}'_{s}[0010] : \mathbf{6}[0,1,0])_{(0)} + \mathbf{1}_{((+2)+(-2))},$$
 (7.281c)

$$f_4: \mathbf{8}_s[0001] : \mathbf{4}^*[0,0,1]_{(+1)} + \mathbf{4}[1,0,0]_{(-1)}.$$
 (7.281d)

この埋め込みから、 $\alpha_1 \ge \alpha_4 \ge \alpha_4 \ge \alpha_4$ を入れ替えることにより、クラス C のもう一つの埋め込みが得られる. \mathfrak{u}_1 因子を無視して、 \mathfrak{su}_4 の埋め込みのみを考えると、これら2つの埋め込みは同値となる.

(ii) 正則部分代数 $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2$: この埋め込みは同型対応 $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \cong \mathfrak{so}_4$ を用いて,次の写像の合成で得られる:

$$\iota: \mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2 \xrightarrow{\cong} \mathfrak{so}_4 \oplus \mathfrak{so}_4 \xrightarrow{j} \mathfrak{so}_8 \tag{7.282}$$

したがって, 埋め込み行列は

$$M_{H}(\mathfrak{su}_{2}^{4} \to \mathfrak{so}_{8}) = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix},$$
(7.283a)
$$M_{S}(\mathfrak{su}_{2}^{4} \to \mathfrak{so}_{8}) = A(\mathfrak{su}_{2}^{4})^{-1}M_{H}A(\mathfrak{so}_{8}) = \begin{pmatrix} 1 & -1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & -1/2 & 1 & 0 \\ 0 & 0 - 1/2 & 0 & 1 \end{pmatrix},$$
(7.283b)
$$M_{D}(\mathfrak{su}_{2}^{4} \to \mathfrak{so}_{8}) = {}^{T}\!C(\mathfrak{su}_{2}^{4})M_{S} {}^{T}\!C(\mathfrak{so}_{8})^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(7.283c)

基本表現の分岐則は,

$$f_1: \mathbf{8}_{v} : (\mathbf{2}, \mathbf{2}, \mathbf{1}, \mathbf{1}) + (\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{2}),$$
 (7.284a)

$$f_{2}: \mathbf{28}_{adj} : (2, 2, 2, 2) + (3, 1, 1, 1) + (1, 3, 1, 1) + (1, 1, 3, 1) + (1, 1, 1, 3),$$
(7.284b)
$$f_{3}: \mathbf{8}'_{s} : (1, 2, 2, 1) + (2, 1, 1, 2),$$
(7.284c)

$$3: \mathbf{0}_{s} : (\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1}) + (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{2}), \tag{1.2040}$$

$$f_4: \mathbf{8}_s : (\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{2}) + (\mathbf{2}, \mathbf{1}, \mathbf{2}, \mathbf{1}).$$
 (7.284d)

この埋め込みから、 $\alpha_1, \alpha_3, \alpha_4$ の入れ替えにより5個の異なる埋め込みが得られる.

(iii) 特殊部分代数 so₇:

(A) 標準的な埋め込み この埋め込みは, SO(7)のSO(8)への部分行列としての標 準埋め込みより得られる:

$$M_{H}(\mathfrak{so}_{7} \to \mathfrak{so}_{8})_{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$
(7.285a)
$$M_{S}(\mathfrak{so}_{7} \to \mathfrak{so}_{8})_{0} = M_{D}(\mathfrak{so}_{7} \to \mathfrak{so}_{8})_{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
(7.285b)

基本表現の分岐則は,

$$f_1: \mathbf{8}_{v} : \mathbf{7}_{v} [1, 0, 0] + \mathbf{1},$$
 (7.286a)

$$f_2: \mathbf{28}_{adj} : \mathbf{21}_{adj}[0, 1, 0] + \mathbf{7}_{v}[1, 0, 0],$$
 (7.286b)

$$f_3: \mathbf{8}'_s: \mathbf{8}_s[0,0,1],$$
 (7.286c)

$$f_4: \mathbf{8}_s : \mathbf{8}_s [0, 0, 1].$$
 (7.286d)

(B) $\alpha_1 \ge \alpha_4$ を入れ替えた埋め込み この埋め込みは (A) と同値でない.

$$M_H(\mathfrak{so}_7 \to \mathfrak{so}_8)_1 = \begin{pmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 & -1/2 \\ 1/2 & -1/2 & 1/2 & -1/2 \end{pmatrix},$$
(7.287a)

$$M_{S}(\mathfrak{so}_{7} \to \mathfrak{so}_{8})_{1} = M_{D}(\mathfrak{so}_{7} \to \mathfrak{so}_{8})_{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
(7.287b)

基本表現の分岐則は,

$$f_1: \mathbf{8}_{v} : \mathbf{8}_{s} [0, 0, 1],$$
 (7.288a)

$$f_2: \mathbf{28}_{adj} : \mathbf{21}_{adj} [0, 1, 0] + \mathbf{7}_{v} [1, 0, 0],$$
 (7.288b)

$$f_3: \mathbf{8}'_s: \mathbf{8}_s[0,0,1],$$
 (7.288c)

$$f_4: \mathbf{8}_s: \mathbf{7}_v[1,0,0] + \mathbf{1}.$$
 (7.288d)

(C) $\alpha_1 \ge \alpha_3$ を入れ替えた埋め込み この埋め込みは (A), (B) と同値でない.

$$M_{H}(\mathfrak{so}_{7} \to \mathfrak{so}_{8})_{1} = \begin{pmatrix} 1/2 & 1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 & 1/2 \end{pmatrix},$$
(7.289a)
$$M_{S}(\mathfrak{so}_{7} \to \mathfrak{so}_{8})_{1} = M_{D}(\mathfrak{so}_{7} \to \mathfrak{so}_{8})_{1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
(7.289b)

基本表現の分岐則は,

$$f_1: \mathbf{8}_{v} : \mathbf{8}_{s} [0, 0, 1], \tag{7.290a}$$

$$f_2: \mathbf{28}_{adj} : \mathbf{21}_{adj} [0, 1, 0] + \mathbf{7}_{v} [1, 0, 0],$$
 (7.290b)

 $f_3: \mathbf{8}'_s: \mathbf{7}_v [1, 0, 0] + \mathbf{1},$ (7.290c)

$$f_4: \mathbf{8}_s : \mathbf{8}_s [0, 0, 1].$$
 (7.290d)

(iv) 特殊部分代数 su₃: su₃の8次元随伴表現は実表現なので,そのユニタリ表示 は,自動的に so₈ への埋め込みを与える.まず, su₃の随伴表現の基底を次のように 選ぶ:

$$e_{1} = (1,1) = \frac{1}{\sqrt{2}}E_{13}^{+}, \quad e_{2} = (1,0) = \frac{1}{\sqrt{2}}E_{12}^{+}, \quad e_{3} = (0,1) = \frac{1}{\sqrt{2}}E_{12}^{+}, \quad (7.291)$$

$$e_{4} = (0,0)_{1} = pH_{\alpha_{1}} + qH_{\alpha_{2}}, \quad e_{5} = (0,0)_{2} = rH_{\alpha_{1}} + sH_{\alpha_{2}}, \quad (7.292)$$

$$e_{6} = (0, -1) = \frac{1}{\sqrt{2}}E_{23}^{-}, \quad e_{7} = (-1, 0) = \frac{1}{\sqrt{2}}E_{12}^{-}, \quad e_{8} = (-1, -1) = \frac{1}{\sqrt{2}}(E_{12}^{+})(2)$$

ここで、 su₃の Cartan 部分代数の標準基底

$$H_1 = E_{11} - E_{33}, \quad H_2 = E_{22} - E_{33} \tag{7.294}$$

と H_{α_i} との関係は

$$\alpha_j(H_{\alpha_i}) = (\alpha_j, \alpha_i) = K_{ji}; \quad K = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1 \end{pmatrix},$$
(7.295)

$$\alpha_i = \sum_j h_j A^j{}_i; \quad A = \begin{pmatrix} 1 & 1\\ -1 & 2 \end{pmatrix}, \tag{7.296}$$

$$\Rightarrow \qquad H_{\alpha_i} = \sum_k H_k ({}^{T}\!A^{-1}K)_{ki} \tag{7.297}$$

より,

$$H_{\alpha_1} = \frac{1}{2}(H_1 - H_2), \quad H_{\alpha_2} = \frac{1}{2}H_2,$$
 (7.298)

$$\alpha_1 = h_1 - h_2, \quad \alpha_2 = h_1 + 2h_2 \tag{7.299}$$

よって、
$$H_1 \ge H_2$$
の基底 e_1, \cdots, e_8 への作用は次の対角型行列で表される:

$$H_1 \mapsto 2(E_{11} - E_{88}) + E_{22} - E_{77} + E_{33} - E_{66} = 2H_1 + H_2 + H_3, \quad (7.300a)$$

$$H_2 \mapsto E_{11} - E_{88}) - (E_{22} - E_{77}) + 2(E_{33} - E_{66}) = H_1 - H_2 + 2H_3(7.300b)$$

次に,

$$[E_{-\alpha_2}, E_{(1,1)}] = -\frac{1}{\sqrt{2}} E_{(1,0)} \quad : \quad e_1 \xrightarrow{-\alpha_2} -\frac{1}{\sqrt{2}} e_2 , \qquad (7.301a)$$

$$[E_{-\alpha_1}, E_{(1,1)}] = \frac{1}{\sqrt{2}} E_{(0,1)} \quad : \quad e_1 \xrightarrow{-\alpha_1} \frac{1}{\sqrt{2}} e_3 , \qquad (7.301b)$$

$$[E_{-\alpha_2}, E_{(-1,0)}] = \frac{1}{\sqrt{2}} E_{(-1,-1)} \quad : \quad e_7 \xrightarrow{-\alpha_2} \frac{1}{\sqrt{2}} e_8 , \qquad (7.301c)$$

$$[E_{-\alpha_1}, E_{(0,-1)}] = -\frac{1}{\sqrt{2}} E_{(-1,-1)} : e_6 \xrightarrow{-\alpha_1} -\frac{1}{\sqrt{2}} e_8 .$$
 (7.301d)

また,

$$[E_{-\alpha_1}, E_{(1,0)}] = -H_{\alpha_1} \quad : \quad e_2 \xrightarrow{-\alpha_1} \frac{1}{\Delta} (-se_4 + qe_5) , \qquad (7.302a)$$

$$[E_{-\alpha_2}, E_{(0,1)}] = -H_{\alpha_2} \quad : \quad e_3 \xrightarrow{-\alpha_2} \frac{1}{\Delta} (-re_4 - pe_5) , \qquad (7.302b)$$

$$[E_{-\alpha_1}, e_4] = \left(p - \frac{q}{2}\right) e_7 \quad : \quad e_4 \xrightarrow{-\alpha_1} \left(p - \frac{q}{2}\right) e_7 \quad , \tag{7.302c}$$

$$\begin{bmatrix} E_{-\alpha_1}, e_5 \end{bmatrix} = \begin{pmatrix} r - \frac{s}{2} \end{pmatrix} e_7 \quad : \quad e_5 \xrightarrow{-\alpha_1} \begin{pmatrix} r - \frac{s}{2} \end{pmatrix} e_7 , \tag{7.302d}$$

$$[E_{-\alpha_2}, e_4] = \left(q - \frac{p}{2}\right) e_6 \quad : \quad e_4 \xrightarrow{-\alpha_2} \left(q - \frac{p}{2}\right) e_6 \quad , \tag{7.302e}$$

$$[E_{-\alpha_2}, e_5] = \left(s - \frac{r}{2}\right) e_6 \quad : \quad e_5 \xrightarrow{-\alpha_2} \left(s - \frac{r}{2}\right) e_6 \; . \tag{7.302f}$$

ここで、 $\Delta = ps - qr$. 以上より、

$$E_{-\alpha_{1}} \mapsto \frac{\sqrt{2}}{2} (E_{13}^{-} - E_{68}^{-}) + \frac{-s}{\Delta} E_{24}^{-} + \left(r - \frac{s}{2}\right) E_{57}^{-} + \frac{q}{\Delta} E_{25}^{-} + \left(p - \frac{q}{2}\right) E_{47}^{-},$$

$$E_{-\alpha_{2}} \mapsto -\frac{\sqrt{2}}{2} (E_{12}^{-} - E_{78}^{-}) + \frac{r}{\Delta} E_{34}^{-} + \left(s - \frac{r}{2}\right) E_{58}^{-} + \frac{-p}{\Delta} E_{35}^{-} + \left(q - \frac{p}{2}\right) E_{46}^{-}.$$

この式の右辺は,

$$\frac{s}{\Delta} = r - \frac{s}{2}, \quad \frac{r}{\Delta} = -s + \frac{r}{2}, \quad \frac{q}{\Delta} = -p + \frac{q}{2}, \quad \frac{p}{\Delta} = q - \frac{p}{2}.$$
 (7.303)

が満たされるとき、508に属し、次のように表される.

$$E_{\alpha_{1}} \mapsto \frac{\sqrt{2}}{2}E_{13-}^{+} + xE_{24-}^{+} + yE_{24+}^{+},$$

$$E_{\alpha_{2}} \mapsto -\frac{\sqrt{2}}{2}E_{12-}^{+} + zE_{34-}^{+} + wE_{34+}^{+},$$

$$E_{-\alpha_{1}} \mapsto \frac{\sqrt{2}}{2}E_{13-}^{-} + \bar{x}E_{24-}^{-} + \bar{y}E_{24+}^{-},$$

$$E_{\alpha_{2}} \mapsto -\frac{\sqrt{2}}{2}E_{12-}^{-} + \bar{z}E_{34-}^{-} + \bar{w}E_{34+}^{-}.$$

この対応が交換関係を満たすことより、

$$|x|^{2} = |y|^{2} = |z|^{2} = |w|^{2} = \frac{1}{2},$$
 (7.304a)

$$y(x+z) + xw = 0, \quad w(x+z) + yz = 0$$
 (7.304b)

解は、

$$z = e^{i\theta}x, \quad y = e^{i\theta}w, \quad |y| = |w| = \frac{1}{\sqrt{2}}; \quad \theta = \pm \frac{2\pi}{3}.$$
 (7.305)

また、

$$E_{\alpha_{1}+\alpha_{2}} \mapsto e^{i\theta/2} \left(w E_{14+}^{+} + x E_{14-}^{+} \right) - \frac{e^{i\theta}}{\sqrt{2}} x w E_{23+}^{+}, \qquad (7.306a)$$

$$E_{-\alpha_1-\alpha_2} \mapsto e^{i\theta/2} \left(\bar{w} E_{14+}^+ + \bar{x} E_{14-}^+ \right) - \frac{e^{i\theta}}{\sqrt{2}} \bar{x} \bar{w} E_{23+}^+.$$
 (7.306b)

埋め込み行列は、Cartan 部分代数の対応

$$\begin{pmatrix} H_1' \\ H_2' \end{pmatrix} = M_H \begin{pmatrix} H_1 \\ H_2 \\ H_3 \\ H_4 \end{pmatrix}; \quad M_H = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & -1 & 2 & 0 \end{pmatrix}$$
(7.307)

より、

$$M_S(\mathfrak{su}_3 \to \mathfrak{so}_8) = A(_3)^{-1} M_H A(\mathfrak{so}_8) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 \end{pmatrix}, \quad (7.308a)$$

$$M_D(\mathfrak{su}_3 \to \mathfrak{so}_8) = {}^{T}\!C(_3)M_S {}^{T}\!C(\mathfrak{so}_8)^{-1} = \begin{pmatrix} 1 & 3 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}.$$
(7.308b)

この埋め込みは、 $\alpha_1, \alpha_3, \alpha_4$ の入れ替えに対して不変.

基本表現の分岐則は,

$$f_1: \mathbf{8}_{\boldsymbol{v}} : \mathbf{8}[1,1],$$
 (7.309a)

$$f_2: \mathbf{28}_{adj} : \mathbf{10}[3,0] + \mathbf{10}^*[0,3] + \mathbf{8}_{adj}[1,1],$$
 (7.309b)

$$f_3: \mathbf{8}'_s: \mathbf{8}[1,1],$$
 (7.309c)

$$f_4: \mathbf{8}_s : \mathbf{8}[1,1].$$
 (7.309d)

(iv) 特殊部分代数 $\mathfrak{sp}_2 \oplus \mathfrak{su}_2$: この埋め込み ι は、次のような写像の結合により得られる:

$$\iota: \mathfrak{sp}_2 \oplus \mathfrak{su}_2 \xrightarrow{\cong} \mathfrak{so}_5 \oplus \mathfrak{so}_3 \xrightarrow{j} \mathfrak{so}_8 \tag{7.310}$$

最初の so₃ を so₈ の [1,2,7] 部分に、so₅ を [3,4,5,6,8] 部分と同一視すると、埋め込 み行列は

$$M_{H} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}, \quad M_{S} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad M_{D} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 2 & 2 & 1 & 1 \end{pmatrix}$$
(7.311)

基本表現の分岐則は,

$$f_1: \mathbf{8}_{v} : (\mathbf{5}, \mathbf{1})[0, 1] + (\mathbf{1}, \mathbf{3}),$$
 (7.312a)

$$f_2: \mathbf{28}_{adj} : (\mathbf{5}, \mathbf{3}) [0, 1] + (\mathbf{10}, \mathbf{1}) [2, 0] + (\mathbf{1}, \mathbf{3}),$$
 (7.312b)

$$f_3: \mathbf{8'_s}: (\mathbf{4}, \mathbf{2})[1, 0],$$
 (7.312c)

$$f_4: \mathbf{8}_s : (\mathbf{4}, \mathbf{2}) [1, 0].$$
 (7.312d)

この埋め込みから, $\alpha_1 \leftrightarrow \alpha_3$, $\alpha_1 \leftrightarrow \alpha_4$ の入れ替えにより2つの異なる埋め込みが得られる.

7.11 SO(9)

7.11.1 Lie 代数の構造

 \mathfrak{so}_9 の Weyl 基底は、 \mathfrak{so}_9 の標準生成元 $A_{ab}(a, b = 1, \dots, 9)$ を用いて表すと、

$$\mathscr{L}_0: \quad H_j := -iA_{2j-1\,2j} \ (j = 1, 2, 3, 4), \tag{7.313a}$$

$$\mathscr{L}_{\pm}: \quad E_{j}^{\pm} = \frac{i}{\sqrt{2}} (A_{9\,2j-1} \pm i A_{9\,2j}, (j = 1, \cdots, 4)$$
(7.313b)

$$E_{jk\eta}^{\pm} = \frac{1}{2} \left[\pm \left(-\eta A_{2j-1\,2k-1} + A_{2j\,2k} \right) - i \left(\eta A_{2j\,2k-1} + A_{2j-1\,2k} \right) \right]$$

(1 \le j < k \le 4, \eta = \pm 1) (7.313c)

sl₉の Gauss 分解と整合的な表示を用いると,

$$\begin{array}{rcl} (0,0,0,0) & \mapsto & H_j = E_{jj} - E_{10-j\,10-j} \ (j=1,2,3,4), \\ \pm (1,0,0,0) & \mapsto & E_{12-}^{\pm} = E_{12}^{\pm} - E_{89}^{\pm}, \end{array}$$
(7.314a)

$$\pm (1,0,0,0) \quad \mapsto \quad E_{12-}^{\pm} = E_{12}^{\pm} - E_{89}^{\pm}, \tag{7.314b}$$

$$\pm (0, 1, 0, 0) \mapsto E_{23-}^{\pm} = E_{23}^{\pm} - E_{78}^{\pm}, \tag{7.314c}$$

$$\pm (0, 0, 1, 0) \mapsto E_{34-}^{\pm} = E_{34}^{\pm} - E_{67}^{\pm},$$
 (7.314d)

$$\pm (0, 0, 0, 1) \mapsto E_4^{\pm} = \pm i (E_{45}^{\pm} - E_{56}^{\pm}),$$
 (7.314e)

$$\pm (1, 1, 0, 0) \mapsto E_{13-}^{\pm} = E_{13}^{\pm} - E_{79}^{\pm},$$
 (7.315a)

$$\pm (0, 1, 1, 0) \mapsto E_{24-}^{\pm} = E_{24}^{\pm} - E_{68}^{\pm},$$
 (7.315b)

$$\pm (0, 0, 1, 1) \mapsto E_3^{\pm} = \pm i (E_{35}^{\pm} - E_{57}^{\pm}),$$
 (7.315c)

$$\pm (1, 1, 1, 0) \mapsto E_{14-}^{\pm} = E_{14}^{\pm} - E_{69}^{\pm}, \tag{7.316a}$$

$$\pm (0, 1, 1, 1) \mapsto E_2^{\pm} = \pm i(E_{25}^{\pm} - E_{58}^{\pm}), \tag{7.316b}$$

$$\pm (0, 0, 1, 2) \mapsto E_{34+}^{\pm} = E_{36}^{\pm} - E_{47}^{\pm},$$
 (7.316c)

$$\pm (1, 1, 1, 1) \mapsto E_1^{\pm} = \pm i(E_{15}^{\pm} - E_{59}^{\pm}), \qquad (7.317a)$$

$$\pm (0, 1, 1, 2) \mapsto E_{24+}^{\pm} = E_{26}^{\pm} - E_{48}^{\pm},$$

$$+ (1, 1, 1, 2) \mapsto E_{24+}^{\pm} = E_{26}^{\pm} - E_{48}^{\pm},$$

$$(7.317b)$$

$$(7.317c)$$

$$\pm (1, 1, 1, 2) \quad \mapsto \quad E_{14+} = E_{16} - E_{49},$$

$$\pm (0, 1, 2, 2) \quad \mapsto \quad E_{22+}^{\pm} = E_{27}^{\pm} - E_{28}^{\pm},$$

$$(7.317d)$$

$$\pm (0, 1, 2, 2) \mapsto E_{23+}^{\pm} = E_{27}^{\pm} - E_{38}^{\pm}, \qquad (1.3174)$$

$$\pm (1, 1, 2, 2) \mapsto E_{13+}^{\pm} = E_{17}^{\pm} - E_{39}^{\pm}, \qquad (7.317e)$$

$$\pm (1, 2, 2, 2) \mapsto E_{12+}^{\pm} = E_{18}^{\pm} - E_{29}^{\pm}.$$
 (7.317f)

基本ルート系は、 $h_j(H_k) = \delta_{jk}$ として、

$$\Pi: (\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4) = (h_1 \ h_2 \ h_3 \ h_4) \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$
(7.318)

7.11.2 表現

Cartan 行列は

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -2 \\ 0 & 0 & -1 & 2 \end{pmatrix}, \quad C^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1/2 & 1 & 3/2 & 2 \end{pmatrix}$$
(7.319)

より、基本表現は

$$f_1 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \quad : \quad \mathbf{9}_v,$$
 (7.320a)

$$f_2 = \alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4$$
 : $\mathbf{36}_{adj} = [2],$ (7.320b)

$$f_3 = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 3\alpha_4 \quad : \quad \mathbf{84} = [3], \tag{7.320c}$$

$$f_4 = \frac{1}{2}\alpha_1 + \alpha_2 + \frac{3}{2}\alpha_3 + 2\alpha_4 \quad : \quad \mathbf{16}_s \tag{7.320d}$$

7.11.3 極大部分代数

 \mathfrak{so}_9 の部分代数で半単純代数と \mathfrak{u}_1 因子の直和となるものの中で極大なものは、次の通りである:

- 1. 正則型: $\mathfrak{so}_8, \mathfrak{so}_7 \oplus \mathfrak{u}_1, \mathfrak{su}_4 \oplus \mathfrak{su}_2, \mathfrak{sp}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2$
- 特殊型: su₂, su₂⊕ su₂.

表 14: SO(9) の既約表現

Dynkin label	dimension	H_1 charge
[0001]	16	$(+1/2)^8 + (-1/2)^8$
[1000]	9	$(+1)^1 + (-1)^1 + (0)^7$
[0100]	36	$(+1)^7 + (-1)^7 + (0)^{22}$
[0010]	84	$(+1)^{21} + (-1)^{21} + (0)^{42}$
[0002]	126	$(+1)^{35} + (-1)^{35} + (0)^{56}$
[1001]	128	$(+3/2)^8 + (-3/2)^8 + (+1/2)^{56} + (-1/2)^{56}$
[0101]	432	$(+3/2)^{48} + (-3/2)^{48} + (+1/2)^{168} + (-1/2)^{168}$
[0011]	768	$(+3/2)^{112} + (-3/2)^{112} + (+1/2)^{272} + (-1/2)^{272}$
[0003]	672	$(+3/2)^{112} + (-3/2)^{112} + (+1/2)^{224} + (-1/2)^{224}$
[2000]	$44 = (2)_{\rm sym, tf}$	$(+2)^{1} + (-2)^{1} + (+1)^{7} + (-1)^{7} + (0)^{28}$
[0200]	495	$(+2)^{27} + (-2)^{27} + (+1)^{112} + (-1)^{112} + (0)^{217}$
[0020]	1980	$(+2)^{168} + (-2)^{168} + (+1)^{483} + (-1)^{483} + (0)^{678}$
[0004]	2772	$(+2)^{294} + (-2)^{294} + (+1)^{672} + (-1)^{672} + (0)^{840}$
[1100]	231	$(+2)^7 + (-2)^7 + (+1)^{49} + (-1)^{49} + (0)^{119}$
[1010]	$\boldsymbol{594}$	$(+2)^{21} + (-2)^{21} + (+1)^{147} + (-1)^{147} + (0)^{258}$
[0110]	1650	$(+2)^{105} + (-2)^{105} + (+1)^{405} + (-1)^{405} + (0)^{630}$
[1002]	$\boldsymbol{924}$	$(+2)^{35} + (-2)^{35} + (+1)^{245} + (-1)^{245} + (0)^{364}$
[0102]	2772	$(+2)^{189} + (-2)^{189} + (+1)^{707} + (-1)^{707} + (0)^{980}$
[0012]	4158	$(+2)^{378} + (-2)^{378} + (+1)^{1029} + (-1)^{1029} + (0)^{1344}$

(i) 正則部分代数 508: この部分代数は 508 の 509 への標準埋め込みより得られるの で、埋め込み行列は

$$M_{H}(\mathfrak{so}_{8} \to \mathfrak{so}_{9}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
(7.321a)
$$M_{S}(\mathfrak{so}_{8} \to \mathfrak{so}_{9}) = A(\mathfrak{so}_{8})^{-1}M_{H}A(\mathfrak{so}_{9}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1/2 \\ 0 & 0 & 0 & 1/2 \end{pmatrix},$$
(7.321b)
$$M_{D}(\mathfrak{so}_{8} \to \mathfrak{so}_{9}) = {}^{T}\!C(\mathfrak{so}_{8})M_{S} {}^{T}\!C(\mathfrak{so}_{9})^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
(7.321c)

基本表現の分岐則

$$f_1: \mathbf{9}_{v} = ,$$
 (7.322a)

$$f_2: \mathbf{36}_{adj} = , \qquad (7.322b)$$

$$f_3: \mathbf{84} = ,$$
 (7.322c)

$$f_4: \mathbf{16}_s = .$$
 (7.322d)

(ii) 正則型部分代数 so₇⊕u₁: この部分代数は、so₂⊕so₇の so₉への標準埋め込み により得られる。したがって、so₇の埋め込み行列は

$$M_H(\mathfrak{so}_7 \to \mathfrak{so}_9) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
(7.323a)

$$M_{S}(\mathfrak{so}_{7} \to \mathfrak{so}_{9}) = A(\mathfrak{so}_{7})^{-1}M_{H}A(\mathfrak{so}_{9}) = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}, \quad (7.323b)$$
$$M_{D}(\mathfrak{so}_{8} \to \mathfrak{so}_{9}) = {}^{T}\!C(\mathfrak{so}_{8})M_{S} {}^{T}\!C(\mathfrak{so}_{9})^{-1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad (7.323c)$$

目次へ

また、U(1)荷電ベクトルは

$$Q_H = Q_S \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}, \quad Q_D = \begin{pmatrix} 1 & 1 & 1 & 1/2 \end{pmatrix}.$$
 (7.324)

基本表現の分岐則

$$f_1: \mathbf{9}_{v} = ,$$
 (7.325a)

$$f_2: \mathbf{36}_{adj} = , \qquad (7.325b)$$

$$f_3: \ \mathbf{84} = \ , \tag{7.325c}$$

$$f_4: \mathbf{16}_s = .$$
 (7.325d)

(iii) 正則型部分代数 $\mathfrak{su}_4 \oplus \mathfrak{su}_2$:

(A) Natural embedding この部分代数は、次の写像の結合により得られる:

$$\iota: \mathfrak{su}_4 \oplus \mathfrak{su}_2 \xrightarrow{\cong} \mathfrak{so}_6 \oplus \mathfrak{so}_3 \xrightarrow{j} \mathfrak{so}_9$$
(7.326)
埋め込み \mathfrak{su}_4 \to \mathfrak{so}_7 の結果を用いると、

$$M_{H}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2}) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix},$$
(7.327a)
$$M_{S}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2}) = A(\mathfrak{sl}_{4} \oplus \mathfrak{sl}_{2})^{-1}M_{H}A(\mathfrak{so}_{8}) = \begin{pmatrix} 0 & 0 & 1/2 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & -1/2 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix},$$
(7.327b)
$$M_{S}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2}) = \frac{T_{S}(\mathfrak{su}_{4} \oplus \mathfrak{sl}_{2})^{-1}M_{H}A(\mathfrak{so}_{8}) = \begin{pmatrix} 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix},$$
(7.327b)

$$M_D(\mathfrak{su}_4 \oplus \mathfrak{su}_2) = {}^{T}\!C(\mathfrak{sl}_4 \oplus \mathfrak{sl}_2) M_S {}^{T}\!C(\mathfrak{so}_8)^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(7.327c)

(B) Slansky embedding (A)の行列のおいて、 $\mathfrak{su}_2 \geq \mathfrak{su}_4$ の順序を入れ替えた後、 5 個の Weyl 変換 $w_{\alpha_1+\alpha_2+\alpha_3+2\alpha_4}, w_{\alpha_3+2\alpha_4}, w_{\alpha_2+\alpha_3+2\alpha_4}, w_{\alpha_3}, w_{\alpha_4}$ を順次施すと、次の埋

め込み行列が得られる:

$$M_{H}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{4} \to \mathfrak{so}_{9}) = \begin{pmatrix} -2 & 0 & 0 & 0\\ 0 & 0 & -1 & -1\\ 0 & -1 & 0 & -1\\ 0 & -1 & -1 & 0 \end{pmatrix},$$
(7.328a)

$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{4} \to \mathfrak{so}_{9}) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ -1/2 & 1 & 0 & -1/2 \\ 0 & 0 & 1 & -1 \\ 1/2 & 0 & 0 & -1/2 \end{pmatrix},$$
(7.328b)

$$M_D(\mathfrak{su}_2 \oplus \mathfrak{su}_4 \to \mathfrak{so}_9) = \begin{pmatrix} -2 & -2 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & -2 & -1 \end{pmatrix},$$
(7.328c)

基本表現の分岐則

$$f_1: \mathbf{9}_{\boldsymbol{v}} = (\mathbf{6}, \mathbf{1}) [0, 1, 0] + (\mathbf{1}, \mathbf{3}), \qquad (7.329a)$$

$$f_1: \mathbf{26} = (\mathbf{15} - \mathbf{1}) [1, 0, 1] + (\mathbf{6}, \mathbf{2}) [0, 1, 0] + (\mathbf{1}, \mathbf{2}) = (7.329b)$$

$$f_{2}: \mathbf{36}_{adj} = (\mathbf{15}_{adj}, \mathbf{1}) [1, 0, 1] + (\mathbf{6}, \mathbf{3}) [0, 1, 0] + (\mathbf{1}, \mathbf{3}), \quad (7.329b)$$

$$f_{3}: \mathbf{84} = (\mathbf{15}, \mathbf{3}) [1, 0, 1] + (\mathbf{10}, \mathbf{1}) [2, 0, 0] + (\mathbf{10}^{*}, \mathbf{1})$$

$$+(\mathbf{6},\mathbf{3})[0,1,0] + (\mathbf{1},\mathbf{1}), \qquad (7.329c)$$

$$f_4: \mathbf{16}_s = (\mathbf{4}, \mathbf{2}) [1, 0, 0] + (\mathbf{4}^*, \mathbf{2}).$$
 (7.329d)

(iv) 正則型部分代数 $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{sp}_2$: この部分代数は、次の写像の合成により得られる:

$$\iota: (\mathfrak{su}_2 \oplus \mathfrak{su}_2) \oplus \mathfrak{sp}_2 \xrightarrow{\cong} \mathfrak{so}_4 \oplus \mathfrak{so}_5 \xrightarrow{j} \mathfrak{so}_9 \tag{7.330}$$

よって、同型対応 $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \cong \mathfrak{so}_4$ および $\mathfrak{sp}_2 \cong \mathfrak{so}_5$ より、 ι の埋め込み行列は

$$M_{H}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \oplus \mathfrak{sp}_{2}) = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix},$$
(7.331a)
$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \oplus \mathfrak{sp}_{2}) = A(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2})^{-1}M_{H}A(\mathfrak{so}_{9}) = \begin{pmatrix} 1 & -1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$
(331b)
$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \oplus \mathfrak{sp}_{2}) = {}^{T}\!C(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2})M_{S} {}^{T}\!C(\mathfrak{so}_{9})^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
(7.331c)

基本表現の分岐則

- $f_1: \mathbf{9}_{v} = ,$ (7.332a)
- $f_2: \mathbf{36}_{adj} = , \qquad (7.332b)$
 - $f_3: 84 = , (7.332c)$
 - $f_4: \mathbf{16}_s = .$ (7.332d)

(v) 特殊型部分代数 su₂: この部分代数は、su₂の9次元ユニタリ表現より得られる. su₂の表現の一般論より、この9次元表現は

$$iH \mapsto i(8H_1 + 6H_2 + 4H_3 + 2H_4),$$
 (7.333a)

$$A \mapsto X_9^+ - X_9^-),$$
 (7.333b)

$$iS \mapsto i(X_9^+ + X_9^-)$$
 (7.333c)

で与えられる。ここで、 X_9^{\pm} は、 \mathfrak{so}_9 の Weyl 基底を用いて

$$X_9^+ = a_1 E_{12-}^+ + a_2 E_{23-}^+ + a_3 E_{34-}^+ - i a_4 E_4^+, \qquad (7.334a)$$

$$X_9^- = \bar{a}_1 E_{12-}^- + \bar{a}_2 E_{23-}^- + \bar{a}_3 E_{34-}^- + i \bar{a}_4 E_4^-$$
(7.334b)

と表される。

これより、埋め込み行列は、

$$M_{H}(\mathfrak{su}_{2} \to \mathfrak{so}_{9}) = \begin{pmatrix} 8 & 6 & 4 & 2 \end{pmatrix},$$

$$M_{H}(\mathfrak{su}_{2} \to \mathfrak{so}_{9}) = \begin{pmatrix} 8 & 6 & 4 & 2 \end{pmatrix},$$
(7.335a)
$$M_{H}(\mathfrak{su}_{2} \to \mathfrak{so}_{9}) = A(\mathfrak{s}_{1})^{-1}M_{H}A(\mathfrak{so}_{2}) = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$
(7.325b)

$$M_S(\mathfrak{su}_2 \to \mathfrak{so}_9) = A(\mathfrak{sl}_2)^{-1} M_H A(\mathfrak{so}_9) = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix},$$
(7.335b)

$$M_D(\mathfrak{su}_2 \to \mathfrak{so}_9) = {}^{T}\!C(\mathfrak{sl}_2)M_S {}^{T}\!C(\mathfrak{so}_9)^{-1} = \begin{pmatrix} 8 & 14 & 18 & 10 \end{pmatrix}. \quad (7.335c)$$

基本表現の分岐則

- $f_1: \mathbf{9}_{v} = ,$ (7.336a)
- $f_2: \ \mathbf{36}_{adj} = , \qquad (7.336b)$
 - $f_3: \ \mathbf{84} = \ , \tag{7.336c}$

$$f_4: \mathbf{16}_s = .$$
 (7.336d)

(vi) 特殊型部分代数 $\mathfrak{su}_2 \oplus \mathfrak{su}_2$ この埋め込みは、 \mathfrak{su}_2 の2つの3次元表現のテンソ ル積より得られる $\mathfrak{su}_2 \oplus \mathfrak{su}_2$ の9次元表現に対応する。この表現の基底を

$$e_1 = (2,2), e_2 = (2,0), e_3 = (0,2), e_4 = (2,-2), e_5 = (0,0), e_6 = (-2,2),$$

 $e_7 = (0,-2), e_8 = (-2,0), e_9 = (-2,-2)$ (7.337)

と取ると、2つの **su**₂ の Cartan 部分代数の標準生成元 *H*₁, *H*₂ のこれらの基底への作 用は、対角型行列

$$H_1 \mapsto [2, 2, 0, 2, 0, -2, 0, -2, -2] \mapsto 2H_1 + 2H_2 + 2H_4,$$
 (7.338a)

$$H_2 \mapsto [2, 0, 2, -2, 0, 2, -2, 0, -2] \mapsto 2H_1 + 2H_3 - 2H_4$$
 (7.338b)

で表される。これより、埋め込み行列は

$$M_H(\mathfrak{su}_2 \oplus \mathfrak{su}_2 \to \mathfrak{so}_9) = \begin{pmatrix} 2 & 2 & 0 & 2\\ 2 & 0 & 2 & -2 \end{pmatrix},$$
(7.339a)

$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{9}) = A(\mathfrak{sl}_{2} \oplus \mathfrak{sl}_{2})^{-1}M_{H}A(\mathfrak{so}_{9}) = \begin{pmatrix} 0 & 1 & -1 & 1\\ 1 & -1 & 2 & -1 \end{pmatrix} 339b)$$
$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{9}) = {}^{T}\!C(\mathfrak{sl}_{2} \oplus \mathfrak{sl}_{2})M_{S} {}^{T}\!C(\mathfrak{so}_{9})^{-1} = \begin{pmatrix} 2 & 4 & 4 & 3\\ 2 & 2 & 4 & 1 \end{pmatrix} (7.339c)$$

目次へ

基本表現の分岐則

$$f_1: \ \mathbf{9}_{v} = \ , \tag{7.340a}$$

$$f_2: \mathbf{36}_{adj} = , \qquad (7.340b)$$

$$f_3: \ \mathbf{84} = \ , \tag{7.340c}$$

$$f_4: \mathbf{16}_s = .$$
 (7.340d)

7.12SO(10)

7.12.1 Lie 代数の構造

SO(10, ℂ) の Weyl 基底は

$$\mathcal{L}_{0}: \quad H_{j} := -iA_{2j-1\,2j} \ (j = 1, 2, 3, 4, 5), \tag{7.341a}$$

$$\mathcal{L}_{\pm}: \quad E_{jk\eta}^{\pm} = \frac{1}{2} \left[\pm \left(-\eta A_{2j-1\,2k-1} + A_{2j\,2k} \right) - i \left(\eta A_{2j\,2k-1} + A_{2j-1\,2k} \right) \right] \tag{7.341b}$$

$$(1 \le j < k \le 5, \eta = \pm 1) \tag{7.341b}$$

基本ルート系は, $h_j(H_k) = \delta_k^j$ として,

$$\Pi: (\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4 \ \alpha_5) = (h_1 \ h_2 \ h_3 \ h_4 \ h_5) \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 - 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$
(7.342)

sl10のGauss分解と整合的な表示を用いると、全ルート系と対応するWeyl基底は

$$\begin{array}{rcl} (0,0,0,0,0) & \mapsto & H_j = E_{jj} - E_{11-j\,11-j} \ (j=1,2,3,5), \\ \pm (1,0,0,0,0) & \mapsto & E_{12-}^{\pm} = E_{12}^{\pm} - E_{9\,10}^{\pm}, \end{array}$$
(7.343b)

$$\pm (0, 1, 0, 0, 0) \mapsto E_{23-}^{\pm} = E_{23}^{\pm} - E_{89}^{\pm},$$
 (7.343c)

$$\pm (0, 0, 1, 0, 0) \mapsto E_{34-}^{\pm} = E_{34}^{\pm} - E_{78}^{\pm},$$
 (7.343d)

$$\pm (0, 0, 0, 1, 0) \mapsto E_{45-}^{\pm} = E_{45}^{\pm} - E_{67}^{\pm},$$
 (7.343e)

$$\pm (0, 0, 0, 0, 1) \mapsto E_{45+}^{\pm} = E_{46}^{\pm} - E_{57}^{\pm}$$
(7.343f)

$$\pm (1, 1, 0, 0, 0) \mapsto E_{13-}^{\pm} = E_{13}^{\pm} - E_{810}^{\pm}, \qquad (7.344a)$$

$$\pm (0, 1, 1, 0, 0) \mapsto E_{24-}^{\pm} = E_{24}^{\pm} - E_{79}^{\pm},$$
 (7.344b)

$$\pm (0, 0, 1, 1, 0) \mapsto E_{35-}^{\pm} = E_{35}^{\pm} - E_{68}^{\pm},$$
 (7.344c)

$$\pm (0, 0, 1, 0, 1) \mapsto E_{35+}^{\pm} = E_{36}^{\pm} - E_{58}^{\pm},$$
 (7.344d)

$$\pm (1, 1, 1, 0, 0) \mapsto E_{14-}^{\pm} = E_{14}^{\pm} - E_{710}^{\pm}, \qquad (7.345a)$$

$$\pm (0, 1, 1, 1, 0) \mapsto E_{34\pm}^{\pm} = E_{37\pm}^{\pm} - E_{48}^{\pm},$$

$$(7.345b)$$

$$\pm (0, 0, 1, 1, 1) \mapsto E_{34\pm}^{\pm} = E_{37\pm}^{\pm} - E_{48}^{\pm},$$

$$(7.345c)$$

$$\pm (0, 0, 1, 1, 1) \mapsto E_{34+}^{\pm} = E_{37}^{\pm} - E_{48}^{\pm}, \qquad (7.345c)$$

$$\pm (0, 1, 1, 0, 1) \mapsto E_{25+}^{\pm} = E_{26}^{\pm} - E_{59}^{\pm},$$
 (7.345d)

250

目次へ

$$\pm (1, 1, 1, 1, 0) \mapsto E_{15-}^{\pm} = E_{15}^{\pm} - E_{610}^{\pm},$$

$$\pm (0, 1, 1, 1, 1) \mapsto E_{24+}^{\pm} = E_{27}^{\pm} - E_{49}^{\pm},$$

$$(7.346b)$$

$$\pm (1, 1, 1, 0, 1) \mapsto E_{15+}^{\pm} = E_{16}^{\pm} - E_{510}^{\pm}, \qquad (7.346c)$$

$$\pm (1, 1, 1, 1, 1) \quad \mapsto \quad E_{14+}^{\pm} = E_{17}^{\pm} - E_{410}^{\pm}, \tag{7.346d}$$

$$\pm (0, 1, 2, 1, 1) \mapsto E_{23+}^{\pm} = E_{28}^{\pm} - E_{39}^{\pm}, \qquad (7.346e)$$

$$\pm (1, 1, 2, 1, 1) \quad \mapsto \quad E_{13+}^{\pm} = E_{18}^{\pm} - E_{310}^{\pm}, \tag{7.346t}$$

$$\pm (1, 2, 2, 1, 1) \mapsto E_{12+}^{\pm} = E_{19}^{\pm} - E_{210}^{\pm}.$$
 (7.346g)

7.12.2 表現

基本表現と合同類 Cartan 行列は

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & -1 \\ 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 2 \end{pmatrix}, \quad C^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1/2 & 12 \\ 1 & 2 & 2 & 1 & 1 \\ 1 & 2 & 3 & 3/2 & 3/2 \\ 1/2 & 1 & 3/2 & 5/4 & 3/4 \\ 1/2 & 1 & 3/2 & 3/4 & 5/4 \end{pmatrix}$$
(7.347)

よって、基本表現は

highest weight
$$C$$
 dim
 $f_1 = (1, 1, 1, 1/2, 1/2)$ $[0, 2]$ $\mathbf{10}_v$
 $f_2 = (1, 2, 2, 1, 1)$ $[[0, 2]$ $\mathbf{45}_{adj} = [2]$
 $f_3 = (1, 2, 3, 3/2, 3/2)$ $[0, 2]$ $\mathbf{120} = [3]$
 $f_4 = (1/2, 1, 3/2, 5/4, 3/4)$ $[1, 3]$ $\mathbf{16}_s^*$
 $f_{=}(1/2, 1, 3/2, 3/4, 5/4)$ $[1, 1]$ $\mathbf{16}_s$

$$(7.348)$$

Dynkin label が [a₁a₂a₃a₄a₄] の既約表現の合同類指数は

$$C := [a_4 + a_5 \pmod{2}, 2a_1 + 2a_3 + 3a_4 + 5a_5 \pmod{4}]$$

$$\equiv [0, 0], [0, 2], [1, 1], [1, 3].$$
(7.349)

テンソル積の既約分解

【命題 7.1 (126 表現)】 SO(10) の 126 表現と 126* 表現は,次のような ISD 条 件を満たす 5 形式を用いてテンソル表示される:

126
$$[00002]$$
 : $\Phi^{[5]}$; $*\Phi^{[5]} = -i\Phi^{[5]}$, (7.350a)

126^{*} [00020] : $\Phi^{[5]}$; $*\Phi^{[5]} = +i\Phi^{[5]}$. (7.350b)

7.12.3 極大部分代数

 \mathfrak{so}_{10} に含まれる半単純代数(+ \mathfrak{u}_1 因子)の形をもつ部分代数のなかで極大なもの は以下のとおりである:

- 1. 正則型: $\mathfrak{so}_8 \oplus \mathfrak{u}_1$, $\mathfrak{su}_5 \oplus \mathfrak{u}_1$, $\mathfrak{su}_4 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2$
- 2. 特殊型: \mathfrak{so}_9 , $\mathfrak{su}_2 \oplus \mathfrak{so}_7$, $\mathfrak{sp}_2 \oplus \mathfrak{sp}_2$, \mathfrak{sp}_2

(i) 正則型部分代数 *so*₈ ⊕ *u*₁:

(A) normal embedding 正則部分代数に関する既約分解の一般論より得られる 埋め込み行列は

$$M_{H}(\mathfrak{so}_{8} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}, \qquad (7.351a)$$
$$M_{S}(\mathfrak{so}_{8} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ -1/2 & 0 & 0 & 1 & 0 \\ -1/2 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}, \qquad (7.351b)$$
$$M_{D}(\mathfrak{so}_{8} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1/2 & 1/2 \end{pmatrix}. \qquad (7.351c)$$

(B) canonical embedding 最高ウエイトを最高ウエイトに対応させるこの部分 代数の埋め込み行列は、 \mathfrak{so}_{10} の行列表示 $X = A_{ab}$ $(a, b = 1, \dots, 10)$ において、 $1 \leq 1$
dim	C	Highest weight
10_v	[0, 2]	[10000] = (1, 1, 1, 1/2, 1/2)
16_s	[1,1]	[00001] = (1/2, 1, 3/2, 3/4, 5/4)
16_{s}^{*}	[1,3]	[00010] = (1/2, 1, 3/2, 5/4, 3/4)
$45_{ m adj}$	[0, 2]	[01000] = (1, 2, 2, 1, 1)
54	[0,0]	[20000] = (2, 2, 2, 1, 1)
120	[0,2]	[00100] = (1, 2, 3, 3/2, 3/2)
126	[0,2]	[00002] = (1, 2, 3, 3/2, 5/2)
126^*	[0,2]	[00020] = (1, 2, 3, 5/2, 3/2)
144	[1,1]	[10010] = (3/2, 2, 5/2, 7/4, 5/4)
144^{*}	[1, 3]	[10001] = (3/2, 2, 5/2, 5/4, 7/4)
210	[0,0]	[00011] = (1, 2, 3, 2, 2)
210'	[0,2]	[30000] = (3, 3, 3, 3/2, 3/2)
320	[0,0]	[11000] = (2, 3, 3, 3/2, 3/2)
560	[1,3]	[01001] = (3/2, 3, 7/2, 7/4, 9/4)
560^{*}	[1,1]	[01010] = (3/2, 3, 7/2, 9/4, 7/4)
660	[0,0]	[40000] = (4, 4, 4, 2, 2)
672	[1,1]	[00030] = (3/2, 3, 9/2, 15/4, 9/4)
672^*	[1,3]	[00003] = (3/2, 3, 9/2, 9/4, 15/4)
720	[1,1]	[20001] = (5/2, 3, 7/2, 7/4, 9/4)
720^{*}	[1,1]	[20010] = (5/2, 3, 7/2, 9/4, 7/4)
770	[0,0]	[02000] = (2, 4, 4, 2, 2)
945	[0,0]	[10100] = (2, 3, 4, 2, 2)
1050	[0,0]	[100002] = (2, 3, 4, 2, 3)
1050^{*}	[0,0]	[10020] = (2, 3, 4, 3, 2)
1386	[0,2]	[21000] = (3, 4, 4, 2, 2)
1728	[0,2]	[10011] = (2, 3, 4, 5/2, 5/2)
2970	[0,0]	[01100] = (2, 4, 5, 5/2, 5/2)
4125	[0,0]	[00200 = (2, 4, 6, 3, 3)]

表 15: SO(10)の低次元の既約表現. C は合同類指数.

目次へ

Irreps product		Irreps decomposition
$(10_v \times 10_v)_s$	=	54[20000] + 1
$(\mathbf{10_v} imes \mathbf{10_v})_a$	=	45_{adj} [01000]
$({f 16_s} imes {f 16_s})_s$	=	$126[00002] + 10_{v}[10000]$
$({f 16_s} imes{f 16_s})_a$	=	120 [00100]
${f 16_s imes 16^*_s}$	=	${\bf 210}[00011] + {\bf 45}[01000] + {\bf 1}$
${f 10 imes 16_s}$	=	${\bf 144}[10001] + {\bf 16}^{*}_{{\boldsymbol s}}[00010]$
$({f 45_{adj}} imes {f 45_{adj}})_s$	=	${\bf 770}[02000] + {\bf 54}[20000] + {\bf 1}$
$({f 45_{adj}} imes {f 45_{adj}})_a$	=	945 [10100] + 45 [01000]
$({f 126 imes 126})_s$	=	2772 [00004] + 4125 [00200] + 1050 [10002]
		+54[20000]
$({f 126 imes 126})_a$	=	6930 [00102] + 945 [10100]
$126 imes \mathbf{126^*}$	=	8910 [00022] + 5940 [01011] + 770 [02000]
		+210[00011] + 45[01000] + 1

表 16: SO(10) の既約表現のテンソル積の既約分解

 $a, b \leq 8$ に対応する部分を \mathfrak{so}_8 と同一視することにより得られる。具体的な埋め込み 行列は (1 0 0 0 0)

$$M_{H}(\mathfrak{so}_{8} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$
(7.352a)
$$M_{S}(\mathfrak{so}_{8} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1/2 & -1/2 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix},$$
(7.352b)
$$M_{D}(\mathfrak{so}_{8} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & -1/2 & 1/2 \end{pmatrix}.$$
(7.352c)

この埋め込み行列は, (7.351) に4つの Weyl 変換 $w_{\alpha_1}, w_{\alpha_2}, w_{\alpha_3}, w_{\alpha_4}$ を順次作用させることにより得られる.

(C) Slansky embedding (B)の射影行列に4個のWeyl変換 $w_{\alpha_1}, w_{\alpha_2+2\alpha_3+\alpha_4+\alpha_5}, w_{\alpha_2+\alpha_3+\alpha_4}, w_{\alpha_2+\alpha_3}$ を順次施すと、次の埋め込み行列を得る:

$$M_{H}(\mathfrak{so}_{8} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix},$$
(7.353a)

$$M_{S}(\mathfrak{so}_{8} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 \\ 1 & 0 & -1/2 & 1/2 & -1/2 \\ 0 & 1 & -1/2 & 1/2 & -1/2 \\ 0 & 0 & -1 & 1 & 1 \end{pmatrix},$$
(7.353b)
$$M_{D}(\mathfrak{so}_{8} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} -1 & -1 & -2 & -1 & -1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & -1 & -1 & 0 & -1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 \end{pmatrix}.$$
(7.353c)

基本表現の分岐則

$$10 [1, 0, 0, 0, 0] = 8 [1, 0, 0, 0](0) + 1(1) + 1(-1),
 (7.354a)
 45_{adj} [0, 1, 0, 0, 0] = 28_{adj} [0, 1, 0, 0](0) + 8 [1, 0, 0, 0]((1) + (-1)) + 1(0), (7.354b)
 120 [0, 0, 1, 0, 0] = 56 [0, 0, 1, 1](0) + 28 [0, 1, 0, 0]((1) + (-1)) + 8 [1, 0, 0, 0](0),
 (7.354c)
 16_s [0, 0, 0, 1, 0] = 8_s [0, 0, 1, 0](1/2) + 8'_s [0, 0, 0, 1](-1/2),
 (7.354d)
 16_s^* [0, 0, 0, 0, 1] = 8_s [0, 0, 1, 0](-1/2) + 8'_s [0, 0, 0, 1](1/2).
 (7.354e)$$

(ii) 正則型部分代数 $\mathfrak{su}_5 \oplus \mathfrak{u}_1$:

255

(A) normal embedding (1) この部分代数は、 $\mathfrak{su}_5 \oplus \mathfrak{u}_1 \otimes \mathfrak{s}_5 \otimes \mathfrak{l}_1$ 、 $\mathfrak{u}_5 \circ 5$ 次元複素ベクトル表現を、10次元実ベクトル表現と見なすことにより得られ る。ここで、この後者の埋め込みは、 \mathfrak{gl}_{10} のガウス分解と整合的な \mathfrak{so}_{10} の正規表示 において、

$$X \in \mathfrak{u}_5 \mapsto \begin{pmatrix} X & 0\\ 0 & -\tilde{X} \end{pmatrix}, \quad \tilde{X} = J^T X J \tag{7.355}$$

と埋め込むこと同値。対応する埋め込み行列は,正則部分代数に対する埋め込み行 列の一般論から得られるものと一致し,

$$M_{H}(\mathfrak{su}_{5} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 2 & 2 & 2 & 2 & 2 \end{pmatrix},$$
(7.356a)
$$M_{S}(\mathfrak{su}_{5} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & -2/5 \\ 0 & 1 & 0 & 0 & -4/5 \\ 0 & 0 & 1 & 0 & -6/5 \\ 0 & 0 & 0 & 1 & -3/5 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix},$$
(7.356b)
$$M_{D}(\mathfrak{su}_{5} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 4 & 6 & 3 & 5 \end{pmatrix},$$
(7.356c)

(B) normal embedding (2) 埋め込み $\iota : \mathfrak{su}_5 \to \mathfrak{so}_{10}$ に対して,その複素共役 $\bar{\iota} : \mathfrak{su}_5 \to \overline{\mathfrak{su}_5} \to \mathfrak{so}_{10}$ は、 \mathfrak{so}_{10} における共役変換 $(x_{2j-1} \leftrightarrow x_{2j})$ により互いに移り変 わるので本質的に同等であるが、表現の分岐則は互いに複素共役となり、見かけが 異なる.この $\bar{\iota}$ に対する埋め込み行列は、単に (A) の行列の (-1) 倍で与えられる.

(C) canonical embedding (B) に対して,最高ウエイトを最高ウエイトに写す埋め込み行列は,

$$M_{H}(\mathfrak{su}_{5} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 2 & -2 & 2 & -2 & -2 \end{pmatrix},$$
(7.357a)
$$M_{S}(\mathfrak{su}_{5} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 3/5 & 2/5 & -2/5 & 0 & 2/5 \\ 1/5 & -1/5 & 1/5 & 0 & 4/5 \\ -1/5 & 1/5 & -1/5 & 1 & -2/5 \\ -3/5 & 3/5 & 2/5 & 0 & -2/5 \\ 4 & -4 & 4 & 0 & -4 \end{pmatrix},$$
(7.357b)
$$M_{D}(\mathfrak{su}_{5} \oplus \mathfrak{u}_{1} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 2 & 0 & 2 & 1 & -1 \end{pmatrix},$$
(7.357c)

で与えられる.ただし, Slansky の定義に合わせて, u₁ 電荷の符号を (B) に対して (-1) 倍した.

この埋め込み行列は(B)の行列に6つのWeyl変換 $w_{\alpha_5}, w_{\alpha_3+\alpha_4}, w_{\alpha_2+\alpha_3}, w_{\alpha_1+2\alpha_2+2\alpha_3+\alpha_4+\alpha_5}, w_{\alpha_1}, w_{\alpha_3+\alpha_4+\alpha_5}$ を順次施すことにより得られる.

表現の分岐則

$$10 [1, 0, 0, 0, 0] = 5 [1, 0, 0, 0](2) + 5^* [0, 0, 0, 1](-2),
 (7.358a)
 45_{adj} [0, 1, 0, 0, 0] = 24_{adj} [1, 0, 0, 1](0) + 10 [0, 1, 0, 0](4)
 +10^* [0, 0, 1, 0](-4) + 1(0),
 (7.358b)
 120 [0, 0, 1, 0, 0] = 45 [1, 0, 1, 0](-2) + 45^* [0, 1, 0, 1](2) + 10 [0, 1, 0, 0](-6)
 +10^* [0, 0, 1, 0](6) + 5 [1, 0, 0, 0](2) + 5^* [0, 0, 0, 1](-2),
 (7.358c)
 16 [0, 0, 0, 1, 0] = 10^* [0, 0, 1, 0](1) + 5 [1, 0, 0, 0](-3) + 1(5)
 (7.358d)$$

$$\mathbf{16}_{s}[0,0,0,1,0] = \mathbf{10}^{*}[0,0,1,0](1) + \mathbf{5}[1,0,0,0](-3) + \mathbf{1}(5), \quad (7.358d) \\
\mathbf{16}_{s}^{*}[0,0,0,0,1] = \mathbf{10}[0,1,0,0](-1) + \mathbf{5}^{*}[0,0,0,1](3) + \mathbf{1}(-5). \quad (7.358e)$$

(iii) 正則型部分代数 $\mathfrak{su}_4 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2$

(A) normal embedding 一般論に基づき,拡張 Dynkin 図式から α_3 のノードを 削除して得られる埋め込み行列は,

$$M_{H}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & -1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix},$$
(7.359a)
$$M_{S}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & -1/2 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1/2 & 0 & 0 \\ 0 & 0 & -1/2 & 1 & 0 \\ 0 & 0 & -1/2 & 0 & 1 \end{pmatrix},$$
(7.359b)
$$M_{D}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & -2 & -2 & -1 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
(7.359c)

(B) natural embedding この部分代数は、次の対応の合成で得られる:

 $\iota: (\mathfrak{su}_4 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2) \xrightarrow{\cong} \mathfrak{so}_6 \oplus \mathfrak{so}_4 \xrightarrow{j} \mathfrak{so}_{10}.$ (7.360) この埋め込みに対応する埋め込み行列は、(7.184c)および(7.64)より、

$$M_{H}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix},$$
(7.361a)
$$M_{S}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 0 & 1/2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1/2 & 0 & 0 \\ 0 & 0 & -1/2 & 1 & 0 \\ 0 & 0 & -1/2 & 0 & 1 \end{pmatrix},$$
(7.361b)

目次へ

$$M_D(\mathfrak{su}_4 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2 \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 1 & 2 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
(7.361c)

この埋め込み行列は、(7.359)に3つのWeyl変換、 $w_{\alpha_2+2\alpha_3+\alpha_4+\alpha_5}, w_{\alpha_1}, w_{\alpha_2}$ を順次 作用させることにより得られる.

(C) canonical embedding \mathfrak{so}_{10} に関する最高ウエイトを \mathfrak{su}_4 に関する最高ウエイトに写す埋め込み行列は,

$$M_{H}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix},$$
(7.362a)
$$(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 1/2 & -1/2 & 1/2 & 1/2 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & -1/2 & -1/2 \end{pmatrix},$$
(7.362b)

$$M_{S}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 1/2 & 1/2 & -1/2 & -1/2 \\ 0 & -1/2 & 1/2 & 1/2 & -1/2 \\ 0 & -1/2 & 1/ & -1/2 & 1/2 \end{pmatrix}, \quad (7.362b)$$

$$M_{D}(\mathfrak{su}_{4} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \quad (7.362c)$$

これは, (7.361)に Weyl 変換 w_{α_3} を施すことにより得られる.

(D) Slansky embedding (C)の行列において、 $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \geq \mathfrak{su}_4$ の順序を入れ替え、 さらに2つの \mathfrak{su}_2 成分の順序を入れ替えたあと、3つのWeyl変換 $w_{\alpha_1+\alpha_2+\alpha_3}, w_{\alpha_2+\alpha_3}$ 、

w_{α4}を施すと、次の行列が得られる:

$$M_{H}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{4} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad (7.363a)$$

$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{4} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & -1/2 & 0 & 1/2 & 1/2 \\ 0 & -1/2 & 1 & -1/2 & -1/2 \\ 0 & 1/2 & 0 & -1/2 & 1/2 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 1/2 & 0 & -1/2 & 1/2 \end{pmatrix}, \quad (7.363b)$$

$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{su}_{2} \oplus \mathfrak{su}_{4} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ -1 & 1/2 & 0 & -1/2 & 1/2 \end{pmatrix}, \quad (7.363c)$$

基本表現の分岐則

$$\mathbf{10} [1, 0, 0, 0, 0] = (\mathbf{6}, \mathbf{1}, \mathbf{1}) [0, 1, 0] [0] [0] + (\mathbf{1}, \mathbf{2}, \mathbf{2}) [0, 0] [1] [1],$$
(7.364a)

 $\begin{aligned} \mathbf{45}_{adj} \left[0, 1, 0, 0, 0 \right] &= (\mathbf{15}, \mathbf{1}, \mathbf{1}) \left[1, 0, 1 \right] \left[0 \right] \left[0 \right] + (\mathbf{6}, \mathbf{2}, \mathbf{2}) \left[0, 1, 0 \right] \left[1 \right] \left[1 \right] \\ &+ (\mathbf{1}, \mathbf{1}, \mathbf{3}) \left[0, 0, 0 \right] \left[0 \right] \left[2 \right] + (\mathbf{1}, \mathbf{3}, \mathbf{1}) \left[0, 0, 0 \right] \left[2 \right] \left[0 \right], \end{aligned} \tag{7.364b}$

$$120[0, 0, 1, 0, 0] = (15_{adj}, 2, 2)[1, 0, 1][1][1] + (10, 1, 1)[2, 0, 0][0][0] + (6, 1, 3)[0, 1, 0][0][2] + (6, 3, 1)[0, 1, 0][2][0] + (10^*, 1, 1)[0, 0, 2][0][0] + (1, 2, 2)[0, 0, 0][1][1],$$
(7.2)

(7.364c)

 $\mathbf{16_s}[0,0,0,1,0] = (\mathbf{4},\mathbf{2},\mathbf{1})[1,0,0][1][0] + (\mathbf{4^*},\mathbf{1},\mathbf{2})[0,0,1][0][1],$ (7.364d)

 $\mathbf{16_s^*}[0,0,0,0,1] = (\mathbf{4},\mathbf{1},\mathbf{2})[1,0,0][0][1] + (\mathbf{4^*},\mathbf{1},\mathbf{2})[0,0,1][1][0],$ (7.364e)

(iv) 特殊型部分代数 so₉:

(A) Canonical embedding この部分代数は、509を5010の[1..9,1..9]部分に埋め込むことにより得られる。よって、埋め込み行列は、

$$M_{H}(\mathfrak{so}_{9} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

$$M_{S}(\mathfrak{so}_{9} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix},$$
(7.365b)

$$M_D(\mathfrak{so}_9 \to \mathfrak{so}_{10}) = M_S(\mathfrak{so}_9 \to \mathfrak{so}_{10})$$
 (7.365c)

この埋め込み行列は, \mathfrak{so}_{10} の Dynkin 図式におけるノード α_4 と α_5 のたたみ込みに対応する射影

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) \mapsto (\alpha'_1, \alpha'_2, \alpha'_3, \alpha'_4, \alpha'_4)$$

$$(7.366)$$

と一致する.また,そのままで, 50₁₀の各基本表現の最高ウエイトを 50₉の表現の最高ウエイトに写す表示となっている.

(B) Slansky embedding (A) で求めた行列に、4つの Weyl 変換 $w_{\alpha_1}, w_{\alpha_2+\alpha_3+\alpha_4+\alpha_5}, w_{\alpha_3+\alpha_5}, w_{\alpha_3}$ を順次施すと、つぎの埋め込み行列を得る:

$$M_H(\mathfrak{so}_9 \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 0 \end{pmatrix}.$$
 (7.367a)

$$M_{S}(\mathfrak{so}_{9} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 1 & -1 \\ 2 & 0 & -1 & 1 & -1 \end{pmatrix},$$
(7.367b)
$$\begin{pmatrix} -1 & -1 & -2 & -1 & -1 \end{pmatrix}$$

$$M_D(\mathfrak{so}_9 \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & -2 & -2 & -1 & -1 \end{pmatrix}.$$
 (7.367c)

基本表現の分岐則

$$10 [1, 0, 0, 0, 0] = 9 [1, 0, 0, 0] + 1,$$

$$45_{adj} [0, 1, 0, 0, 0] = 36_{adj} [0, 1, 0, 0] + 9 [1, 0, 0, 0],$$

$$120 [0, 0, 1, 0, 0] = 84 [0, 0, 1, 0] + 36 [0, 1, 0, 0],$$

$$16_s^* [0, 0, 0, 1, 0] = 16_s [0, 0, 0, 1],$$

$$(7.368d)$$

$$\mathbf{16}_{s}[0,0,0,1,0] = \mathbf{16}_{s}[0,0,0,1].$$
(7.368e)

(v) 特殊型部分代数 $\mathfrak{so}_7 \oplus \mathfrak{su}_2$:

(A) normal embedding この部分代数は、 \mathfrak{so}_{10} の反対称行列表示において、 $\mathfrak{su}_2 \cong \mathfrak{so}_3 \mathfrak{e} [1..3, 1..3]$ セクターに、 $\mathfrak{so}_7 \mathfrak{e} [4..10, 4..10]$ セクターと同一視することにより得られる。したがって、埋め込み行列は

$$M_{H}(\mathfrak{so}_{7} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 0 \end{pmatrix},$$
(7.369a)
$$M_{S}(\mathfrak{so}_{7} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix},$$
(7.369b)
$$M_{D}(\mathfrak{so}_{7} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 2 & 2 & 2 & 1 & 1 \end{pmatrix}.$$
(7.369c)

(B) canonical embedding 最高ウエイトを最高ウエイトに射影する埋め込み行 列は, (7.369)に4つのWeyl変換 $w_{\alpha_1+\alpha_2}, w_{\alpha_2+\alpha_3}, w_{\alpha_3+\alpha_4}, w_{\alpha_4}$ を順次施すことによ り得られ,次式で与えられる:

$$M_{H}(\mathfrak{so}_{7} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \end{pmatrix},$$
(7.370a)
$$M_{S}(\mathfrak{so}_{7} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 1 \end{pmatrix},$$
(7.370b)
$$M_{D}(\mathfrak{so}_{7} \oplus \mathfrak{su}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}.$$
(7.370c)

(C) Slansky embedding (B)の行列において, $\mathfrak{su}_2 \geq \mathfrak{so}_7$ の順序を入れ替え, さらに 4 つの Weyl 変換 $w_{\alpha_1+\alpha_2+3\alpha_3+\alpha_4+\alpha_5}, w_{\alpha_2+2\alpha_3+\alpha_4+\alpha_5}, w_{\alpha_3+\alpha_5}, w_{\alpha_3}$ を順次施すことにより得られ,次式で与えられる:

$$M_{H}(\mathfrak{su}_{2} \oplus \mathfrak{so}_{7} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix},$$
(7.371a)
$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{so}_{7} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & -1 & 1 \\ -2 & 1 & 0 & -1 & 1 \end{pmatrix},$$
(7.371b)
$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{so}_{7} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ -2 & -2 & -2 & -1 & -1 \end{pmatrix}.$$
(7.371c)

目次へ

基本表現の分岐則

$$f_1: \mathbf{10}_{\boldsymbol{v}} = (\mathbf{7}, \mathbf{1}) [1, 0, 0] [0] + (\mathbf{1}, \mathbf{3}) [0, 0, 0] [2], \qquad (7.372a)$$

$$f_{2}: \mathbf{45}_{adj} = (\mathbf{21}_{adj}, \mathbf{1}) ([0, 1, 0][0] + (\mathbf{7}, \mathbf{3}) [1, 0, 0][2] + (\mathbf{1}, \mathbf{3}) [0, 0, 0][2],$$
(7.372b)

$$f_3: \mathbf{120} = (\mathbf{35}, \mathbf{1}) [0, 0, 2] [0] + (\mathbf{21}, \mathbf{3}) [0, 1, 0] [2] + (\mathbf{7}, \mathbf{3}) [1, 0, 0] [2] + \mathbf{1},$$
(7.372c)

$$f_4: \mathbf{16}^*_s = (\mathbf{8}_s, \mathbf{2}) [0, 0, 1] [1],$$
 (7.372d)

$$f_5: \mathbf{16}_s = (\mathbf{8}_s, \mathbf{2}) [0, 0, 1] [1].$$
 (7.372e)

(vi) 特殊型部分代数 $\mathfrak{sp}_2 \oplus \mathfrak{sp}_2$:

Normal embedding この埋め込みは、次の写像の合成で得られる:

$$\iota: \quad \mathfrak{sp}_2 \oplus \mathfrak{sp}_2 \xrightarrow{\cong} \mathfrak{so}_5 \oplus \mathfrak{so}_5 \xrightarrow{j} \mathfrak{so}_{10} \tag{7.373}$$

よって、(7.228a)より、埋め込み行列は

$$M_{H}(\mathfrak{sp}_{2} \oplus \mathfrak{sp}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix},$$
(7.374a)
$$M_{S}(\mathfrak{sp}_{2} \oplus \mathfrak{sp}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 \end{pmatrix},$$
(7.374b)
$$M_{D}(\mathfrak{sp}_{2} \oplus \mathfrak{sp}_{2} \to \mathfrak{so}_{10}) = \begin{pmatrix} 0 & 2 & 2 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$
(7.374c)

この埋め込み行列は、最高ウエイトを最高ウエイトに写す.

基本表現の分岐則

$$f_{1}: \mathbf{10} = (\mathbf{5}, \mathbf{1}) [0, 1] [0, 0] + (\mathbf{1}, \mathbf{5}) [0, 0] [0, 1],$$
(7.375a)

$$f_{2}: \mathbf{45}_{adj} = (\mathbf{10}, \mathbf{1}) [2, 0] [0, 0] + (\mathbf{1}, \mathbf{10}) [0, 0] [2, 0] + (\mathbf{5}, \mathbf{5}) [0, 1] [0, 1],$$
(7.375b)

$$f_{3}: \mathbf{120} = (\mathbf{10}, \mathbf{5}) [2, 0] [0, 1] + (\mathbf{5}, \mathbf{10}) [0, 1] [2, 0] + (\mathbf{10}, \mathbf{1}) [2, 0] [0, 0] + (\mathbf{1}, \mathbf{10}) [0, 0] [2, 0],$$
(7.375c)

$$f_{4}: \mathbf{16}_{s}^{*} = (\mathbf{4}, \mathbf{4}) [1, 0] [1, 0],$$
(7.375d)

$$f_{5}: \mathbf{16}_{s} = (\mathbf{4}, \mathbf{4}) [1, 0] [1, 0].$$
(7.375e)

(vii) 特殊型極大部分代数 sp₂:

Canonical embedding $\mathfrak{sp}_2 \mathcal{O} 10$ 次元複素ユニタリ表現、すなわち随伴表現 [2,0] は、(合同数 $c([2,0]) \equiv 2 \equiv 0 \pmod{2}$)より)実表現となるので、 $\mathfrak{sp}_2 \mathcal{O} \mathfrak{so}_{10} \wedge \mathcal{O}$ 埋め込みを与える。随伴表現の基底を

$$\begin{array}{rcl}
e_{1} & (2,1) & E_{12+}^{+} \\
e_{2} & (1,1) & E_{1}^{+} \\
e_{3} & (1,0) & E_{12-}^{+} \\
e_{4} & (0,1) & E_{2}^{+} \\
e_{5} & (0,0)_{1} & H_{1} \\
e_{6} & (0,0)_{2} & H_{2} \\
e_{7} & (0,-1) & E_{2}^{-} \\
e_{8} & (-1,0) & E_{12-}^{-} \\
e_{9} & (-1,-1) & E_{1}^{-} \\
e_{10} & (-2,-1) & E_{12+}^{-}.
\end{array}$$
(7.376)

ここで、

$$\alpha_1 = h_1 - h_2, \quad \alpha_2 = 2h_2 \tag{7.377}$$

となることを考慮すると、Cartan 部分代数の生成元 H_1, H_2 の基底への作用は、

$$H_1 \mapsto 2(E_{11} - E_{1010}) + E_{22} - E_{99} + E_{33} - E_{88} = 2H_1 + H_2 + H_3, (7.378a)$$

$$H_2 \mapsto E_{22} - E_{99} - E_{33} + E_{88} + 2(E_{44} - E_{77}) = H_2 - H_3 + 2H_4, \quad (7.378b)$$

目次へ

265

目次へ

と表される。よって、埋め込み行列は

$$M_H(\mathfrak{sp}_2 \to \mathfrak{so}_{10}) = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 2 & 0 \end{pmatrix},$$
(7.379a)

$$M_S(\mathfrak{sp}_2 \to \mathfrak{so}_{10}) = \begin{pmatrix} 1 & 0 & 1 & 0 & 0\\ 0 & 1 & -1 & 1 & 1 \end{pmatrix},$$
(7.379b)

$$M_D(\mathfrak{sp}_2 \to \mathfrak{so}_{10}) = \begin{pmatrix} 2 & 2 & 4 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}.$$
 (7.379c)

基本表現の分岐則

$$f_1: \mathbf{10} = \mathbf{10}[2,0],$$
 (7.380a)

$$f_2: \mathbf{45}_{adj} = \mathbf{10}_{adj} [2, 0] + \mathbf{35} [2, 1],$$
 (7.380b)

$$f_3: \mathbf{120} = \mathbf{35} [4,0] + \mathbf{35} [2,1] + \mathbf{30} [0,3] + \mathbf{14} [0,2] + \mathbf{5} [0,1] + \mathbf{1},$$
(7.380c)

$$f_4: \mathbf{16}^*_s = \mathbf{16}[1,1],$$
 (7.380d)

$$f_5: \mathbf{16}_s = \mathbf{16}[1,1].$$
 (7.380e)

7.13 SO(11)

Dynkin type = B5, Rank=5, Dimension=55.

7.13.1 Lie 代数の構造

SO(11, ℂ) の Weyl 基底は

$$\begin{aligned} \mathscr{L}_{0}: \quad H_{j} &:= -iA_{2j-1\,2j} \ (j = 1, 2, 3, 4, 5), \end{aligned} \tag{7.381a} \\ \mathscr{L}_{\pm}: \quad E_{j}^{\pm} &= \frac{i}{\sqrt{2}} \left(A_{11\,2j-1} \pm iA_{11\,2j} \right) \ (1 \leqslant j \leqslant 5), \end{aligned} \\ E_{jk\eta}^{\pm} &= \frac{1}{2} \left[\pm \left(-\eta A_{2j-1\,2k-1} + A_{2j\,2k} \right) - i \left(\eta A_{2j\,2k-1} + A_{2j-1\,2k} \right) \right] \\ &\qquad (1 \leqslant j < k \leqslant 5, \eta = \pm 1). \end{aligned} \tag{7.381b}$$

対応するルート系は、 $h_j(H_k) = \delta_k^j$ として,

$$E_j^{\pm} \mapsto \pm h_j, \qquad (7.382a)$$
$$E_{jk\eta}^{\pm} \mapsto \pm (h_j + \eta h_k). \qquad (7.382b)$$

基本ルート系は,

$$\Pi: (\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4 \ \alpha_5) = (h_1 \ h_2 \ h_3 \ h_4 \ h_5) \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 - 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$
(7.383)

7.13.2 表現

基本表現と合同類 Cartan 行列は

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -2 \\ 0 & 0 & 0 & -1 & 2 \end{pmatrix}, \quad C^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1/2 & 1 & 3/2 & 2 & 5/2 \end{pmatrix}$$
(7.384)

dim	C	highest dw	highest srw	
11_v	0	[10000]	(11111)	
32_s	1	[00001]	(1/213/225/2)	
${f 55}_{ m adj}$	0	[01000]	(12222)	$YT(1,1) = [2]_a$
65	0	[20000]	(22222)	$YT(2) = [2]_{s,tf}$
165	0	[00100]	(12333)	$\mathrm{YT}(1,1,1) = [3]_a$
330	0	[00010]	(12344)	$YT(1,1,1,1) = [4]_a$
875, 160	0	[20020]	(4681010)	

表 17: SO(11)の低次元の既約表現. C は合同類指数.

よって、基本表現は

highest weight
$$C$$
 dim
 $f_1 = (1, 1, 1, 1, 1)$ 0 $\mathbf{11}_v$
 $f_2 = (1, 2, 2, 2, 2)$ 0 $\mathbf{55}_{adj} = [2]_a$
 $f_3 = (1, 2, 3, 3, 3)$ 0 $\mathbf{165} = [3]_a$
 $f_4 = (1, 2, 3, 4, 4)$ 0 $\mathbf{330} = [4]_a$
 $f_{=}(1/2, 1, 3/2, 2, 5/2)$ 1 $\mathbf{32}_s$

$$(7.385)$$

合同類数は、

$$[a_1 \cdots a_r] \mapsto c(R) \equiv a_r \mod 2. \tag{7.386}$$

7.13.3 極大部分代数

5011に含まれる準半単純部分代数の中で極大なものは

- 1. 正則型: $\mathfrak{so}_9 + \mathfrak{u}_1$, \mathfrak{so}_{10} , $\mathfrak{so}_8 + \mathfrak{su}_2$, $\mathfrak{su}_4 + \mathfrak{so}_5$, $\mathfrak{so}_7 + \mathfrak{su}_2 + \mathfrak{su}_2$.
- 2. 特殊型: \mathfrak{su}_2 [Ref. Slansky R: PLC79, 1 (1981)]

(i) 正則部分代数 so₁₀

7.14 Sp₃

7.14.1 Lie 代数の構造

次元は21で、Lie 代数の生成元は、 \mathfrak{sl}_6 の生成元 E_{jj} 、 E_{jk}^{\pm} (j < k)を用いて、次のように表される:

• Cartan 部分代数 \mathcal{L}_0 : $H_1 = E_{11} - E_{66}$, $H_2 = E_{22} - E_{55}$, $H_3 = E_{33} - E_{44}$.

• Nilpotent 部分代数 Δ^{\pm} : \tilde{S}_{jk}^{\pm} $(1 \leq j \leq k \leq 3)$, \tilde{A}_{jk}^{\pm} $(1 \leq j < k \leq 3)$. ここで,

$$\lambda = \pm (h_j + h_k) \quad \mapsto \quad \tilde{S}_{jk}^{\pm} = E_{j7-k}^{\pm} + E_{k7-j}^{\pm}, \tag{7.387a}$$

$$\lambda = \pm (h_j - h_k) \quad \mapsto \quad \hat{A}_{jk}^{\pm} = E_{jk}^{\pm} - E_{7-k\,7-j}^{\pm}.$$
 (7.387b)

ルート系

基本ルート :
$$\alpha_{1} = h_{1} - h_{2}$$
, $\alpha_{2} = h_{2} - h_{3}$, $\alpha_{3} = 2h_{3}$, (7.388a)
 $\alpha_{1}, \alpha_{2}, \alpha_{3}$ $\tilde{A}_{12}^{+}, \tilde{A}_{23}^{+}, \tilde{S}_{33}^{+}$
 $\alpha_{1} + \alpha_{2}, \alpha_{2} + \alpha_{3}$ $\tilde{A}_{13}^{+}, \tilde{S}_{23}^{+}$
正ルート系 Δ^{+} : $\alpha_{1} + \alpha_{2} + \alpha_{3}, 2\alpha_{2} + \alpha_{3}$ $\tilde{S}_{13}^{+}, \tilde{S}_{22}^{+}$ (7.388b)
 $\alpha_{1} + 2\alpha_{2} + \alpha_{3}$ \tilde{S}_{12}^{+}
 $2\alpha_{1} + 2\alpha_{2} + \alpha_{3}$ \tilde{S}_{11}^{+}

7.14.2 表現

Cartan 行列と基本表現のウエイトは

$$C = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -2 & 2 \end{pmatrix},$$
(7.389)

$$f_1 = \alpha_1 + \alpha_2 + \frac{1}{2}\alpha_3, \quad f_2 = \alpha_1 + 2\alpha_2 + \alpha_3, \quad f_3 = \alpha_1 + 2\alpha_2 + \frac{3}{2}\alpha_3$$
(7.390)

具体的なウエイト系は

$$\begin{bmatrix} 1, 0.0 \end{bmatrix} = \mathbf{6}_{v} : \text{ level Dykin label } \alpha - \text{weight} \\ 5/2 & \begin{bmatrix} 1, 0, 0 \end{bmatrix} & (1, 1, 1/2) \\ 3/2 & \begin{bmatrix} -1, 1, 0 \end{bmatrix} & (0, 1, 1/2) \\ 1/2 & \begin{bmatrix} 0, -1, 1 \end{bmatrix} & (0, 0, 1/2) \\ \vdots & \vdots & \vdots \end{bmatrix}$$
(7.391)

[0, 1.0] = 14 :	level	Dykin label	α – weight	
	4	[0,1,0]	(1,2,1)	
	3	[1,-1,1]	(1,1,1)	
	2	[-1, 0, 1], [1, 1, -1]	(0, 1, 1), (1, 1, 0)	(7.392)
	1	[-1, 2, -1], [2, -1, 0]	(0, 1, 0), (1, 0, 0)	
	0	$[0, 0, 0]^2$	$(0, 0, 0)^2$	
	÷	÷	÷	
[0,0,1] = 14 :	level	Dykin label	α – weight	
	9/2	$\left[0,0,1 ight]$	(1,2,3/2)	
	7/2	[0, 2, -1]	(1,2,1/2)	
	5/2	[1,0,0]	(1, 1, 1/2)	(7.393)
	3/2 [[-1, 1, 0], [2, -2, 1] (0	(0, 1, 1/2), (1, 0, 1/2)	
	1/2 [[0, -1, 1], [2, 0, -1] (0,	0, 1/2), (1, 0, -1/2)	
	÷	÷	÷	
$[2,0,0] = 21_{adj}$: lev	vel	Dykin label	$\alpha - w \epsilon$	eight
a G)	[2, 0, 0]	(2, 2,	1)
4		$\left[0,1,0 ight]$	(1, 2,	1)
	3	[-2, 2, 0], [1, -1, 1]	(0, 2, 1), ((1, 1, 1)
2	2	[-1, 0, 1], [1, 1, -1]	(0, 1, 1), ((1, 1, 0)
1	[0,	-2, 2], [-1, 2, -1], [2, -1]	[-1,0] (0,0,1), (0,1,	0), (1, 0, 0)
C)	$[0, 0, 0]^3$	(0, 0,	$(0)^{3}$
:		:	:	
				(7.394)

7.14.3 極大半単純部分代数

半単純代数と \mathfrak{u}_1 因子の和で表される \mathfrak{sp}_3 の部分代数のなかで極大なものは以下の通り:

1. 正則型: $\mathfrak{su}_3 \oplus \mathfrak{u}_1, \mathfrak{sp}_2 \oplus \mathfrak{su}_2$

2. 特殊型: \mathfrak{su}_2 , $\mathfrak{su}_2 \oplus \mathfrak{su}_2$

(i) 正則型部分代数 su₃⊕u₁: sp₃の元のうち,次のものが su₃を生成する:

$$\mathcal{L}_0(\mathfrak{su}_3)$$
 : $H'_1 = H_1 - H_2, \ H'_2 = H_2 - H_3$ (7.395a)

$$\Delta^{\pm} : E'_{\pm \alpha'_1} = \tilde{A}^{\pm}_{12}, \ E'_{\pm \alpha'_2} = \tilde{A}^{\pm}_{23}, \ E'_{\pm (\alpha'_1 + \alpha'_2)} = \tilde{A}^{\pm}_{13}.$$
(7.395b)

基本ルートの対応は,

$$\begin{pmatrix} \alpha'_1 & \alpha'_2 \end{pmatrix} = \begin{pmatrix} h'_1 & h'_2 \end{pmatrix} A'; \quad A' = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
 (7.396)

よって, 埋め込み行列は

$$M_H(\mathfrak{su}_3 \to \mathfrak{sp}_3) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix},$$
(7.397a)

$$M_S(\mathfrak{su}_3 \to \mathfrak{sp}_3) = A'^{-1} M_H A = \begin{pmatrix} 1 & 0 & -2/3 \\ 0 & 1 & -4/3 \end{pmatrix}$$
(7.397b)

$$M_D(\mathfrak{su}_3 \to \mathfrak{sp}_3) = {}^T\!C(\mathfrak{sl}_3)M_S {}^T\!C(\mathfrak{sp}_3)^{-1} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix}.$$
(7.397c)

また, *H*₁ + *H*₂ + *H*₃ が以上の su₃ 部分代数と可換となるので, u₁ の生成元 *H*' と対応する電荷ベクトルは

$$H'_{3} = H_{1} + H_{2} + H_{3} \Rightarrow Q_{H} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix},$$
 (7.398a)

$$Q_S = \begin{pmatrix} 0 & 0 & 2 \end{pmatrix}, \quad Q_D = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}.$$
 (7.398b)

(ii) 正則型部分代数 sp₂ ⊕ su₂: 部分代数 sp₂ は, sp₃ の次の元より生成される:

Cartan 部分代数
$$\mathcal{L}'_{0}$$
 : $H'_{1} = H_{2}, H'_{2} = H_{3},$ (7.399a)
 \tilde{A}^{\pm}_{23} : $\alpha_{2} = h_{2} - h_{3} \mapsto h'_{1} - h'_{2} = \alpha'_{1}$
Nilpotent 部分代数 Δ^{\pm} : \tilde{S}^{\pm}_{33} : $\alpha_{3} = 2h_{3} \mapsto 2h'_{2} = \alpha'_{2}$
 \tilde{S}^{\pm}_{23} : $\alpha_{2} + \alpha_{3} = h_{2} + h_{3} \mapsto h'_{1} + h'_{2} = \alpha'_{1} + \alpha'_{2}$
 \tilde{S}^{\pm}_{22} : $2\alpha_{2} + \alpha_{3} = 2h_{2} \mapsto 2h'_{1} = 2\alpha'_{1} + \alpha'_{2}$
(7.399b)

つぎに,
$$\left\{H_1, \tilde{S}_{11}^+, \tilde{S}_{11}^-\right\}$$
は, 部分代数 \mathfrak{sp}_2 と可換で, \mathfrak{su}_2 に同型な部分代数をなす:
 $\left[H_1, \tilde{S}_{11}^\pm\right] = \pm \tilde{S}_{11}^\pm, \quad \left[\tilde{S}_{11}^+, \tilde{S}_{11}^-\right] = H_1.$ (7.400)

以上より、 $\mathfrak{sp}_2 \oplus \mathfrak{su}_2 \rightarrow \mathfrak{sp}_3$ の埋め込み行列は

$$M_H(\mathfrak{sp}_2 \oplus \mathfrak{su}_2 \to \mathfrak{sp}_3) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix},$$
(7.401a)

$$M_{S}(\mathfrak{sp}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{sp}_{3}) = A(\mathfrak{sp}_{2} \oplus \mathfrak{su}_{2})^{-1}M_{H}A(\mathfrak{sp}_{3}) = \begin{pmatrix} -1 & 1 & 0 \\ -1/2 & 0 & 1 \\ 1/2 & 0 & 0 \end{pmatrix}, 401b)$$
$$M_{D}(\mathfrak{sp}_{2} \oplus \mathfrak{su}_{2} \to \mathfrak{sp}_{3}) = {}^{T}\!C(\mathfrak{sp}_{2} \oplus \mathfrak{su}_{2})M_{S} {}^{T}\!C(\mathfrak{sp}_{3})^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}, (7.401c)$$

(iii) 特殊型部分代数 \mathfrak{su}_2 : この部分代数は、 \mathfrak{su}_2 の次の6次元ユニタリ表現 ρ_5 : $\mathfrak{su}_2 \rightarrow \mathfrak{su}_6$ より得られる:

$$H' \mapsto 5H_1 + 3H_2 + H_3,$$
 (7.402a)

$$E^{\pm} \mapsto \sqrt{5}\tilde{A}_{12}^{\pm} + 2\sqrt{2}\tilde{A}_{23}^{\pm} + \frac{3}{2}\tilde{S}_{33}^{\pm}.$$
 (7.402b)

よって, 埋め込み行列は

$$M_H = \begin{pmatrix} 5 & 3 & 1 \end{pmatrix}, \tag{7.403a}$$

$$M_S(\mathfrak{su}_2 \to \mathfrak{sp}_3) = A(\mathfrak{su}_2)^{-1/2} M_H A(\mathfrak{sp}_3) = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \qquad (7.403b)$$

$$M_D(\mathfrak{su}_2 \to \mathfrak{sp}_3) = {}^T\!C(\mathfrak{su}_2)M_S {}^T\!C(\mathfrak{sp}_3)^{-1} = \begin{pmatrix} 5 & 8 & 9 \end{pmatrix}.$$
(7.403c)

(iv) 特殊型部分代数 $\mathfrak{su}_2 \oplus \mathfrak{su}_2$: この埋め込みは、 $\mathfrak{su}_2 \circ \mathfrak{o} 2$ 次元表現 $\rho_2 : \mathfrak{su}_2 \rightarrow \mathfrak{sl}_2$

$$\rho_2: \begin{array}{ccc} H_1' & \mapsto & E_{11} - E_{22} \\ E_1'^{\pm} & \mapsto & E_{12}^{\pm} \end{array}$$
(7.404)

と3次元表現 $\rho_3:\mathfrak{su}_2 \to \mathfrak{sl}_3$

$$\rho_3: \begin{array}{ccc} H'_2 & \mapsto & 2(E_{11} - E_{33}) \\ E'_2^{\pm} & \mapsto & 2(E_{12}^{\pm} - E_{23}^{\pm}) \end{array}$$
(7.405)

のテンソル積 ρ : $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \to \mathfrak{sl}_6$,

$$\rho = \rho_2 \otimes \rho_3: \begin{array}{cccc}
H'_1 & \mapsto & H_1 + H_2 + H_3, \\
H'_2 & \mapsto & 2(H_1 - H_3), , \\
E'_1^{\pm} & \mapsto & \tilde{S}_{13}^{\pm} + \frac{1}{2}\tilde{S}_{22}^{\pm}, \\
E'_2 - \pm & \mapsto & 2\tilde{A}_{12}^{\pm} - 2\tilde{A}_3^{\pm}
\end{array}$$
(7.406)

272

目次へ

により与えられる.

よって,埋め込み行列は

$$M_H = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -2 \end{pmatrix}, \tag{7.407a}$$

$$M_S(\mathfrak{su}_2 \oplus \mathfrak{su}_2 \to \mathfrak{sp}_3) = A(_2 \oplus_2)^{-1} M_H = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & -2 \end{pmatrix},$$
 (7.407b)

$$M_D(\mathfrak{su}_2 \oplus \mathfrak{su}_2 \to \mathfrak{sp}_3) = \operatorname{Tr}C(_2 \oplus_2) M_S \, {}^T\!C(\mathfrak{g}_2)^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 0 \end{pmatrix}.$$
(7.407c)

7.15 Sp₄

7.15.1 Lie 代数の構造

次元は 36 で、Lie 代数の生成元は、 \mathfrak{sl}_8 の生成元 E_{jj} , $E_{jk}^{\pm}(j < k)$ を用いて、次のように表される:

• Cartan 部分代数 \mathcal{L}_0 : $H_i = E_{ii} - E_{9-i9-i}, i = 1, 2, 3, 4$

• Nilpotent 部分代数 Δ^{\pm} : \tilde{S}_{jk}^{\pm} $(1 \leq j \leq k \leq 4)$, \tilde{A}_{jk}^{\pm} $(1 \leq j < k \leq 4)$. ここで,

$$\lambda = \pm (h_j + h_k) \quad \mapsto \quad \tilde{S}_{jk}^{\pm} = E_{j9-k}^{\pm} + E_{k9-j}^{\pm}, \tag{7.408a}$$

$$\lambda = \pm (h_j - h_k) \quad \mapsto \quad \tilde{A}^{\pm}_{jk} = E^{\pm}_{jk} - E^{\pm}_{9-k\,9-j}.$$
 (7.408b)

ルート系

基本ルート :
$$\alpha_1 = h_1 - h_2$$
, $\alpha_2 = h_2 - h_3$, $\alpha_3 = h_3 - h_4$, $\alpha_4 = 2h_4$,
 $(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)$ $\tilde{A}_{12}^+, \tilde{A}_{23}^+, \tilde{A}_{24}^+, \tilde{S}_{44}^+$
 $(1,1,0,0), (01,1,0), (0,0,1,1)$ $\tilde{A}_{13}^+, \tilde{A}_{24}^+, \tilde{S}_{34}^+$
 $(1,1,1,0), (0,1,1,1), (0,0,2,1)$ $\tilde{A}_{14}^+, \tilde{S}_{24}^+, \tilde{S}_{33}^+$
 $(1,1,2,1), (0,2,2,1)$ $\tilde{S}_{14}^+, \tilde{S}_{22}^+$
 $(1,2,2,1)$ \tilde{S}_{12}^+
 $(2,2,2,1)$ \tilde{S}_{11}^+

7.15.2 表現

Cartan 行列は

$$C = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -2 & 2 \end{pmatrix}, \quad C^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1/2 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 3 & 3/2 \\ 1 & 2 & 3 & 2 \end{pmatrix}$$
(7.409)

よって、基本表現は

highest weight dim cong. class

$$f_1 = (1, 1, 1, 1/2)$$
 : $\mathbf{8}_v$ [1]
 $f_2 = (1, 2, 2, 1)$: $\mathbf{27}$ [0] (7.410)
 $f_3 = (1, 2, 3, 3/2)$: $\mathbf{48}$ [1]
 $f_4 = (1, 2, 3, 2)$: $\mathbf{42}$ [0]

随伴表現は

$$2f_1 = [2, 0, 0, 0] = (2, 2, 2, 1) : \mathbf{36}_{adj} [0]$$
(7.411)

7.15.3 極大部分代数

 \mathfrak{sp}_4 の部分代数で、半単純代数と \mathfrak{u}_1 因子の直和となるもののなかで極大なものは次の通りである:

- 1. 正則型: $\mathfrak{su}_4 \oplus \mathfrak{u}_1, \mathfrak{sp}_3 \oplus \mathfrak{su}_2, \mathfrak{sp}_2 \oplus \mathfrak{sp}_2$
- 2. 特殊型」: \mathfrak{su}_2 , $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2$
- (i) 正則型部分代数 $\mathfrak{su}_4 \oplus \mathfrak{u}_1$: $\mathfrak{su}_4 \oplus \mathfrak{u}_1 \cong \mathfrak{u}_4 \subset \mathfrak{gl}_4$ の行列をAとするとき、

$$X = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} : \quad D = -J {}^{T}\!AJ$$
(7.412)

は、su4⊕u1のsp4への埋め込みを与える。対応する埋め込み行列は、

$$M_H(\mathfrak{su}_4 \to \mathfrak{sp}_4) = \begin{pmatrix} 1 & 0 & 0' & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix},$$
(7.413a)

$$M_{S}(\mathfrak{su}_{4} \to \mathfrak{sp}_{4}) = A(\mathfrak{su}_{4})^{-1}M_{H}A(\mathfrak{sp}_{4}) = \begin{pmatrix} 1 & 0 & 0 & -1/2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -3/2 \end{pmatrix}, \quad (7.413b)$$
$$M_{D}(\mathfrak{su}_{4} \to \mathfrak{sp}_{4}) = {}^{T}\!C(\mathfrak{su}_{4})M_{S} {}^{T}\!C(\mathfrak{sp}_{4})^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad (7.413c)$$

level	Dynkin label	highest weights	次元	c(R)
3.5	[1, 0, 0, 0]	(1, 1, 1, 1/2)	$\frac{8_v}{8_v}$	[1]
6	[0, 1, 0, 0]	(1, 2, 2, 1)	27	[0]
7	[2, 0, 0, 0]	(2, 2, 2, 1)	$36_{\rm adi}$	[0]
8	[0, 0, 0, 1]	(1, 2, 3, 2)	42	[0]
7.5	[0, 0, 1, 0]	(1, 2, 3, 3/2)	48	[1]
10.5	[3, 0, 0, 0]	(3, 3, 3, 3/2)	120	[1]
9.5	[1, 1, 0, 0]	(2, 3, 3, 3/2)	160	[1]
11.5	[1, 0, 0, 1]	(2, 3, 4, 5/2)	288	[1]
12	[0, 2, 0, 0]	(2, 4, 4, 2)	308	[0]
11	[1, 0, 1, 0]	(2, 3, 4, 2)	315	[0]
14	[4, 0, 0, 0)	(4, 4, 4, 2)	330	[0]
13	[2, 1, 0, 0]	(3, 4, 4, 2)	$\boldsymbol{594}$	[0]
16	[0, 0, 0, 2]	(2, 4, 6, 4)	594	[0]
13.5	[0, 1, 1, 0]	(2, 4, 5, 5/2)	$\boldsymbol{792}$	[1]
14	[0, 1, 0, 1]	(2, 4, 5, 3)	$\boldsymbol{792}$	[0]
17.5	[5, 0, 0, 0]	(5, 5, 5, 5/2)	$\boldsymbol{792}$	[1]
15	[0, 0, 2, 0]	(2, 4, 6, 3)	825	[0]
15.5	[0, 0, 1, 1]	(2, 4, 6, 7/2)	1056	[1]
15	[2, 0, 0, 1]	(3, 4, 5, 3)	1155	[0]
14.5	[2, 0, 1, 0]	(3, 4, 5, 5/2)	1232	[1]
15.5	$\left[1,2,0,0\right]$	$\left(3,5,5,5/2\right)$	1512	[1]
21	[6, 0, 0, 0]	(6,6,6,3)	1716	[0]
16.5	[3, 1, 0, 0]	(4, 5, 5, 5/2)	1728	[1]
19	[2, 2, 0, 0]	(4, 6, 6, 3)	4914	[0]

表 18: \mathfrak{sp}_4 の 1000 次元以下の表現

となる。また、U(1) 電荷ベクトルは

 $Q_H = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}, \quad Q_S = \begin{pmatrix} 0 & 0 & 0 & 2 \end{pmatrix}, \quad Q_D = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}.$ (7.414)

例えば、 \mathfrak{sp}_4 の 315 次元表現 [1,0,1,0]は、 $\mathfrak{su}_4 \oplus \mathfrak{u}_1$ に関して次のように既約分解 される:

$$\mathfrak{sp}_{4} : \mathbf{315} = [1, 0, 1, 0]$$

$$\downarrow$$

$$\mathfrak{su}_{4} \oplus \mathfrak{u}_{1} : \mathbf{6}_{(2)}([0, 1, 0]) + \mathbf{6}_{(-2)}([0, 1, 0])$$

$$+ \mathbf{10}_{(2)}^{*}([0, 0, 2]) + \mathbf{10}_{(-2)}([2, 0, 0])$$

$$+ (\mathbf{15}_{adj})_{(4)+(0)+(-4)}([1, 0, 1])$$

$$+ \mathbf{20}_{(0)}([0, 2, 0])$$

$$+ \mathbf{45}_{(0)}^{*}([0, 1, 2]) + \mathbf{45}_{(0)}([2, 1, 0])$$

$$+ \mathbf{64}_{(2)+(-2)}([1, 1, 1])$$
(7.415)

(ii) 正則型部分代数 $\mathfrak{su}_2 \oplus \mathfrak{sp}_3$: この部分代数は、 \mathfrak{sp}_4 の行列表示 $X = (X_{ab})$ $(a, b = 1, \dots, 8)$ において、 \mathfrak{sp}_3 を $2 \leq a, b, \leq 7$ と同一視、 $\mathfrak{su}_2 \subset \mathfrak{sl}_2$ を $H = E_{11} - E_{88}, E_{18}^{\pm}$ から生成される部分代数と同一視することにより得られる。

したがって、埋め込み行列は

$$M_{H}(\mathfrak{su}_{2} \oplus \mathfrak{sp}_{3} \to \mathfrak{sp}_{4}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$M_{S}(\mathfrak{su}_{2} \oplus \mathfrak{sp}_{3} \to \mathfrak{sp}_{4}) = A(\mathfrak{sl}_{2} \oplus \mathfrak{sp}_{3})^{-1}M_{H}A(\mathfrak{sp}_{4}) = \begin{pmatrix} 1/2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1/2 & 0 & 0 & 1 \end{pmatrix} 416b)$$

$$M_{D}(\mathfrak{su}_{2} \oplus \mathfrak{sp}_{3} \to \mathfrak{sp}_{4}) = {}^{T}\!C(\mathfrak{sl}_{2} \oplus \mathfrak{sp}_{3})M_{S} {}^{T}\!C(\mathfrak{sp}_{4})^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} 7.416c)$$

(iii) 正則型部分代数 $\mathfrak{sp}_2 \oplus \mathfrak{sp}_2$: この部分代数は、 \mathfrak{sp}_4 の行列表示 X_{ab} $(a, b = 1, \dots, 8)$ において、 \mathfrak{sp}_2 の一つをa, b = 1, 2, 7, 8に対応する部分と、もう一つの \mathfrak{sp}_2 をa, b =

3,4,5,6に対応する部分と同一視することにより得られる。したがって、埋め込み行 列は

$$M_{H}(\mathfrak{sp}_{2} \oplus \mathfrak{sp}_{2} \to \mathfrak{sp}_{4}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$M_{S}(\mathfrak{sp}_{2} \oplus \mathfrak{sp}_{2} \to \mathfrak{sp}_{4}) = A(\mathfrak{sp}_{2} \oplus \mathfrak{sp}_{2})^{-1}M_{H}A(\mathfrak{sp}_{4}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1/2 & 0 & 1 \end{pmatrix}.$$

$$M_{D}(\mathfrak{sp}_{2} \oplus \mathfrak{sp}_{2} \to \mathfrak{sp}_{4}) = {}^{T}\!C(\mathfrak{sp}_{2} \oplus \mathfrak{sp}_{2})M_{S}{}^{T}\!C(\mathfrak{sp}_{4})^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & -1/2 & 0 & 1 \end{pmatrix}.$$
(7.417a)

(iv) 特殊型部分代数 su₂: この部分代数は、su₂の次の8次元既約ユニタリ表現より得られる:

$$\mathfrak{su}_2 \qquad \mathfrak{sp}_4 \tag{7.418a}$$

$$iH \mapsto i(7H_1 + 5H_2 + 3H_3 + H_4),$$
 (7.418b)

$$A \mapsto X_8^+ - X_8^-,$$
 (7.418c)

$$iS \mapsto i(X_8^+ + X_8^-).$$
 (7.418d)

ここで、

$$X_8^+ = a_1(E_{12}^+ - E_{78}^+) + a_2(E_{23}^+ - E_{67}^+) + a_3(E_{34}^+ - E_{56}^+) + a_4E_{46}^+, (7.419a)$$

$$X_8^- = \bar{a}_1(E_{12}^- - E_{78}^-) + \bar{a}_2(E_{23}^- - E_{67}^-) + \bar{a}_3(E_{34}^- - E_{56}^-) + \bar{a}_4E_{46}^-, (7.419b)$$

$$|a_1| = \sqrt{7}, \quad |a_2| = 2\sqrt{3}, \quad |a_3| = \sqrt{15}, \quad |a_4| = 4.$$
(7.419c)

したがって、埋め込み行列は

$$M_H(\mathfrak{su}_2 \to \mathfrak{sp}_4) = \begin{pmatrix} 7 & 5 & 3 & 1 \end{pmatrix}, \tag{7.420a}$$

$$M_S(\mathfrak{su}_2 \to \mathfrak{sp}_4) = A(\mathfrak{sl}_2)^{-1} M_H A(\mathfrak{sp}_4) = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}, \qquad (7.420b)$$

$$M_D(\mathfrak{su}_2 \to \mathfrak{sp}_4) = {}^{T}\!C(\mathfrak{sl}_2)M_S {}^{T}\!C(\mathfrak{sp}_4)^{-1} = \begin{pmatrix} 7 & 12 & 15 & 16 \end{pmatrix}.$$
 (7.420c)

278

(v) 特殊型部分代数 $\mathfrak{su}_2 \oplus \mathfrak{su}_2 \oplus \mathfrak{su}_2$: この部分代数は、 \mathfrak{su}_2 の2次元表現3個のテンソル積に対応する8次元表現より得られる。基底を

level basis
3
$$e_1 = (+ + +),$$

1 $e_2 = (+ + -), e_3 = (+ - +), e_4 = (- + +),$
-1 $e_5 = (+ - -), e_6 = (- + -), e_7 = (- - +),$
-3 $e_8 = (- - -)$

と取ると、Cartan 部分代数の対応は

$$H_1 \mapsto H_1 + H_2 + H_3 - H_4,$$
 (7.421a)

$$H_2 \mapsto H_1 + H_2 - H_3 + H_4,$$
 (7.421b)

$$H_3 \mapsto H_1 - H_2 + H_3 + H_4.$$
 (7.421c)

よって、埋め込み行列は

$$M_{H}(\mathfrak{su}_{2}^{3} \to \mathfrak{sp}_{4}) = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \end{pmatrix}, \quad (7.422a)$$
$$M_{S}(\mathfrak{su}_{2}^{3} \to \mathfrak{sp}_{4}) = A(\mathfrak{sl}_{2}^{3})^{-1}M_{H}A(\mathfrak{sp}_{4}) = \begin{pmatrix} 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 1 & -1 & 0 & 1 \end{pmatrix}, \quad (7.422b)$$

$$M_D(\mathfrak{su}_2^3 \to \mathfrak{sp}_4) = {}^{T}\!C(\mathfrak{sl}_2^3)M_H {}^{T}\!C(\mathfrak{sp}_4)^{-1} = \begin{pmatrix} 1 & 2 & 3 & 2\\ 1 & 2 & 1 & 2\\ 1 & 0 & 1 & 2 \end{pmatrix}.$$
(7.422c)

8 超代数と超群

Basic References

• Cornwell JF: "Group Theory in Physics" (Elsevier, 1989)

vol. III "Supersymmetries and Infinite-Dimensinal Algebra"

• Kac V: Adv. Math. 26, 8-96 (1977)

"Lie superalgebras"

8.1 超代数

【定義 8.1 (超環)】 環 $(R, +, \cdot)$ は,その \mathbb{Z}_2 次数付け,すなわち加法群としての 直和分解 $R = R_0 \oplus R_1$ が与えられ, $R_{\alpha} \cdot R_{\beta} \subset R_{\alpha+\beta}(\alpha, \beta \in \mathbb{Z}_2)$ が成り立つとき,超 環 (super-ring) という.

超環 *R*において, $a \in R_0$ ないし $a \in R_1$ となる元を斉次元 (homogeneous element) といい, その全体を h(R) で表す. また, $a \in h(R)$ の次数 |a| を,

$$| : h(R) \to \mathbb{Z}_2; \quad a \mapsto \alpha \iff a \in R_\alpha$$

により定義する.

さらに, 超環 Rにおいて, 常に

$$ab = (-1)^{|a||b|} ba$$

が成り立つとき, R は可換 (commutative) であるという. _____

【定義 8.2 (結合的超代数)】 \mathbb{Z}_2 次数付き代数 $\mathscr{A} = \mathscr{A}_0 + \mathscr{A}_1$ は、その積演算が 結合的であるとき結合的超代数という.

【定義 8.3 (可換超代数)】 結合的超代数 $\mathscr{A} = \mathscr{A}_0 + \mathscr{A}_1$ において,

$$ab = (-1)^{\deg a \deg b} ba$$

が成り立つとき, 𝖉 を可換超代数という. _____

【例 8.4 (外積代数)】 F係数 L次元線形空間 $V(F = \mathbb{R}, \mathbb{C})$ から作られる外積代数 $\bigwedge V \in \mathbb{F}B_L$ と表し、その偶元の次数を 0、奇元の次数を 1 とおくと、可換超代数が得られる.これは、Grassmann 代数に単位元を付加したものと一致する.

目次へ

 \square

【例 8.5 (行列超代数)】

1. \mathbb{F} を係数とする p + q次の正方行列の全体 $M(p + q, \mathbb{F})$ の作る代数に,

次数 0:
$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$$
 $A \in M(p, \mathbb{F}), D \in M(q, \mathbb{F})$
次数 1: $\begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$ $B \in M(p, q, \mathbb{F}), C \in M(q, p, \mathbb{F})$

により \mathbb{Z}_2 次数を定義すると、結合的超代数が得られる.この超代数を $M(p|q, \mathbb{F})$ と表す.

2. (超転置) 行列超代数における M の転置を

$${}^{\mathrm{st}}M := \begin{pmatrix} {}^{T}\!A & {}^{T}\!C \\ - {}^{T}\!B & {}^{T}\!D \end{pmatrix}$$

により定義する.このとき、次の性質がなりたつ:

 ${}^{\mathrm{st}}(MN) = {}^{\mathrm{st}}N{}^{\mathrm{st}}M,$

3. (超トレース) 超代数としての行列のトレースを

 $\operatorname{str} M := \operatorname{Tr} A - \operatorname{Tr} D$

で定義する.このとき、次の性質が成り立つ.

str(MN) = str(NM), $str(^{st}M) = strM,$ $str(SMS^{-1}) = strM.$

8.2 Lie 超代数

【定義 8.6 (Lie 超代数)】 \mathbb{Z}_2 次数付き線形空間 $\mathcal{L}_s = \mathcal{L}_0 + \mathcal{L}_1$ に次の性質をもつ 積 [a, b] が定義されているとき, \mathcal{L}_s を Lie 超代数という:

i) *a*,*b*がそれぞれ同次元のとき,

$$\deg([a,b]) = \deg a + \deg b.$$

ii) $a, b, c \in \mathscr{L}_s$, $\alpha, \beta \in \mathbb{C}(\mathbb{R})$ のとき,

$$[\alpha a + \beta b, c] = \alpha[a, c] + \beta[b, c].$$

iii) *a*,*b*が同次元のとき,

$$[b,a] = -(-1)^{\operatorname{deg} a \operatorname{deg} b}[a,b].$$

iv) *a*, *b*, *c* が同次元のとき

$$[a, [b, c]](-1)^{\deg a \deg c} + [b, [c, a]](-1)^{\deg b \deg a} + [c, [a, b]](-1)^{\deg c \deg b} = 0.$$

【例 8.7 (行列の Lie 超代数)】 行列の超代数 $M(p|q, \mathbb{F})(\mathbb{F} = \mathbb{R}, \mathbb{C})$ において

 $[M, N] := MN - (-1)^{\deg M \deg N} NM$

とおくと、この超交換子に対して $M(p|q,\mathbb{F})$ は Lie 超代数となる. さらに、

$$\mathfrak{sl}(p|q;\mathbb{F}) := \{ M \in M(p|q,\mathbb{F}) \mid \operatorname{str} M = 0 \}$$

は, *M*(*p*|*q*, 𝔽) の部分 Lie 超代数となる. また,

$$K := \begin{pmatrix} 1_p & 0\\ 0 & J_q \end{pmatrix}; \quad J_q := \begin{pmatrix} 0 & 1_{q/2}\\ -1_{q/2} & 0 \end{pmatrix}$$

で定義される $K \in M(p|q; \mathbb{F})$ を用いて,

$$\operatorname{osp}(p|q; \mathbb{F}) := \left\{ M \in M(p|q, \mathbb{F}) \, \middle| \, {}^{\operatorname{st}}MK + (-1)^{\operatorname{deg}M}KM = 0 \right\}$$

とおくと, 次数ゼロの部分が

 $\mathscr{L}_0 = \mathfrak{so}(p) \oplus \mathfrak{sp}(q/2, \mathbb{F})$

となる直交シンプレクティック Lie 超代数が得られる. _____

8.2.1 分類

【定義 8.8 (可解および半単純 Lie 超代数)】 Lie 超代数 *L* に対して,

- 1. Lie 代数と同様に, $\mathscr{L}^{(0)} = \mathscr{L}, \mathscr{L}^{(k)} = [\mathscr{L}^{(k-1)}, \mathscr{L}^{(k-1)}](k = 1, 2, \cdots)$ と置くと き, $\mathscr{L}^{(k)} = 0$ となる k が存在するとき, \mathscr{L} は可解 (solvable) であるという.
- 2. *L* の極大可解イデアルがゼロイデアルとなるとき, *L* は半単純 (semi-simple) であるという.

8.2.2 表現

【定義 8.10 (Lie 超代数の次数付き表現)】

- Lie 超代数 ℒ_s から、行列の作る Lie 超代数 M(p|q, F) への Lie 超代数としての 準同型 Γ を、ℒ_s の次数付き表現という.
- 2. $V = V_0 \oplus V_1$ を次数付きベクトル空間とするとき, End(V) に行列 Lie 超代数 $M(p|q)(p = \dim(V_0), q = \dim(V_1))$ と同型な Lie 超代数の構造が入る. この Lie 超代数を $\mathfrak{gl}(V)$ と記すとき, \mathscr{L} の次数付き表現は, Lie 超代数としての準同型 $\rho : \mathscr{L} \to \mathfrak{gl}(V)$ と同一視できる. また, このとき, V は次数付き \mathscr{L} -加群と なる.

【定理 8.11 (Lie 超代数における Ado の定理)】 すべての有限次元 Lie 超代数は, 忠実な(次数付き)表現をもつ. [Kac VG 1977[Kac77]] _____□

【定義 8.12 (誘導表現)】 *£* を Lie 超代数, *ℋ* をその部分超代数, *V* を *ℋ*-加 群とする.このとき,

$$\operatorname{Ind}_{\mathscr{H}}^{\mathscr{D}}(V) = U(\mathscr{L}) \otimes_{U(\mathscr{H})} V \tag{8.1}$$

により定義される \mathscr{L} -加群を, \mathscr{H} -加群から誘導された \mathscr{L} -加群と呼ぶ.ここで, $U(\mathscr{L})$ は \mathscr{L} の普遍包絡環である.

 $-\Box$

 \square

【命題 8.13 (誘導表現の性質)】

- a) *L*を Lie 超代数, *H*をその部分超代数, *V*を単純 *L*-加群, *W*をその *H*-部 分加群とする.このとき, *V*は誘導 *L*-加群の因子加群である.すなわち, *L* の任意の既約表現は,その部分超代数の表現から誘導される表現の既約分解に より得られる.
- b) $\mathcal{H}_2 \subset \mathcal{H}_1$ を \mathcal{L} の部分超代数, W を \mathcal{H}_2 -加群とするとき,

$$\operatorname{Ind}_{\mathscr{H}_1}^{\mathscr{L}}(\operatorname{Ind}_{\mathscr{H}_2}^{\mathscr{H}_1}W) \cong \operatorname{Ind}_{\mathscr{H}_2}^{\mathscr{L}}(W).$$
(8.2)

c) *ℋ を 光*₀ ⊃ *L*₀ となる Lie 超代数 $\mathcal{L} = \mathcal{L}_0 \oplus \mathcal{L}_1$ の部分超代数, $g_1, \dots, g_t \in \mathcal{L}_1$ を \mathcal{L}/\mathcal{H} の基底 $[g_1], \dots, [g_t]$ の代表元とする. このとき, \mathcal{H} -部分加群 W に 対して,

$$\operatorname{Ind}_{\mathscr{H}}^{\mathscr{L}}(W) = \bigoplus_{1 \leqslant i_1 \leqslant \dots \leqslant i_t} g_{i_1} \cdots g_{i_t} W$$
(8.3)

が成り立つ.特に, dim $\operatorname{Ind}_{\mathscr{H}}^{\mathscr{L}}(W) = 2^t \dim W.$

[Kac VG 1977[Kac77]]

8.3 可解 Lie 超代数

【定義 8.14】

- 1) Lie 超代数 $\mathscr{L} = \mathscr{L}_0 \oplus \mathscr{L}_1$ に対し,その上の線形汎関数 $\ell \in \mathscr{L}^*$ が $\ell([\mathscr{L}_0, \mathscr{L}_0]) = \ell(\mathscr{L}_1) = 0$ を満たすとき,**卓越している** (distinguished) という.卓越した線形汎 関数の全体を $L(\mathscr{L})$,あるいは単に L と表記する.さらに, $L_0 = \{\ell \in L \mid \ell([\mathscr{L}_1, \mathscr{L}_1]) = 0\}$, \mathscr{L} の随伴表現の 1 次元因子から定義される L_0 の元で生成される L_0 の部分空 間を L_1 と表す.
- 2) $\ell \in L$ に対して, \mathscr{L} の部分空間 \mathscr{L}_{ℓ} を

$$\mathscr{L}_{\ell} = \{ g \in \mathscr{L} \mid \ell([g, g']) = 0 \forall g' \in \mathscr{L} \}$$

$$(8.4)$$

により定義する. このとき, $\mathcal{L}_{\ell} \subset \mathcal{P}$ および $\ell([\mathcal{P}, \mathcal{P}]) = 0$ を満たす \mathcal{L} の部 分超代数 \mathcal{P} を ℓ に随伴する (subordinate) 部分超代数と呼ぶ.

【定理 8.15 (可解 Lie 超代数の規約表現と卓越した線形汎関数の対応)】 $\mathscr{L} = \mathscr{L}_0 \oplus \mathscr{L}_1$ を可解 Lie 超代数とする.

- a) $(V \Rightarrow \ell_V \in L/L_0)$ 有限次元既約 \mathscr{L} -加群 V に対して、 \mathscr{L}_0 -加群としての V の 各既約成分 V_i は常に 1 次元である、それらを $V_i = \ell_i(X)v_i(X \in \mathscr{L}_0)$ と表し、 $\ell_i(\mathscr{L}_1) = 0$ により ℓ_i を $L(\mathscr{L})$ の元と見なすと、 ℓ_i は L/L_0 において同一の類 $\hat{\ell}_V$ に属する、
- b) $(\ell \Rightarrow V) \ell \in L(\mathcal{L})$ に対して、 $\mathcal{P} \& \ell$ に付随する \mathcal{L} の極大部分超代数とする. この時、 $\ell(X)v(X \in \mathcal{P})$ により定義される 1 次元 \mathcal{P} -加群を $\{\mathcal{P}, \ell\}$ と表記する と、 \mathcal{L} -加群 $V = \operatorname{Ind}_{\mathcal{P}}^{\mathscr{L}} \{\mathcal{P}, \ell\}$ は有限次元単純加群で、 $\ell \in \hat{\ell}_{V}$ が成り立つ.ま た、 $\ell_{1}, \ell_{2} \in L(\mathcal{L})$ に対応する \mathcal{L} -加群を V_{1}, V_{2} 、対応する \mathcal{L} の線形表現を ρ_{1} 、 ρ_{2} とするとき、適当な $\lambda \in L_{0}$ に対して $\rho_{1} \cong \rho_{2} + \lambda$ となるための必要十分条件 は $\ell_{1} - \ell_{2} \in L_{0}$ となることである.
- c) b) における対応 $\ell \Rightarrow V$ は、 $L(\mathcal{L})$ から有限次元既約 \mathcal{L} -加群の全体への全射 を与える.
- d) \mathscr{L} を完全可解, すなわち随伴表現のすべての既約因子が1次元となる Lie 超 代数とする.このとき, a)~c) は, $L_0 \in L_1$ でに置き換えても成り立つ.特に, \mathscr{L} がべキ零のとき, $L_1 = 0$ となるので, \mathscr{L} の有限次元既約表現と $L(\mathscr{L})$ の元 が1対1に対応する.

[Kac VG 1977[Kac77]]

【命題 8.16】 $\mathscr{L} = \mathscr{L}_0 \oplus \mathscr{L}_1$ を可解 Lie 超代数とする.

- 1. $V = V_0 \oplus V_1$ を有限次元既約 \mathscr{L} -加群とすると、 $\dim V_0 = \dim V_1 = 2^{s-1}$ ($s \leq \dim \mathscr{L}_1$)または $\dim V = 1$.
- 2. \mathscr{L} のすべての有限次元既約表現が1次元となるための必要十分条件は, $[\mathscr{L}_1, \mathscr{L}_1] \subset [\mathscr{L}_0, \mathscr{L}_0]$ である.

[Kac VG 1977[Kac77]]

8.4 単純複素 Lie 超代数

【定義 8.17 (古典 Lie 超代数と Cartan 型 Lie 超代数)】 単純 Lie 超代数 $\mathscr{L} = \mathscr{L}_0 + \mathscr{L}_1$ において,代数演算により誘導される表現 $\mathscr{L}_0 \triangleright \mathscr{L}_1$ が完全可約のとき, \mathscr{L} は古典 Lie 超代数 (classical Lie superalgebra),完全可約でないとき Cartan 型 Lie 超代数 (Cartan type Lie superalgebra) という.

【定義 8.18 (簡約可能な Lie 代数)】 Lie 代数 g は,半単純 Lie 代数と中心の直和 となるとき**簡約可能**という. _____□

【命題 8.19】 単純 Lie 超代数が古典的であることと, Lie 代数 *L*₀ が簡約可能であることは同等である. _____□

【定理 8.20 (古典複素 Lie 超代数の分類定理)】 古典単純複素 Lie 超代数は次のように分類される:

- (1) 基本 (basic) 古典単純複素 Lie 超代数
 - (a) Killing 形式が非退化となるもの.
 - (i) 単純複素 Lie 代数
 - (ii) 次の6つの系列:

 $\begin{aligned} A(m|n) &= \mathrm{sl}(m+1|n+1;\mathbb{C}), \ m > n = 0, 1, 2, \cdots, \\ B(m|n) &= \mathrm{osp}(2m+1|2n;\mathbb{C}), \ m = 0, 1, \cdots, \ n = 1, 2, \cdots, \\ C(n) &= \mathrm{osp}(2|2n-2;\mathbb{C}), \ n = 2, 3, \cdots, \\ D(m|n) &= \mathrm{osp}(2m|2n;\mathbb{C}), \ m = 2, 3, \cdots, \ n = 1, 2, \cdots, \ m \neq n+1, \\ F(4), \\ G(3). \end{aligned}$

(b) Killing 形式が恒等的にゼロとなるもの.

 $A(n|n) = sl(n+1|n+1;\mathbb{C}), \ n = 1, 2, \cdots,$ $D(n+1|n) = osp(2n+2|2n;\mathbb{C}), \ n = 1, 2, \cdots,$ $D(2|1;\alpha), \ \alpha \in \mathbb{C} - \{0, -1, \infty\}.$

(2) 特異 (strange) 古典単純複素 Lie 超代数

 $P(n), n = 2, 3, \cdots,$ $Q(n), n = 2, 3, \cdots$

[Cornwell JF 1989[Cor89]; Kac VG 1977[Kac77]]

【定理 8.21 (Cartan 型 Lie 超代数の分類定理)】 Cartan 型 Lie 超代数は次の4 つの離散系列で尽くされる:

- 1) $W(n) (n = 3, 4, \cdots)$
- 2) $S(n) (n = 3, 4, \cdots)$
- 3) $\tilde{S}(n)$ $(n = 4, 5, \cdots,)$
- 4) H(n) $(n = 4, 5, \dots,)$

[Cornwell JF 1989[Cor89]; Kac VG 1977[Kac77]]

8.4.1 古典 Lie 超代数

gl(m|N): $Q \in M(m+N)$ をA $\in M(m), B \in M(m,N), C \in M(N,m), D \in M(N)$ を用いて

$$Q = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
(8.5)

と表し,

$$\mathscr{L} = \mathcal{M}(m+N), \tag{8.6a}$$

$$\mathscr{L}_0 = \{ Q \in \mathscr{L} \mid B = C = 0 \}, \qquad (8.6b)$$

$$\mathscr{L}_1 = \{ Q \in \mathscr{L} \mid A = D = 0 \}$$
(8.6c)

とおく. このとき, [*,*]_±を

$$[Q_1, Q_2]_{\pm} = [Q_1, Q_2] \text{ for } Q_1, Q_2 \in \mathscr{L}_0,$$
 (8.7a)

$$[Q_1, Q_2]_{\pm} = [Q_1, Q_2] \text{ for } Q_1 \in \mathscr{L}_0, Q_2 \in \mathscr{L}_1,$$
 (8.7b)

$$[Q_1, Q_2]_{\pm} = \{Q_1, Q_2\} \text{ for } Q_1, Q_2 \in \mathscr{L}_1$$
(8.7c)

と定義すると、 $\{\mathscr{L}, [*, *]_{\pm}\}$ は超代数 gl(m|N)となる.以下、 $Q \in \mathscr{L} & Q[A, D; B, C]$ と表記する.
osp(N|2p): $\Omega_{(2p)}$ を条件

$$\Omega_{(2p)}^2 = -1, \quad {}^{T}\!\Omega_{(2p)} = -\Omega_{(2p)} \tag{8.8}$$

を満たす 2*p* 次の正方行列, *G*_(N) を *N* 次の対称正則行列とする. osp(*N*|2*p*) を次の条件を満たす gl(*N*|2*p*) の部分代数として定義する:

$${}^{T}\!AG_{(N)} + G_{(N)}A = 0, (8.9a)$$

$${}^{T}\!D\Omega_{(2p)} + \Omega_{(2p)}D = 0, (8.9b)$$

$$C = \Omega(2p) \,^{T}\!BG_{(N)} \tag{8.9c}$$

このとき、 $[osp(N|2p)]_0$ の生成する群Gは

$$G = \mathcal{O}(N) \otimes \operatorname{Sp}(p) \tag{8.10}$$

が成り立つ.

特に,

$$\operatorname{Sp}(2,\mathbb{C}) \cong \operatorname{SO}(5,\mathbb{C})$$
 (8.11)

より、osp(N|4)の適当な実型は $SO(2,3) \times SO(N)$ に対応する実超代数、すなわち $AdS^4 \perp O N$ -拡張超代数となる、また、"宇宙項"ゼロの極限をとると、Minkowski時空 $E^{3,1} \perp O N$ -拡張超代数が得られる.

sl(m|N): sl(m|N)を次の条件を満たすgl(m|N)の部分代数として定義する:

$$TrA = TrD. (8.12)$$

このとき,

$$G = \mathrm{SL}(m, \mathbb{C}) \otimes \mathrm{SL}(N, \mathbb{C}) \otimes \mathrm{GL}(1, \mathbb{C})$$
(8.13)

が成り立つ.

さらに, $H_{(m)}$ を符号 (p,q)(p+q=m)の m 次エルミート行列, $H_{(N)}$ を正の N 次 エルミート行列として, 条件

$$H_{(m)}AH_{(m)}^{-1} = -A^{\dagger},$$
 (8.14a)

$$H_{(N)}DH_{(N)}^{-1} = -D^{\dagger},$$
 (8.14b)

$$H_{(m)}BH_{(N)}^{-1} = -C^{\dagger} \tag{8.14c}$$

を満たす sl(m|N) の実部分代数を su(p,q|N) とおくと,

$$G = SU(p,q) \otimes SU(N) \otimes U(1)$$
(8.15)

289

が成り立つ.

特に,

$$SU(2,2) \cong SO(2,4) \tag{8.16}$$

より、su(2,2|N)は AdS^5 上の拡張超対称代数を与える.

 $P(n) \geq Q(n)$: P(n) は次の条件を満たす gl(n|n) の部分代数として定義される:

$${}^{T}\!A + D = 0, \quad \text{Tr}A = 0,$$
 (8.17a)

$${}^{T}\!B = B, \quad {}^{T}\!C = -C.$$
 (8.17b)

すなわち,

$$G = \mathrm{SL}(n, \mathbb{C}), \tag{8.18a}$$

$$G \triangleright \mathscr{L}_1 : (2)_n + [2]_n.$$
 (8.18b)

また、Q'(n)を次の条件を満たすsl(n|n)の部分代数として定義する:

$$A = D, \quad B = C, \quad \text{Tr}B = 0.$$
 (8.19)

ただし, Q'(n) は中心 $\{aI_{2n} \mid a \in \mathbb{C}\} \cong \mathbb{C}$ をもつので,

$$Q(n) = Q'(n)/\mathbb{C} \tag{8.20}$$

により単純な超代数 Q(n) を定義する. このとき,

$$G = \mathrm{SL}(n, \mathbb{C}), \tag{8.21a}$$

$$G \triangleright \mathscr{L}_1 : \text{Adjoint } \overline{\mathcal{R}}$$

$$(8.21b)$$

となる.

 $D(2, 1, \alpha), G(3), F(4)$:

1. $D(2, 1, \alpha)$

$$G = \mathrm{SL}(2, \mathbb{C}) \otimes \mathrm{SL}(2, \mathbb{C}) \otimes \mathrm{SL}(2, \mathbb{C}), \qquad (8.22a)$$

$$G \triangleright \mathscr{L}_1 : (2, 2, 2).$$
 (8.22b)

2. G(3)

$$G = \mathrm{SL}(2, \mathbb{C}) \otimes G_2, \tag{8.23a}$$

$$G \rhd \mathscr{L}_1 : (2,7) \tag{8.23b}$$

3. F(4)

$$G = \mathrm{SL}(2, \mathbb{C}) \otimes \mathrm{SO}(7, \mathbb{C}), \tag{8.24a}$$

$$G \triangleright \mathscr{L}_1 : (2,8) \tag{8.24b}$$

8.4.2 Cartan 型超代数

 $a_i, a_i^{\dagger} (i = 1, \cdots, n)$ をフェルミ型生成消滅演算子とする:

$$\left\{a_i, a_j^{\dagger}\right\} = \delta_{ij}, \quad \left\{a_i, a_j\right\} = \left\{a_i^{\dagger}, a_j^{\dagger}\right\} = 0.$$

 $W(n) (n \ge 3)$:

$$W(n) = G_{-1} \oplus G_0 \oplus G_1 \oplus \dots \oplus G_{n-1}, \qquad (8.25a)$$

$$[G_i, G_j] \subset G_{i+j},\tag{8.25b}$$

$$\mathscr{L}_0 = G_0 \oplus G_2 \oplus \cdots, \quad \mathscr{L}_1 = G_{-1} \oplus G_1 \oplus \cdots.$$
 (8.25c)

ここで,

$$G_{-1} = \langle a_i \, (i = 1, \cdots, n) \rangle, \tag{8.26a}$$

$$G_0 = \langle a_i^{\dagger} a_j \, (i, j = 1, \cdots, n) \rangle, \tag{8.26b}$$

$$G_1 = \langle a_i^{\dagger} a_j^{\dagger} a_k \ (i \neq j, k = 1, \cdots, n) \rangle, \qquad (8.26c)$$

... ...,

$$G_{n-1} = \langle a_1^{\dagger} \cdots a_n^{\dagger} a_i \, (i = 1, \cdots, n) \rangle.$$
(8.26d)

 $G_0 \cong \mathfrak{gl}(n)$ でW(n)の次元は $n \cdot 2^n$.また,W(2) = sl(2|1).

 $S(n) (n \ge 3)$:

$$S(n) = G_{-1} \oplus G_0 \oplus G_1 \oplus \dots \oplus G_{n-2}, \qquad (8.27a)$$

$$[G_i, G_j] \subset G_{i+j},\tag{8.27b}$$

$$\mathscr{L}_0 = G_0 \oplus G_2 \oplus \cdots, \quad \mathscr{L}_1 = G_{-1} \oplus G_1 \oplus \cdots.$$
 (8.27c)

ここで,

$$G_{-1} = \langle a_i \, (i = 1, \cdots, n) \rangle, \tag{8.28a}$$

$$G_{0} = \langle a_{1}^{\dagger}a_{1} - a_{j}^{\dagger}a_{j} (j = 2, \cdots, n), \\ a_{i}^{\dagger}a_{j} (i \neq j = 1, \cdots, n) \rangle,$$
(8.28b)

$$G_{1} = \langle a_{i}^{\dagger}(a_{1}^{\dagger}a_{1} - a_{j}^{\dagger}a_{j}) (i \neq j = 1, \cdots, n), \\ a_{1}^{\dagger}(a_{2}^{\dagger}a_{2} - a_{j}^{\dagger}a_{j}) (j = 3, \cdots, n), \\ a_{i}^{\dagger}a_{j}^{\dagger}a_{k} (i \neq j \neq k = 1, \cdots, n) \rangle,$$

$$G_{2} = \langle a_{i}^{\dagger}a_{j}^{\dagger}(a_{1}^{\dagger}a_{1} - a_{k}^{\dagger}a_{k}) (i \neq j \neq k = 1, \cdots, n), \\ a_{k}^{\dagger}a_{1}^{\dagger}(a_{2}^{\dagger}a_{2} - a_{j}^{\dagger}a_{j}) (k \neq j = 3, \cdots, n), \\ a_{1}^{\dagger}a_{2}^{\dagger}(a_{3}^{\dagger}a_{3} - a_{j}^{\dagger}a_{j}) (j = 4, \cdots, n), \\ a_{i}^{\dagger}a_{j}^{\dagger}a_{k}^{\dagger}a_{l} (i \neq j \neq k \neq l = 1, \cdots, n) \rangle,$$

$$(8.28c)$$

$$(8.28c)$$

$$(8.28c)$$

 $G_0 \cong \mathfrak{sl}(n) \ \mathfrak{C} \dim(S(n)) = (n-1)2^n + 1.$

$$\tilde{S}(n)$$
 $(n \ge 4)$: $S(n)$ において, G_{-1} を次の集合で置き換えたのも:

 $G_{-1} = \langle (1 + a_1^{\dagger} a_2^{\dagger} \cdots a_n^{\dagger}) a_i \, (i = 1, \cdots, n) \rangle.$ (8.29)

 $H(n) (n \ge 4)$:

$$H(n) = G_{-1} \oplus G_0 \oplus G_1 \oplus \dots \oplus G_{n-3}, \qquad (8.30a)$$

$$[G_i, G_j] \subset G_{i+j},\tag{8.30b}$$

$$\mathscr{L}_0 = G_0 \oplus G_2 \oplus \cdots, \quad \mathscr{L}_1 = G_{-1} \oplus G_1 \oplus \cdots.$$
 (8.30c)

ここで,

$$G_{-1} = \langle a_i \, (i=1,\cdots,n) \rangle, \tag{8.31a}$$

$$G_0 = \langle a_i^{\dagger} a_j - a_j^{\dagger} a_i (i, j = 1, \cdots, n) \rangle, \qquad (8.31b)$$

$$G_1 = \langle a_{[i}^{\dagger} a_{j}^{\dagger} a_{k]} (i, j, k = 1, \cdots, n) \rangle, \qquad (8.31c)$$

 $G_0 \cong \mathfrak{so}(n)$ $\mathfrak{C} \dim(H(n)) = 2^n - 2.$

. . .

8.5 単純実 Lie 超代数

8.5.1 分類

Ref: Parker M: JMP21, 689(1980)

【定理 8.22 (実古典単純 Lie 超代数と複素古典単純 Lie 超代数の関係)】 実古典 単純 Lie 超代数 ℒ の複素化 ℒ ⊗ ℂ は,複素古典単純 Lie 超代数 ℒ' と同型であるか, またはそらの 2 個の直和である.後者の場合,対応する複素古典単純 Lie 超代数は 実 Lie 超代数として単純である.また,この対応において, ℒ を複素 Lie 超代数 ℒ' の実型という.[Parker M 1980[Par80]] _____

【定理 8.23 (実古典単純 Lie 超代数の分類)】 古典複素単純 Lie 超代数 *L* の実型 は,複素 Lie 代数 *L*₀ の実型により同型を除いて一意的に定まり,次のいずれかで与 えられる:

1. A(m|n) (m > n ≥ 0) の実型

$$\begin{split} \mathrm{sl}(m+1|n+1;\mathbb{R}) &: \mathcal{L}_0 = \mathfrak{sl}(m+1,\mathbb{R}) \oplus \mathfrak{sl}(n+1,\mathbb{R}) \oplus \mathbb{R}, \\ \mathrm{sl}\left(\frac{m+1}{2}|\frac{n+1}{2};\mathbb{H}\right) &: \mathcal{L}_0 = \mathfrak{su}^*(m+1) \oplus \mathfrak{su}^*(n+1) \oplus \mathbb{R}, \ m,n: 奇数, \\ \mathrm{su}(m+1-p,p|n+1-q,q) &: \mathcal{L}_0 = \mathfrak{su}(m+1-p,p) \oplus \mathfrak{su}(n+1-q,q) \oplus i\mathbb{R} \end{split}$$

2. A(n|n) (n ≥ 1)の実型

$$\begin{split} \mathrm{sl}(n+1|n+1;\mathbb{R}) &: \mathcal{L}_0 = \mathfrak{sl}(n+1,\mathbb{R}) \oplus \mathfrak{sl}(n+1,\mathbb{R}),\\ \mathrm{sl}\left(\frac{n+1}{2}|\frac{n+1}{2};\mathbb{H}\right) &: \mathcal{L}_0 = \mathfrak{su}^*(n+1) \oplus \mathfrak{su}^*(n+1), \ n: 奇数,\\ \mathrm{su}(n+1-p,p|n+1-p,p) &: \mathcal{L}_0 = \mathfrak{su}(n+1-p,p) \oplus \mathfrak{su}(n+1-p,p),\\ H(4;n;\mathbb{R}) &: \mathcal{L}_0 = \mathfrak{sl}(n+1,\mathbb{C}). \end{split}$$

3. B(m|n) (m $\ge 0, n \ge 1$) の実型

$$\operatorname{osp}(2m+1-p,p|2n;\mathbb{R}) : \mathscr{L}_0 = \mathfrak{so}(2m+1-p,p) \oplus \mathfrak{sp}(n,\mathbb{R}).$$

4. *C*(*n*) (*n* ≥ 2)の実型

$$osp(2|2n-2;\mathbb{R}) : \mathscr{L}_0 = \mathfrak{so}(2) \oplus \mathfrak{sp}(n-1;\mathbb{R}),$$

$$osp(1|n-1-p,p;\mathbb{H}) : \mathscr{L}_0 = \mathfrak{so}^*(2) \oplus \mathfrak{sp}(n-1-p,p).$$

5. D(m|n) (m $\ge 2, n \ge 1$)の実型

$$osp(2m-p,p|2n;\mathbb{R}) : \mathscr{L}_0 = \mathfrak{so}(2m-p,p) \oplus \mathfrak{sp}(n,\mathbb{R}),
osp(m|n-p,p;\mathbb{H}) : \mathscr{L}_0 = \mathfrak{so}^*(2m) \oplus \mathfrak{sp}(n-p,p).$$

6. *P*(*n*) (*n* ≥ 2) の実型

$$P_I(n) : \mathscr{L}_0 = \mathfrak{su}(n+1), \quad n : \text{odd},$$
$$P_{II}(n) : \mathscr{L}_0 = \mathfrak{sl}(n+1, \mathbb{R}).$$

7. Q(n) (n ≥ 2) の実型

$$Q_I(n) : \mathscr{L}_0 = \mathfrak{su}(p, n+1-p),$$

$$Q_{II}(n) : \mathscr{L}_0 = \mathfrak{su}^*(n+1), \quad n : \text{odd},$$

$$Q_{III}(n) : \mathscr{L}_0 = \mathfrak{sl}(n+1, \mathbb{R}).$$

8. D(2|1; α) の実型

$$D_{I}(2|1;\alpha) : \mathscr{L}_{0} = \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R}); \alpha : \text{real},$$

$$D_{II}(2|1;\alpha) : \mathscr{L}_{0} = \mathfrak{su}(2) \oplus \mathfrak{su}(2) \oplus \mathfrak{sl}(2,\mathbb{R}); \alpha : \text{real},$$

$$D_{III}(2|1;\alpha) : \mathscr{L}_{0} = \mathfrak{sl}(2,\mathbb{C}) \oplus \mathfrak{sl}(2,\mathbb{R}); \alpha + \bar{\alpha} = -1.$$

9. G(3)の実型

$$G_I(3) : \mathscr{L}_0 = \mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{g}_{2,0},$$

$$G_{II}(3) : \mathscr{L}_0 = \mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{g}_{2,2}.$$

ここで、 $\mathfrak{g}_{2,0}$ は G_2 のLie代数のコンパクト実型 (= Aut \mathfrak{C})、 $\mathfrak{g}_{2,2}$ は非コンパクト実型.

10. F(4)の実型

$$\begin{split} F_{I}(4) &: \mathscr{L}_{0} = \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{so}(7), \\ F_{II}(4) &: \mathscr{L}_{0} = \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{so}(3,4), \\ F_{III}(4) &: \mathscr{L}_{0} = \mathfrak{su}(2) \oplus \mathfrak{so}(2,5), \\ F_{IV}(4) &: \mathscr{L}_{0} = \mathfrak{su}(2) \oplus \mathfrak{so}(1,6). \end{split}$$

[Parker M 1980[Par80]]

8.5.2 单純超対称代数

【定理 8.24 (単純超対称代数の分類)】 古典単純実 Lie 超代数 $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$ で. \mathcal{L}_0 が時空対称性を表す Lie 代数 $\mathfrak{so}(D,1), \mathfrak{so}(D-1,2), \mathfrak{so}(D,2)$ を直和因子として含 むものは次のものに限られる:

D	L	\mathscr{L}_0	\mathscr{L}_1	複素型
2	$\mathfrak{su}(1,1 p,N-p)$	$\mathfrak{so}(2,1) \oplus \mathfrak{u}(p,N-p); N \neq 2$	$(2,N) + (2,\bar{N})$	A(1 N-1)
	$\mathfrak{sl}(2 N;\mathbb{R})$	$\mathfrak{so}(2,1) \oplus \mathfrak{sl}(N,\mathbb{R}) \oplus \mathbb{R}; N \neq 2$	(2,N) + (2,N)	
	$\mathfrak{su}(1,1 2)$	$\mathfrak{so}(2,1)\oplus\mathfrak{su}(2)$	(2,2) + (2,2)	A(1 1)
	$\mathfrak{su}(1,1 1,1)$	$\mathfrak{so}(2,1)\oplus\mathfrak{su}(1,1)$	(2,2) + (2,2)	
	$\mathfrak{sl}(2 2;\mathbb{R})$	$\mathfrak{so}(2,1) \oplus \mathfrak{sl}(2,\mathbb{R})$	(2,2) + (2,2)	
	$\operatorname{osp}(p, N-p 2; \mathbb{R})$	$\mathfrak{so}(2,1) \oplus \mathfrak{so}(p,N-p)$	(2,N)	B/D([N/2] 1)
	$\operatorname{osp}(2,1 2N;\mathbb{R})$	$\mathfrak{so}(2,1)\oplus\mathfrak{sp}(N;\mathbb{R})$	(3,2N)	B(1 N)
	$osp(2 p, N-p; \mathbb{H})$	$\mathfrak{so}(2,1) \oplus \mathfrak{so}(3) \oplus \mathfrak{sp}(p,N-p)$	(2, 2, 2N)	D(2 N)
	$D_I(2 1;\alpha)$	$\mathfrak{so}(2,1) \oplus \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R})$		$D(2 1;\alpha)$
	$D_{II}(2 1;\alpha)$	$\mathfrak{so}(2,1) \oplus \mathfrak{so}(4)$	(2,4)	
	$D_{III}(2 1;\alpha)$	$\mathfrak{so}(2,1)\oplus\mathfrak{sl}(2,\mathbb{C})$		
	$G_I(3)$	$\mathfrak{so}(2,1)\oplus\mathfrak{g}_{2,0}$	(2,7)	G(3)
	$G_{II}(3)$	$\mathfrak{so}(2,1)\oplus\mathfrak{g}_{2,2}$		
	$F_I(4)$	$\mathfrak{so}(2,1)\oplus\mathfrak{so}(7)$	(2,8)	F(4)
	$F_{II}(4)$	$\mathfrak{so}(2,1) \oplus \mathfrak{so}(3,4)$		
3	$H(4;1;\mathbb{R})$	$\mathfrak{so}(3,1)$	(2,1) + (1,2)	A(1 1)
	$\operatorname{osp}(3,1 2N;\mathbb{R})$	$\mathfrak{so}(3,1) \oplus \mathfrak{sp}(N,\mathbb{R})$		D(2 N)
	$osp(3 p, N-p; \mathbb{H})$	$\mathfrak{so}(3,1)\oplus\mathfrak{sp}(p,N-p)$		D(3 N)
	$D_{III}(2 1;\alpha)$	$\mathfrak{so}(3,1)\oplus\mathfrak{sl}(2,\mathbb{R})$	$\alpha + \bar{\alpha} = -1$	$D(2 1;\alpha)$
	$\operatorname{osp}(2,2 2N;\mathbb{R})$	$\mathfrak{so}(2,2)\oplus\mathfrak{sp}(2,\mathbb{R})$		D(2 N)
4	$osp(4,1 2N;\mathbb{R})$	$\mathfrak{so}(4,1) \oplus \mathfrak{sp}(N,\mathbb{R})$		B(2 N)
	$\operatorname{osp}(1 1,1;\mathbb{H})$	$\mathfrak{so}(4,1) \oplus \mathfrak{so}(1,1)$	$4 + \bar{4}$	C(3)
	$\operatorname{osp}(N 1,1;\mathbb{H})$	$\mathfrak{so}(4,1)\oplus\mathfrak{so}^*(2N); N\geqslant 2$		D(N 2)
	$ \operatorname{osp}(p, N-p 4; \mathbb{R}) $	$\mathfrak{so}(3,2) \oplus \mathfrak{so}(p,N-p); N \ge 1$	(4,N)	B/D([N/2] 2)
	$\operatorname{osp}(3,2 2N;\mathbb{R})$	$\mathfrak{so}(3,2)\oplus\mathfrak{sp}(N,\mathbb{R})$		B(2 N)
	$osp(2 4;\mathbb{R})$	$\mathfrak{so}(3,2)\oplus\mathfrak{so}(2)$		C(5)

D	L	\mathscr{L}_0	\mathscr{L}_1	複素型
5	$\mathfrak{sl}(2 N;\mathbb{H})$	$\mathfrak{so}(5,1)\oplus\mathfrak{su}^*(2N)\oplus\mathfrak{u}(1)$	$N \neq 2$	A(3 2N-1)
	$\mathfrak{sl}(2 2;\mathbb{H})$	$\mathfrak{so}(5,1)\oplus\mathfrak{so}(5,1)$		A(3 3)
	$\operatorname{osp}(5,1 2N;\mathbb{R})$	$\mathfrak{so}(5,1)\oplus\mathfrak{sp}(N,\mathbb{R})$		D(3 N)
	$Q_{II}(3)$	$\mathfrak{so}(5,1)$	$15_{\rm adj}$	Q(3)
	$\mathfrak{su}(2,2 p,N-p)$	$\mathfrak{so}(4,2) \oplus \mathfrak{u}(p,N-p); N \neq 4$	$(4,N) + (\bar{4},\bar{N})$	A(3 N-1)
	$\mathfrak{su}(2,2 p,4-p)$	$\mathfrak{so}(4,2)\oplus\mathfrak{su}(p,4-p)$	$(4,4) + (\bar{4},\bar{4})$	A(3 3)
	$\mathfrak{sp}(4,2 2N;\mathbb{R})$	$\mathfrak{so}(4,2) \oplus \mathfrak{sp}(N,\mathbb{R})$		D(3, N)
	$Q_I(3)$	$\mathfrak{so}(4,2)$	15_{ad}	Q(3)
6	$\operatorname{osp}(6,1 2N;\mathbb{R})$	$\mathfrak{so}(6,1)\oplus\mathfrak{sp}(N,\mathbb{R})$		B(3 N)
	$F_{IV}(4)$	$\mathfrak{so}(6,1)\oplus\mathfrak{su}(2)$	(8,2)	F(4)
	$\operatorname{osp}(5,2 2N;\mathbb{R})$	$\mathfrak{so}(5,2) \oplus \mathfrak{sp}(N,\mathbb{R})$		B(3 N)
	$F_{III}(4)$	$\mathfrak{so}(5,2)\oplus\mathfrak{su}(2)$	(8, 2)	F(4)
7	$\operatorname{osp}(7,1 2N;\mathbb{R})$	$\mathfrak{so}(7,1)\oplus\mathfrak{sp}(N,\mathbb{R})$		D(4 N)
	$osp(4 p, N-p; \mathbb{H})$	$\mathfrak{so}(6,2) \oplus \mathfrak{sp}(p,N-p)$	(8, 2N)	D(4 N)
	$\operatorname{osp}(6,2 2N;\mathbb{R})$	$\mathfrak{so}(6,2)\oplus\mathfrak{sp}(N,\mathbb{R})$		
2m	$\operatorname{osp}(2m, 1 2n; \mathbb{R})$	$\mathfrak{so}(2m,1)\oplus\mathfrak{sp}(n,\mathbb{R})$		B(m n)
	$\operatorname{osp}(2m-1,2 2n;\mathbb{R})$	$\mathfrak{so}(2m-1,2)\oplus\mathfrak{sp}(n,\mathbb{R})$		B(m n)
2m - 1	$osp(2m-1,1 2n;\mathbb{R})$	$\mathfrak{so}(2m-1,1)\oplus\mathfrak{sp}(n,\mathbb{R})$		D(m n)
	$osp(2m-2,2 2n;\mathbb{R})$	$\mathfrak{so}(2m-2,2)\oplus\mathfrak{sp}(n,\mathbb{R})$		D(m n)

8.6 Lie 超群

8.6.1 超行列

【定義 8.25 (超行列)】 可換超代数 *A* を係数とする行列を超行列と呼ぶ. 超行 列 *M* を

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \quad A \in M(p, r, \mathscr{A}), B \in M(p, s, \mathscr{A}), C \in M(q, r, \mathscr{A}), D \in M(q, s, \mathscr{A})$$

と表すとき,

$$A, D \in \mathscr{A}_0, B, C \in \mathscr{A}_1 \Rightarrow (p|q) \times (r|s)$$
 偶超行列
 $A, D \in \mathscr{A}_1, B, C \in \mathscr{A}_0 \Rightarrow (p|q) \times (r|s)$ 奇超行列

と定義する.このタイプの超行列の全体を $M(p|q,r|s; \mathscr{A})$ と表す.

特に, $(p|q) \times (p|q)$ 型の超行列の集合を $M(p|q; \mathscr{A})$ と表す. これは, 結合的超代数 をなす. 行列超代数 $M(p|q; \mathbb{F})$ は, 自然な埋め込みにより, $M(p|q; \mathbb{F}B_L)$ の部分超代 数となる. さらに, $(1|0) \times (r|s)$ 偶超行列を (r|s) 超行ベクトル, $(p|q) \times (1|0)$ 偶超行 列を (p|q)超列ベクトルという.

【定義 8.26 (超行列の基本演算)】

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

を超行列 $M \in M(p|q, r|s, \mathscr{A})$ とする.

i) (**Grassmann 数との**積) Grassmann 数 $E \in \mathscr{A} \land M$ の積を,

$$EM := \begin{pmatrix} EI_p & 0\\ 0 & (-1)^{\deg E} EI_q \end{pmatrix} M,$$
$$ME := M \begin{pmatrix} EI_r & 0\\ 0 & (-1)^{\deg E} EI_s \end{pmatrix}$$

により定義する.

ii) (超転置) M の超行列としての転置を

$${}^{\mathrm{st}}M := \begin{pmatrix} {}^{T}\!A & (-1)^{\mathrm{deg}M} {}^{T}\!C \\ -(-1)^{\mathrm{deg}M} {}^{T}\!B & {}^{T}\!D \end{pmatrix}$$

により定義する.このとき、次の性質がなりたつ:

$${}^{\mathrm{st}}(MN) = (-1)^{\mathrm{deg}M\mathrm{deg}N\mathrm{st}}N^{\mathrm{st}}M,$$
$${}^{\mathrm{st}}(EM) = E^{\mathrm{st}}(M), \quad {}^{\mathrm{st}}(ME) = {}^{\mathrm{st}}(M)E, \quad E \in \mathbb{F}B_L$$

iii) (超トレース) 超行列としてのトレースを

$$\operatorname{str} M := \operatorname{Tr} A - (-1)^{\operatorname{deg} M} \operatorname{Tr} D$$

で定義する.このとき、次の性質が成り立つ.

$$str(MN) = (-1)^{\deg M \deg N} str(NM),$$

$$str(EM) = E(strM), \quad srt(ME) = (strM)E,$$

$$str(^{st}M) = strM,$$

$$str(SMS^{-1}) = strM.$$

ここで, *S* は可逆な (*p*|*q*) 正方偶超行列である.

iv) (超行列式) M が (p|q) 正方偶超行列であるとき,超行列としての行列式を

$$\operatorname{sdet} M := \frac{\operatorname{det}(A - BD^{-1}C)}{\operatorname{det} D}$$

により定義する.このとき次の性質が成り立つ:

$$\operatorname{sdet}(MN) = (\operatorname{sdet}M)(\operatorname{sdet}N),$$

 $\operatorname{sdet}({}^{\operatorname{st}}M) = \operatorname{sdet}M,$
 $\operatorname{sdet}(\exp M) = \exp(\operatorname{str}M).$

v) (共役) $E \in \mathbb{C}B_L$ に対してその共役 E^{\sharp} を

$$E^{\sharp} := \begin{cases} E^* & E \in \mathbb{C}B_{L0} \\ -iE^* & E \in \mathbb{C}B_{L1} \end{cases}$$

により定義する. ここで, E* は通常の複素共役である. これを用いて, Mの 共役を

$$M^{\ddagger} := \begin{pmatrix} {}^{T}\!A^{\sharp} & {}^{T}\!C^{\sharp} \\ {}^{T}\!B^{\sharp} & {}^{T}\!D^{\sharp} \end{pmatrix}$$

と定義する.このとき、次の性質が成り立つ.

$$(MN)\ddagger = N^{\ddagger}M^{\ddagger},$$

$$(M^{\ddagger})^{\ddagger} = M,$$

$$\operatorname{sdet}(M^{\ddagger}) = (\operatorname{sdet}M)^{\sharp} = (\operatorname{sdet}M)^{\ast}.$$

8.6.2 超空間

【定義 8.27 (超空間)】 外積代数
$$\mathbb{R}B_L = \mathbb{R}_{L0} + \mathbb{R}_{L1}$$
 より作られる実線形空間
 $\mathbb{R}B_L^{m,n} = \mathbb{R}B_{L0} \times \cdots \times \mathbb{R}B_{L0} \times \mathbb{R}B_{L1} \times \cdots \times \mathbb{R}B_{L1}$

を超空間といい、その点を一般に

$$(\boldsymbol{X}; \boldsymbol{\Theta}) = (X^1, \cdots, X^m, \Theta^1, \cdots, \Theta^n)$$

で表す.

 $\mathbb{R}B_L$ の元 *Z* を基底 $\mathcal{E}_M(M$ は $\{1, \dots, L\}$ の部分集合)を用いて $Z = \sum_M Z^M \mathcal{E}_M$ と表すとき,*Z* のノルムを

$$\|Z\| = \sum_{M} |Z^M|$$

により定義する.このとき、 $\mathbb{R}B_L$ は Banach 代数となる.このノルムを用いて、超空間のノルムを

$$\|(\boldsymbol{X};\boldsymbol{\Theta})\| := \sum_{j} \|X^{j}\| + \sum_{k} \|\Theta^{k}\|$$

により定義する.

【定義 8.28 (超微分)】 Banach 代数 $\mathbb{C}B_L$ に値を取る超空間 $\mathbb{R}B_L^{m,n}$ の開集合 U上の関数 $F(\mathbf{X}, \Theta)$ に対して,

$$F(\boldsymbol{X} + \boldsymbol{Y}; \boldsymbol{\Theta} + \boldsymbol{\Psi}) = F(\boldsymbol{X}; \boldsymbol{\Theta}) + \sum_{j} Y^{j} \frac{\partial F(\boldsymbol{X}; \boldsymbol{\Theta})}{\partial X^{j}} + \sum_{k} \Psi^{k} \frac{\partial F(\boldsymbol{X}; \boldsymbol{\Theta})}{\partial \boldsymbol{\Theta}^{k}} + \|(\boldsymbol{Y}; \boldsymbol{\Psi})\eta(\boldsymbol{Y}; \boldsymbol{\Psi})\|_{\boldsymbol{\Theta}}$$

となる U 上の $\mathbb{C}B_L$ 値関数 $\partial F(\mathbf{X}; \mathbf{\Theta}) / \partial X^j$, $\partial F(\mathbf{X}; \mathbf{\Theta}) / \partial \Theta^k$ および $(\mathbf{Y}; \mathbf{\Psi}) = (0; 0)$ の近傍で定義された関数 $\eta(\mathbf{Y}; \mathbf{\Psi})$ が存在して,

$$\|(\boldsymbol{Y};\boldsymbol{\Psi})\| \to 0 \Rightarrow \|\eta(\boldsymbol{Y};\boldsymbol{\Psi})\| \to 0$$

目次へ

 \Box

が成り立つとき、 $\partial F(\mathbf{X}; \mathbf{\Theta}) / \partial X^{j}$ 、 $\partial F(\mathbf{X}; \mathbf{\Theta}) / \partial \Theta^{k}$ を $F(\mathbf{X}; \mathbf{\Theta})$ の超偏微係数という. ただし、 $\partial F(\mathbf{X}; \mathbf{\Theta}) / \partial \Theta^{k}$ はこの定義では一意的に定まらず、 $\mathcal{E}_{1,\dots,L}$ に比例する項を加 える自由度の除いて決まる.

【定理 8.29 (C^{∞} 関数)】 超空間 $\mathbb{C}B_L^{m,n}$ の開集合 $U \perp O \mathbb{C}B_L$ 値関数 $F(\mathbf{X}; \Theta)$ が, 超微分の意味で C^{∞} とする.

i) Θ^k の積を一般に Θ^Λ と表すと,

$$F(\boldsymbol{X}; \boldsymbol{\Theta}) = \sum_{\Lambda} F^{\Lambda}(\boldsymbol{X}) \boldsymbol{\Theta}^{\Lambda}$$

となる. すなわち, $F \ \mathsf{i} \Theta^k$ の多項式となる. さらに, $X \ \mathsf{o} c \ \mathsf{数成分} (\mathcal{E}_{\emptyset} = 1 \ \mathsf{o} (\mathsf{K}_{\emptyset}) > \mathbf{X}_0 > \mathbf{X}_0$

$$\mathscr{F}(\boldsymbol{X}_0) = F(\boldsymbol{X}_0 \mathscr{E}_{\varnothing})$$

とおくと,

$$F(\boldsymbol{X}) = \mathscr{F}(\boldsymbol{X}) \equiv \sum_{\boldsymbol{j}} (\boldsymbol{j}^{-1}) D^{\boldsymbol{j}} \mathscr{F}(\boldsymbol{X}_0) (\boldsymbol{X} - \boldsymbol{X}_0 \mathscr{E}_{\varnothing})^{\boldsymbol{j}}.$$

【定義 8.30 (超微分可能関数)】 $U \subset \mathbb{R}B_L^{m,n} \pm \mathcal{O} C^{\infty}\mathbb{C}B_L$ 値関数を $F(\mathbf{X}; \Theta)$ と する. $L \ge 2n$ として, L' = [(L+1)/2] とおく. このとき,

$$F(\boldsymbol{X}; \boldsymbol{\Theta}) = \sum_{\Lambda} \mathscr{F}^{\Lambda}(\boldsymbol{X}) \boldsymbol{\Theta}^{\Lambda}$$

において, $\mathscr{F}^{\lambda}(X_{\varnothing})$ の値が常に $\mathbb{C}B_{L'}(\subset \mathbb{C}B_L)$ に含まれるとき, $F \in U$ 上の超微分可能関数という.

【定理 8.31】 $F(X; \Theta) \in U \subset \mathbb{C}B_L^{m,n}$ 上の超微分可能関数とする.このとき、その奇変数 Θ^k に関する偏微分を

$$\frac{\partial F(\boldsymbol{X};\boldsymbol{\Theta})}{\partial \Theta^k} = \sum_{\Lambda} (-1)^{\deg \mathscr{F}^{\Lambda}} \mathscr{F}^{\Lambda}(\boldsymbol{X}) \Theta^{\Lambda/k}$$

と定義し、上記の一般的定義における $\mathcal{E}_{1,...,L}$ に比例する不定性を取り除く. ただし、 kが Λ に含まれる場合は、その位置を p(k) として

$$\Theta^{\Lambda/k} := \begin{cases} (-1)^{p(k)-1} \Theta^{\Lambda-\{k\}} & k \in \Lambda, \\ 0 & k \notin \Lambda. \end{cases}$$

このとき,次が成り立つ.

- i) 超偏微分は線形作用素である.
- ii) 超偏微分について一般化された Leibnitz の公式が成り立つ.ただし、 $F(X; \Theta)$ が同次元のとき、

$$\frac{\partial FG}{\partial \Theta^k} = \frac{\partial F}{\partial \Theta^k} G + (-1)^{\deg F} F \frac{\partial G}{\partial \Theta^k}.$$

iii) $\partial/\partial X^{j} \geq \partial/\partial X^{j'}$ および $\partial/\partial \Theta^{k}$ は可換, $\partial/\partial \Theta^{k} \geq \partial/\partial \Theta^{k'}$ は反可換.

【定義 8.32 (超解析関数)】 $\mathbb{R}B_L^{m,n}$ の開集合U上の $\mathbb{C}B_L$ に値を取る超微分可能 関数 $F(\mathbf{X}; \Theta)$ は、その $\mathbb{C}B_L$ の基底 \mathcal{E}_M に関する成分 $F^M(\mathbf{X}; \Theta)$ がすべて X^j_μ の解 析関数のとき、超解析的という.

8.6.3 線形超群

【定義 8.33 (線形超群)】 $(p|q) \times (p|q)$ 型偶超行列の集合 \mathcal{G}_s が次の条件を満たす とき,次元 (m,n)の線形超群という:

- i) *G*_sはLie 群である.
- ii) *G*_sの単位元の近傍の局所座標系 (V, φ) として

$$\phi: V \to U \subset \mathbb{R}B_L^{m,n}$$

がとれ、 ϕ^{-1} の各成分はU上の超解析関数である.

【例 8.34 (U(p|q), SU(p|q))】

$$U(p|q) := \{ G \in M_0(p|q; \mathbb{C}B_L) \mid G^{\ddagger}G = 1 \},\$$

$$SU(p|q) := \{ G \in U(p|q) \mid \text{sdet}G = 1 \}.$$

【定理 8.35 (Lie 代数と超生成元)】 *G_s* を次元 (*m*,*n*) の超群とし,その単位元の 近傍での超空間座標表示を *G*(*X*; O) とする.

目次へ

 $-\Box$

i) \mathscr{G}_s は $(m+n)2^{L-1}$ 次元のLie群であり、その線形Lie代数 $\mathscr{L}(\mathscr{G}_s)$ の基底は

$$M_j^I = \frac{\partial G(\boldsymbol{X};\boldsymbol{\Theta})}{\partial X_I^j}|_{(\boldsymbol{X},\boldsymbol{\Theta})=\boldsymbol{0}}, \quad N_k^J = \frac{\partial G(\boldsymbol{X};\boldsymbol{\Theta})}{\partial \boldsymbol{\Theta}_J^k}|_{(\boldsymbol{X},\boldsymbol{\Theta})=\boldsymbol{0}}$$

で与えられる. ここで, *I*, *J* はそれぞれ {1, · · · , *L*} の偶数個, 奇数個の部分集 合である.

ii) G(X; **O**) の超偏微係数を

$$M_j = \frac{\partial G(\boldsymbol{X}; \boldsymbol{\Theta})}{\partial X^j} |_{(\boldsymbol{X}, \boldsymbol{\Theta}) = \boldsymbol{0}}, \quad N_k = \frac{\partial G(\boldsymbol{X}; \boldsymbol{\Theta})}{\partial \boldsymbol{\Theta}^k} |_{(\boldsymbol{X}, \boldsymbol{\Theta}) = \boldsymbol{0}}$$

とおくと,

$$M_j^I = \mathscr{E}_I M_j, \quad N_k^J = \mathscr{E}_J N_k$$

が成り立ち, $\mathscr{L}(\mathscr{G}_s)$ の元は一般に $(X; \Theta) \in \mathbb{R}B_L^{m,n}$ をパラメーターとして

$$M = \sum_{j} X^{j} M_{j} + \sum_{k} \Theta^{k} N_{k}$$

と表される. $M_i, N_k \in M(p|q; \mathbb{C}B_L)$ は $\mathscr{L}(\mathscr{G}_s)$ の超生成元と呼ばれる.

iii) 単位元の近傍では

$$G(\boldsymbol{X}; \boldsymbol{\Theta}) = \exp \boldsymbol{M}$$

が成り立つ.

[Cornwell JF (1989)[Cor89]]

【定理 8.36 (Lie 超代数との関係)】 $\mathscr{L}_s = \mathscr{L}_0 + \mathscr{L}_1 \ \varepsilon \ \dim \mathscr{L}_0 = m, \dim \mathscr{L}_1 = n$ となる実 Lie 超代数, $\Gamma : \mathscr{L}_s \to M(p|q; \mathbb{C})$ をその忠実な次数付き表現とする. このとき,次が成り立つ.

i) a_1, \dots, a_m を \mathscr{L}_0 の基底, b_1, \dots, b_n を \mathscr{L}_1 の基底として,

$$M_j^I = \mathscr{E}_I \Gamma(a_j), \quad N_k^J = \mathscr{E}_J \Gamma(b_k)$$

により $M(p|q; \mathbb{C}B_L)$ の元を定義すると、これらの線形包は $(m+n)2^{L-1}$ 次元実 Lie 代数 $\mathcal{L}_s(\mathbb{C}B_L)$ をなす.

ii) Lie 代数 *L*_s(CB_L) に対応する線形 Lie 群は次元 (m, n) の線形 Lie 超群となる.

- iii) $0 \leq N \leq L$ となる任意の整数 N に対して, M_j^I, N_k^J のうち $|I|, |J| \geq N$ となる もので張られる $\mathcal{L}_s(\mathbb{C}B_L)$ の部分空間はそのイデアルとなる. $N \geq 1$ ならこれ は固有イデアルとなり, さらに, N > L/2ならば可換イデアルとなる. 特に, $\mathcal{L}_s(\mathbb{C}B_L)$ は半単純 Lie 代数とならない.
- iv) i),ii) で定義される Lie 超代数の集合から線形 Lie 超群の集合への写像は全射でない.

[Cornwell JF (1989)[Cor89]]

A Lie 群・Lie 代数関係の表と図

Algebra	Dynkin designation	Dimensionality
A _n	(100)	n+1
	or (001)*	$\overline{n+1}$
B _n	(100)*	2n + 1
	(00001)	2 ⁿ
C,	(100)	2 <i>n</i>
D _n	(100)*	2 n
	(0001)	2 ⁿ⁻¹
	or (00010)*	2^{n-1}
G ₂	(01)	7
F4	(0001)	26
E ₆	(100000)	27
 Communication (Communication) 	or (000010)*	27
E ₇	(0000010)	56
E ₈	(0000010)	248

Simple irreps of simple Lie algebras

* This irrep can be constructed from products of the unstarred irrep.

図 19: 単純 Lie 代数に対する単純既約表現のリスト(Dynkin 基底)

複素型	実型	定義	極大コンパクト群
A_{n-1}		$X \in \mathrm{SL}(n, \mathbb{C})$	
	SU(n)	$X^{\dagger}X = I_n$	コンパクト
	SU(p,q)(p+q=n)	$X^{\dagger}I_{p,q}X = I_{p,q}$	$S(\mathrm{U}(p) \times \mathrm{U}(q))$
	$\operatorname{SL}(n,\mathbb{R})$	$\bar{X} = X$	SO(n)
	$\mathrm{SU}^*(n) = \mathrm{SL}(n/2, \mathbb{H})$	$J_{n/2}X = \bar{X}J_{n/2}, n$:even	$\operatorname{Sp}(n/2)$
B_n		$^T\!XX = I_n, \ X \in \mathrm{SL}(2n+1,\mathbb{C})$	
	$\mathrm{SO}(2n+1)$	$\bar{X} = X$	コンパクト
	SO(p,q)(p+q=2n+1)	$\bar{X} = I_{p,q} X I_{p,q}$	$\mathrm{SO}(p) \times \mathrm{SO}(q)$
C_n		${}^{T}\!XJ_nX = J_n, \ X \in \mathrm{GL}(2n,\mathbb{C})$	
	$\operatorname{Sp}(n)$	$X^{\dagger}X = I_{2n}$	コンパクト
	$\operatorname{Sp}(p,q)(p+q=n)$	$X^{\dagger}K_{p,q}X = K_{p,q}$	$\operatorname{Sp}(p) \times \operatorname{Sp}(q)$
	$\operatorname{Sp}(n,\mathbb{R})$	$\bar{X} = X$	U(n)
D_n		$^{T}\!XX = I_n, \ X \in \mathrm{SL}(2n, \mathbb{C})$	
	SO(2n)	$\bar{X} = X$	コンパクト
	SO(p,q)(p+q=2n)	$\bar{X} = I_{p,q} X I_{p,q}$	$\mathrm{SO}(p) \times \mathrm{SO}(q)$
	$\mathrm{SO}^*(2n) = \mathrm{SO}(n, \mathbb{H})$	$X^{\dagger}J_nX = J_n$	U(n)
G_2	G_2		コンパクト
	$G_{2(2)}$		$SU(2) \times SU(2)$
F_4	F_4		コンパクト
	$F_{4(-20)}$		SO(9)
	$F_{4(4)}$		$\operatorname{Sp}(3) \times \operatorname{SU}(2)$
E_6	E_6		コンパクト
	$E_{6(2)}$		$SU(6) \times SU(2)$
	$E_{6(-14)}$		$SO(10) \times U(1)$
	$E_{6(6)}$		$\operatorname{Sp}(4)$
	$E_{6(-26)}$		F_4
E_7	E_7		コンパクト
	$E_{7(7)}$		SU(8)
	$E_{7(-5)}$		$SO(12) \times SU(2)$
	$E_{7(-25)}$		$E_6 \times \mathrm{U}(1)$
E_8	$ E_8$		コンパクト
	$ E_{8(8)}$		SO(16)
	$ E_{8(-24)}$		$E_7 \times SU(2)$

表 19: 実単純 Lie 群のリスト

Level vectors of simple groups. The ordering follows the conventions of table 5

SU _{n+1}	$\overline{R} = [n, 2(n-1), 3(n-2), \dots, (n-1)2, n]$
SU ₅	$\bar{R} = [4, 6, 6, 4]$
SU ₆	$\bar{R} = [5, 8, 9, 8, 5]$
SO_{2n+1}	$\bar{R} = [2n, 2(2n-1), 3(2n-2), 4(2n-3), \dots, (n-1)(n+2), n(n+1)/2]$
SO ₉	$\bar{R} = [8, 14, 18, 10]$
Sp _{2n}	$\bar{R} = [(2n-1), 2(2n-2), 3(2n-3), \dots, (n-1)(n+1), n^2]$
SO _{2n}	$\bar{R} = [(2n-2), 2(2n-3), 3(2n-4), \dots, (n-2)(n+1), n(n-1)/2, n(n-1)/2]$
SO ₈	$\vec{R} = [6, 10, 6, 6]$
SO ₁₀	$\bar{R} = [8, 14, 18, 10, 10]$
G ₂	$\bar{R} = [10, 6]$
F ₄	$\bar{R} = [22, 42, 30, 16]$
E ₆	$\bar{R} = [16, 30, 42, 30, 16, 22]$
E ₇	$\bar{R} = [34, 66, 96, 75, 52, 27, 49]$
E ₈	$\bar{R} = [92, 182, 270, 220, 168, 114, 58, 136]$

図 20: 単純 Lie 代数に対する Dynkin 基底でのレベルベクトル

複素型	階数	次元	コンパクト実型 (π1)	非コンパクト実型(極大コンパクト群)
E_8	8	248	$E_{8}(1)$	$E_{8(8)}$ (SO(16) \cong Spin(16)/ \mathbb{Z}_2)
				$E_{8(-24)}\left((E_7 \times \mathrm{SU}(2))/\mathbb{Z}_2\right)$
E_7	7	133	$E_7\left(\mathbb{Z}_2\right)$	$E_{7(7)} \left({ m SU(8)} / \mathbb{Z}_2 ight)$
				$E_{7(-5)}(({\rm Spin}(12) \times {\rm SU}(2))/\mathbb{Z}_2),$
				$E_{7(-25)}\left((E_6 \times \mathrm{U}(1))/\mathbb{Z}_3\right)$
E_6	6	78	$E_{6}\left(\mathbb{Z}_{3} ight)$	$E_{6(6)}\left({ m Sp}(4)/{ m Z}_2 ight)$
				$E_{6(2)}\left(\mathrm{SU}(6) \times \mathrm{SU}(2)/\mathbb{Z}_6\right),$
				$E_{6(-14)}\left(({\rm Spin}(10) \times {\rm U}(1))/\mathbb{Z}_4\right)$
				$E_{6(-26)}(F_4)$
F_4	4	52	$F_{4}\left(1 ight)$	$F_{4(4)}\left((\operatorname{Sp}(3) \times \operatorname{Sp}(1))/\mathbb{Z}_2\right)$
				$F_{4(-20)}({\rm Spin}(9))$
G_2	2	14	$G_{2}\left(1 ight)$	$G_{2(2)}\left((\mathrm{SU}(2)\times\mathrm{SU}(2)/\mathbb{Z}_2)\right)$

表 20: 単純例外 Lie 群

Cartan matrices of simple Lie algebras

A(A _n) =	$\begin{pmatrix} 2\\ -1\\ 0\\ \cdot\\ 0\\ 0 \end{pmatrix}$	$ \begin{array}{r} -1 \\ 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $	0 -1 2 0 0		1		-1 0	0 0 2 -1	$\begin{pmatrix} 0\\0\\0\\\cdot\\-1\\2 \end{pmatrix}$	A(G A(F4	2) =	(_ (-	2 -1 2 1 0 0	$\binom{1}{2} - \frac{1}{2} - \frac{1}{0} - \frac{1}{0}$	0 2 2	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}$		
A(B _n) =	$ \begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	-1 2 -1 , 0 0	0 -1 2 0 0	•••••		• • • • •	0 0 0 2 -1	0 0 0 -2 2).	A(E ₆) =	(2 -1 0 0 0 0	$ \begin{array}{r} -1 \\ 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $	0 -1 2 -1 0 -1	0 0 -1 2 -1 0	0 0 0 -1 2 0	0 0 -1 0 2)

 $A(C_n)$ is the transpose of $A(B_n)$, since the short and long roots are interchanged.

	12	-1	0			0	0	01		12	-1	0	0	0	0	0
	1-1	2	-1		0. W	0	0	0	2	-1	2	-1	0	0	0	0
	0	-1	2		•	0	0	0	3	0	-1	2	-1	0	0	-1
$A(D_n) =$									$A(E_{7}) =$	0	0	-1	2	-1	0	0
	0	0	0			2	-1	-1	2320343	0	0	0	-1	2	-1	0
	10	0	0			-1	2	0		0	0	0	0	-1	2	0
	10	0	0			-1	0	2		10	0	-1	0	0	0	2
	1 2	00 A	0	0	0		0	0.1								
	$\binom{2}{-1}$	-1 2	0 -1	0 0	0 0	0 0	0 0	°								
	$\begin{pmatrix} 2\\ -1\\ 0 \end{pmatrix}$	-1 2 -1	0 -1 2	0 0 -1	0 0 0	0 0 0	0 0 0	$\begin{pmatrix} 0\\ 0\\ -1 \end{pmatrix}$								
	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \end{pmatrix}$	-1 2 -1 0	0 -1 2 -1	0 0 -1 2	0 0 0 -1	0 0 0 0	0 0 0 0	$\begin{pmatrix} 0\\ 0\\ -1\\ 0 \end{pmatrix}$								
A(E ₈) =	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	-1 2 -1 0 0	0 -1 2 -1 0	0 0 -1 2 -1	0 0 -1 2	0 0 0 -1	0 0 0 0	0 0 -1 0 0								
4(E ₈) =	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	-1 2 -1 0 0 0	0 -1 2 -1 0 0	0 0 -1 2 -1 0	0 0 -1 2 -1	0 0 0 -1 2	0 0 0 0 -1	0 0 -1 0 0 0								
4(E ₈) =	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{r} -1 \\ 2 \\ -1 \\ 0 \\ $	$ \begin{array}{c} 0 \\ -1 \\ 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 -1 2 -1 0 0	0 0 -1 2 -1 0	0 0 0 -1 2 -1	0 0 0 0 0 0 -1 2	$\begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}$								

図 21: 単純 Lie 代数の Cartan 行列

Metric tensors G for weight space

A CONTRACTOR OF	-		_	and the second division of the second divisio	and the second se				
	1	1 · n	00	$1 \cdot (n-1)$	$1 \cdot (n-2)$.)	1 · 2	1 · 1	1
	1	$1 \cdot (n -$	1)	$2 \cdot (n-1)$	$2 \cdot (n - 2)$)	2.2	$2 \cdot 1$	1
$G(A_n) = -$	$\frac{1}{+1}$	1 · (n -	2)	$2 \cdot (n - 2)$	$3 \cdot (n-2)$:)	3 · 2	3 · 1	
'n	1'	1 · 2		2.2	3.2		$(n-1) \cdot 2$	(n-1)	
	1	1 · 1		2 · 1	3 · 1		$(n-1) \cdot 1$	$n \cdot 1$	1
	. 2	2 2		2	1				
	12	4 4		4	; \				
	5	1 6		6	2				
$G(\mathbf{B}_n) = \frac{1}{2}$	-				<u> </u>				
2		1 6		2(- 1)	-1				
		2 2		2(n-1)	-12/				
	1	2 3		n-1	n/2 '				
	11	1 1		1 1	1				
	11	2 2		2 2	1				
1	1	2 3		3 3	1				
$G(\mathbf{C}_n) = \frac{1}{2}$									
4	1	2 3		n-1 n	-1/				
	1	2 3		n-1 n	-/				
	12	2 2		2	1	1	1		
	2	4 4	•••	4	2	2	1		
,	2	4 6		6	3	3	1		
$G(\mathbf{D}_n) = \frac{1}{2}$									
2	2	4 6	• • •	2(n-2)	n – 2	n-2			
	1	2 3	• • •	n - 2	n/2	(n-2)/	2		
	1	2 3	• • •	n – 2	(n-2)/2	n/2	1		

図 22: 古典 Lie 代数のウエイト空間での Cartan 計量

Root diagrams in the Dynkin basis. "Level of simple roots" is the
number of simple roots that must be subtracted from the highest root
in order to obtain the simple roots; the next level has the n zero roots
corresponding to the Cartan subalgebra

Algebra	Highest root	Level of simple roots	Dimension
An	(1 0 0 0 0 1)	n – 1	n(n + 2)
Bn	(0 1 0 0 0 0)	2n - 2	n(2n+1)
C,	(200000)	2n - 2	n(2n+1)
D,	(0 1 0 0 0 0)	2n - 4	n(2n-1)
G ₂	(1 0)	4	14
F₄	(1 0 0 0)	10	52
E ₆	(0 0 0 0 0 1)	10	78
E ₇	(1 0 0 0 0 0 0)	16	133
E ₈	(0 0 0 0 0 0 1 0)	28	248

図 23: 単純 Lie 代数の随伴表現の最高 Dynkin ウエイト

r t	А	В	С	D	Е	F	G
	r(r+2)	r(2r+1)	r(2r+1)	r(2r-1)			
1	3	(3)	-	-			
2	8	10	(10)	3 + 3			14
3	15	21	21	(15)			
4	24	36	36	28		52	
5	35	55	55	45			
6	48	78	78	66	78		
7	63	105	105	91	133		
8	80	136	136	120	248		
9	99	171	171	153			
10	120	210	210	190			

表 21: 低ランクの単純 Lie 代数の次元

Cartan matrices of simple Lie algebras

A(A _n) =	$\begin{pmatrix} 2\\ -1\\ 0\\ \\ 0\\ 0 \end{pmatrix}$	$ \begin{array}{r} -1 \\ 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $	0 -1 2 0 0	1	1	• • • • •	-1 0	0 0 2 -1	$\begin{pmatrix} 0\\0\\.\\-1\\2 \end{pmatrix}$	А(G; А(F4	2) =) =	(_ (-	2 -1 2 1 0 0	$\begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \\ - \end{pmatrix}$	0 2 2	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}$			
A(B _n) =	$ \begin{pmatrix} 2 \\ -1 \\ 0 \\ . \\ 0 \\ 0 \end{pmatrix} $	-1 2 -1 , 0 0	0 -1 2 0 0	•••••		• • • • •	0 0 2 -1	0 0 0 -2 2).	4(E ₆) =	(2 -1 0 0 0 0	-1 2 -1 0 0	0 -1 2 -1 0 -1	0 0 -1 2 -1 0	0 0 -1 2 0	0 0 -1 0 0 2)	

 $A(C_n)$ is the transpose of $A(B_n)$, since the short and long roots are interchanged.

	12	-1	0			0	0	01		12	-1	0	0	0	0	0
	1-1	2	-1		o 😿	0	0	0		-1	2	-1	0	0	0	0
	0	-1	2		•	0	0	0	3	0	-1	2	-1	0	0	-1
$A(D_n) =$									$A(E_7) =$	0	0	-1	2	-1	0	0
	0	0	0			2	-1	-1	2300383	0	0	0	-1	2	-1	0
	0	0	0			-1	2	0		0	0	0	0	-1	2	0
	10	0	0			-1	0	2	15	10	0	-1	0	0	0	2
	$\begin{bmatrix} 2 \\ -1 \end{bmatrix}$	-1 2	0 -1	0	0	0	0	0								
	1 2	-1	0	0	0	0	0	0	8							
	0	-1	2	-1	0	0	0	-1								
	0	0	-1	2	-1	0	0	0	1							
$A(E_8) =$	0	0	0	-1	2	-1	0	0								
	0	0	0	0	-1	2	-1	0								
	1 0	0	0	0	0	-1	2	0								
	1 0	•														

図 24: 単純 Lie 代数の Cartan 行列

$$G(\mathbf{E}_{6}) = \frac{1}{3} \begin{pmatrix} 4 & 5 & 6 & 4 & 2 & 3 \\ 5 & 10 & 12 & 8 & 4 & 6 \\ 6 & 12 & 18 & 12 & 6 & 9 \\ 4 & 8 & 12 & 10 & 5 & 6 \\ 2 & 4 & 6 & 5 & 4 & 3 \\ 3 & 6 & 9 & 6 & 3 & 6 \end{pmatrix}$$

$$G(\mathbf{E}_{7}) = \frac{1}{2} \begin{pmatrix} 4 & 6 & 8 & 6 & 4 & 2 & 4 \\ 6 & 12 & 16 & 12 & 8 & 4 & 8 \\ 8 & 16 & 24 & 18 & 12 & 6 & 12 \\ 6 & 12 & 18 & 15 & 10 & 5 & 9 \\ 4 & 8 & 12 & 10 & 8 & 4 & 6 \\ 2 & 4 & 6 & 5 & 4 & 3 & 3 \\ 4 & 8 & 12 & 9 & 6 & 3 & 7 \end{pmatrix}$$

$$G(\mathbf{E}_{8}) = \begin{pmatrix} 4 & 7 & 10 & 8 & 6 & 4 & 2 & 5 \\ 7 & 14 & 20 & 16 & 12 & 8 & 4 & 10 \\ 10 & 20 & 30 & 24 & 18 & 12 & 6 & 15 \\ 8 & 16 & 24 & 20 & 15 & 10 & 5 & 12 \\ 6 & 12 & 18 & 15 & 12 & 8 & 4 & 9 \\ 4 & 8 & 12 & 10 & 8 & 6 & 3 & 6 \\ 2 & 4 & 6 & 5 & 4 & 3 & 2 & 3 \\ 5 & 10 & 15 & 12 & 9 & 6 & 3 & 8 \end{pmatrix}$$

$$G(\mathbf{G}_{2}) = \frac{1}{3} \begin{pmatrix} 6 & 3 \\ 3 & 2 \end{pmatrix}$$

$$G(\mathbf{F}_{4}) = \begin{pmatrix} 2 & 3 & 2 & 1 \\ 3 & 6 & 4 & 2 \\ 2 & 4 & 3 & 3/2 \\ 1 & 2 & 3/2 & 1 \end{pmatrix}$$

図 25: 例外 Lie 代数のウエイト空間での Cartan 計量

Root diagrams in the Dynkin basis. "Level of simple roots" is the
number of simple roots that must be subtracted from the highest root
in order to obtain the simple roots; the next level has the n zero roots
corresponding to the Cartan subalgebra

Algebra	Highest root	Level of simple roots	Dimension
An	(1 0 0 0 0 1)	n - 1	n(n + 2)
B _n	(0 1 0 0 0 0)	2n - 2	n(2n+1)
C,	(200000)	2n - 2	n(2n+1)
D,	(0 1 0 0 0 0)	2n - 4	n(2n-1)
G ₂	(1 0)	4	14
F₄	$(1 \ 0 \ 0 \ 0)$	10	52
E ₆	(0 0 0 0 0 1)	10	78
E ₇	(1 0 0 0 0 0 0)	16	133
E ₈	(0 0 0 0 0 0 1 0)	28	248

図 26: 単純 Lie 代数の随伴表現の最高 Dynkin ウエイト

Algebra	Dynkin designation	Dimensionality
A _n	(100)	n+1
	or (001)*	$\overline{n+1}$
B _n	(100)*	2n + 1
	(00001)	2 ⁿ
C,	(100)	2 <i>n</i>
D _n	(100)*	2 n
	(0001)	2 ⁿ⁻¹
	or (00010)*	2^{n-1}
G ₂	(01)	7
F4	(0001)	26
E ₆	(100000)	27
 Communication (Communication) 	or (000010)*	27
E ₇	(0000010)	56
E ₈	(0000010)	248

Simple irreps of simple Lie algebras

* This irrep can be constructed from products of the unstarred irrep.

図 27: 単純 Lie 代数に対する単純既約表現のリスト(Dynkin 基底)

図 28: 拡張 Dynkin 図式

Maximal subalgebras of	classical simple	Lie algebras	with rank	8 or less
	And the second second			

Rank 1	
$SU_2 \supset U_1$	(R)
(SU ₂ , SO ₃ , Sp ₂ , all isomorphic)	~ 0
Rank 2	
$SU_3 \supset SU_2 \times U_1$	(R)
\supset SU ₂	(S)
$Sp_4 \supset SU_2 \times SU_2; SU_2 \times U_1$	(R)
\supset SU ₂	(S)
(SO ₅ isomorphic to Sp ₄ , SO ₄ \sim SU ₂ \times SU ₂)	
Rank 3	
$SU_4 \supseteq SU_3 \times U_1; SU_2 \times SU_2 \times U_1$	(R)
\supset Sp ₄ ; SU ₂ ×SU ₂	(S)
$SO_7 \supset SU_4$; $SU_2 \times SU_2 \times SU_2$; $Sp_4 \times U_1$	(R)
$\supset G_2$	(S)
$Sp_6 \supset SU_3 \times U_1; SU_2 \times Sp_4$	(R)
\supset SU ₂ ; SU ₂ × SU ₂	(S)
(SO ₆ is isomorphic to SU ₄)	
Rank 4	
$SU_5 \supset SU_4 \times U_1; SU_2 \times SU_3 \times U_1$	(R)
\supset Sp ₄	(S)
$SO_9 \supset SO_8$; $SU_2 \times SU_2 \times Sp_4$; $SU_2 \times SU_4$; $SO_7 \times U_1$	(R)
\supset SU ₂ ; SU ₂ × SU ₂	(S)
$Sp_8 \supset SU_4 \times U_1; SU_2 \times Sp_6; Sp_4 \times Sp_4$	(R)
\supset SU ₂ ; SU ₂ × SU ₂ × SU ₂ × SU ₂	(S)
$SO_8 \supset SU_2 \times SU_2 \times SU_2 \times SU_2$; $SU_4 \times U_1$	(R)
\supset SU ₃ ; SO ₇ ; SU ₂ × Sp ₄	(S)

図 29: 古典単純 Lie 代数の極大部分代数 (ランク ≤ 8)

Rank 5	
$SU_6 \supset SU_5 \times U_1; SU_2 \times SU_4 \times U_1; SU_3 \times SU_3 \times U_1$	(R
\supset SU ₃ ; SU ₄ ; Sp ₆ ; SU ₂ ×SU ₃	(S)
$SO_{11} \supset SO_{10}$; $SU_2 \times SO_8$; $Sp_4 \times SU_4$; $SU_2 \times SU_2 \times SO_7$; $SO_9 \times U_1$	(R)
\supset SU ₂	(S)
$Sp_{10} \supset SU_5 \times U_1$; $SU_2 \times Sp_8$; $Sp_4 \times Sp_6$	(R
\supset SU ₂ ; SU ₂ × Sp ₄	(S)
$SO_{10} \supset SU_5 \times U_1$; $SU_2 \times SU_2 \times SU_4$; $SO_8 \times U_1$	(R)
\supset Sp ₄ ; SO ₉ ; SU ₂ ×SO ₇ ; Sp ₄ ×Sp ₄	(S)
Rank 6	
$SU_7 \supset SU_6 \times U_1; SU_2 \times SU_5 \times U_1; SU_3 \times SU_4 \times U_1$	(R
\supset SO ₇	(S)
$SO_{13} \supset SO_{12}$; $SU_2 \times SO_{10}$; $Sp_4 \times SO_8$; $SU_4 \times SO_7$; $SU_2 \times SU_2 \times SO_9$; $SO_{11} \times U_1$	(R
\supset SU ₂	(S)
$Sp_{12} \supset SU_6 \times U_1$; $SU_2 \times Sp_{10}$; $Sp_4 \times Sp_8$; $Sp_6 \times Sp_6$	(R
\supset SU ₂ ; SU ₂ × SU ₄ ; SU ₂ × Sp ₄	(S)
$SO_{12} \supset SU_6 \times U_1$; $SU_2 \times SU_2 \times SO_8$; $SU_4 \times SU_4$; $SO_{10} \times U_1$	(R
$\supset SU_2 \times Sp_6; SU_2 \times SU_2 \times SU_2; SO_{11}; SU_2 \times SO_9; Sp_4 \times SO_7$	(S)
Rank 7	
$SU_8 \supset SU_7 \times U_1$; $SU_2 \times SU_6 \times U_1$; $SU_3 \times SU_5 \times U_1$; $SU_4 \times SU_4 \times U_1$	(R)
\supset SO ₈ ; Sp ₈ ; SU ₂ × SU ₄	(S)
$SO_{15} \supset SO_{14}; SU_2 \times SO_{12}; Sp_4 \times SO_{10}; SO_7 \times SO_8; SU_4 \times SO_9; SU_2 \times SU_2 \times SO_{11}; SO_{13} \times U_1 \times U_1 \times U_2 \times SO_{10}; SO_{10} \times SO_{10} \times SO_{10}; SO_{10} \times SO_{10}; SO_{10} \times SO_{10} \times SO_{10}; SO_{10} \times SO_{10} \times SO_{10}; SO_{10} \times SO_{10}$	(R)
\supset SU ₂ ; SU ₄ ; SU ₂ × Sp ₄	(S)
$Sp_{14} \supset SU_7 \times U_1$; $SU_2 \times Sp_{12}$; $Sp_4 \times Sp_{10}$; $Sp_6 \times Sp_8$	(R)
\supset SU ₂ ; SU ₂ × SO ₇	(S)
$SO_{14} \supset SU_7 \times U_1$; $SU_2 \times SU_2 \times SO_{10}$; $SU_4 \times SO_8$; $SO_{12} \times U_1$	(R)
$\supset Sp_4; Sp_6; G_2; SO_{13}; SU_2 \times SO_{11}; Sp_4 \times SO_9; SO_7 \times SO_7$	(S)
Rank 8	
$SU_9 \supset SU_8 \times U_1$; $SU_2 \times SU_7 \times U_1$; $SU_3 \times SU_6 \times U_1$; $SU_4 \times SU_5 \times U_1$	(R)
\supset SO ₉ ; SU ₃ × SU ₃	(S)
$SO_{17} \supset SO_{16}$; $SU_2 \times SO_{14}$; $Sp_4 \times SO_{12}$; $SO_7 \times SO_{10}$; $SO_8 \times SO_9$; $SU_4 \times SO_{11}$;	
$SU_2 \times SU_2 \times SO_{13}$; $SO_{15} \times U_1$	(R)
\supset SU ₂	(S)
$Sp_{16} \supset SU_8 \times U_1$; $SU_2 \times Sp_{14}$; $Sp_4 \times Sp_{12}$; $Sp_6 \times Sp_{10}$; $Sp_8 \times Sp_8$	(R)
\supset SU ₂ ; Sp ₄ ; SU ₂ × SO ₈	(S)
$SO_{16} \supset SU_8 \times U_1; SU_2 \times SU_2 \times SO_{12}; SU_4 \times SO_{10}; SO_8 \times SO_8; SO_{14} \times U_1$	(R)
\supset SO ₉ ; SU ₂ × Sp ₈ ; Sp ₄ × Sp ₄ ; SO ₁₅ ; SU ₂ × SO ₁₃ ; Sp ₄ × SO ₁₁ ; SO ₇ × SO ₉	(S)

図 30: 古典単純 Lie 代数の極大部分代数(ランク ≤ 8)(続き)

$G_2 \supset SU_3$	7 = 1 + 3 + 3	(R)
\supset SU ₂ × SU ₂	7 = (2, 2) + (1, 3)	(R)
\supset SU ₂	7 = 7	(S)
F₄⊃ SO₀	26 = 1 + 9 + 16	(P)
\supset SU ₃ × SU ₃	$26 = (8, 1) + (3, 3) + (\overline{3}, \overline{3})$	(P)
\supset SU ₂ × Sp ₆	26 = (2, 6) + (1, 14)	(R)
2 SU	26 = 9 + 17	(2)
\supset SU ₂ × G ₂	26 = (5, 1) + (3, 7)	(S)
$E_6 \supset SO_{10} \times U_1$	27 = 1 + 10 + 16	(R)
⊃ SU ₂ × SU ₄	$27 = (2, \overline{6}) + (1, 15)$	(R)
\supset SU ₃ ×SU ₃ ×SU ₃	$27 = (\overline{3}, 3, 1^{c}) + (3, 1, 3) + (1, \overline{3}, \overline{3})$	(R)
⊃ SU ₃	27 = 27	(S)
$\supset G_2$	27 = 27	(S)
⊃ Sp ₈	27 = 27	(S)
$\supset F_4$	27 = 1 + 26	(S)
$\supset SU_3 \times G_2$	$27 = (\overline{6}, 1) + (3, 7)$	(S)
$E_7 \supset E_6 \times U_1$	$56 = 1 + 1 + 27 + \overline{27}$	(R)
⊃ SU8	$56 = 28 + \overline{28}$	(R)
\supset SU ₂ × SO ₁₂	56 = (2, 12) + (1, 32)	(R)
\supset SU ₃ × SU ₆	$56 = (3, 6) + (\overline{3}, \overline{6}) + (1, 20)$	(R)
⊃ SU₂	56 = 10 + 18 + 28	(S)
\supset SU ₂	56 = 6 + 12 + 16 + 22	(S)
\supset SU ₃	$56 = 28 + \overline{28}$	(S)
\supset SU ₂ × SU ₂	56 = (5, 2) + (3, 6) + (7, 4)	(S)
\supset SU ₂ × G ₂	56 = (4, 7) + (2, 14)	(S)
\supset SU ₂ × F ₄	56 = (4, 1) + (2, 26)	(S)
$\supset G_2 \times Sp_6$	56 = (1, 14') + (7, 6)	(S)
$E_8 \supset SO_{16}$	248 = 120 + 128	(R)
\supset SU ₅ × SU ₅	$248 = (24, 1) + (1, 24) + (10, 5) + (\overline{10}, \overline{5}) + (5, \overline{10}) + (\overline{5}, 10)$	(R)
\supset SU ₃ × E ₆	$248 = (8, 1) + (1, 78) + (3, 27) + (\overline{3}, \overline{27})$	(R)
\supset SU ₂ × E ₇	248 = (3, 1) + (1, 133) + (2, 56)	(R)
⊃ SU ₉	$248 = 80 + 84 + \overline{84}$	(R)
\supset SU ₂	248 = 3 + 15 + 23 + 27 + 35 + 39 + 47 + 59	(S)
\supset SU ₂	248 = 3 + 11 + 15 + 19 + 23 + 27 + 29 + 35 + 39 + 47	(S)
\supset SU ₂	248 = 3 + 7 + 11 + 15 + 17 + 19 + 23 + 23 + 27 + 29 + 35 + 39	(S)
$\supset G_2 \times F_4$	248 = (14, 1) + (1, 52) + (7, 26)	(S)
\supset SU ₂ × SU ₃	248 = (3, 1) + (1, 8) + (7, 8) + (5, 10) + (5, 10) + (3, 27)	(S)
⊃ Sp₄	248 = 10 + 84 + 154	(S)

図 31: 例外単純 Lie 代数の極大部分代数(ランク ≤ 8)(続き)

表現 (Dynkin label)	次元	$U(1) \times SU(2) \times SU(3)$ 分解
[1, 0, 0, 0]	5	1 imes 3 + 2 imes 1
$\left[0,0,0,1\right]$	5^*	$1 imes \mathbf{3^*} + 2 imes 1$
$\left[0,1,0,0\right]$	10	$2 imes 3 + 1 imes 3^* + 1$
$\left[0,0,1,0\right]$	10^*	$2 imes 3^* + 1 imes 3 + 1$
[1, 0, 0, 1]	24_{adj}	$1\times 8_{\mathrm{adj}} + 2\times (3+3^*) + 3\times 1 + 1$
[1, 1, 0, 0]	40	$2 imes 6 + 3 imes 3 + 1 imes 8_{ ext{adj}} + 2 imes 3^* + 1 imes 3 + 2 imes 1$
$\left[0,0,1,1\right]$	40^*	
$\llbracket 1,0,1,0 \rrbracket$	45	$2\times8_{\mathrm{adj}}+3\times3^{*}+1\times6+2\times3+1\times(3+3^{*})+2\times1$
$\left[0,1,0,1\right]$	45^*	
$\left[0,1,1,0\right]$	75	$(3+1) imes 8_{\mathrm{adj}}+2 imes (6+6^*)+(2+1) imes (3+3^*)+1$
[2, 0, 0, 0]	15	1 imes 6 + 2 imes 3 + 3 imes 1
[0, 0, 0, 2]	15^*	
$\left[0,2,0,0\right]$	50	$3 imes 6 + 2 imes 8_{ ext{adj}} + 2 imes 3 + 1 imes 3^* + 1$
$\left[0,0,2,0\right]$	50^*	

表 22: SU(5)の低次元表現とその部分群 U(1) × SU(2) × SU(3) に関する既約分解。

参考文献

- [BR86] Barut, A. and Raczka, R.: *Theory of Group Representations and Applications*, World Scientific, Singapore (1986).
- [Cor89] Cornwell, J.: Elsevier (1989).
- [Kac77] Kac, V.: Lie superalgebras, Adv. Math. 26, 8–96 (1977).
- [LM89] Lawson, Jr., H. and Michelsohn, M.-L.: Spin Geometry, Princeton Univ. Press (1989).
- [Par80] Parker, M.: Classification of real simple Lie superalgebra of classical type, J. Math. Phys. 21, 689–97 (1980).
- [横田 71] 横田一郎:裳華房 (1971).
- [松島 65] 松島与三:多様体入門, 裳華房 (1965).
- [辰馬 94] 辰馬伸彦:位相群の双対定理,紀伊国屋書店 (1994).
- [竹内 83] 竹内外史:Lie 代数と素粒子論, 裳華房 (1983).