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Introduction

I Entanglement entropy is an important and useful quantity
which finds applications in many branches of physics, starting
from black holes to quantum critical phenomena.

I In general it is a difficult thing to compute even for free field
theories.

I Many exact results are known for conformal field theories but
non-conformal field theories are even more difficult to deal
with.

I Some exact results are known for two dimensional
non-conformal field theories and for strongly coupled theories
via gauge-gravity duality (Ryu-Takayanagi formula).



Goal

I Our goal is to write down some exact results for the
entanglement entropy of a non-conformal field theory in
arbitrary even dimensions.

I It turns out that the techniques developed by Komargodski
and Schwimmer to prove the a-theorem in four dimensions is
useful for this purpose.

I This is a completely non-perturbative technique and gives us
results for the entanglement entropy which does not depend
on the weak coupling or strong coupling limits.



Results

I Let us take a four dimensional UV-CFT and deform it by a
relevant (marginally relevant) operator O of dimension ∆ so
that in the deep IR it reaches another fixed point which is
described by an IR-CFT.

I The action can be written as,

S = SUV
CFT +

∫
d4x
√
h g(Λ)Λ4−∆O (1)

where g(Λ) is the dimensionless coupling constant defined at
scale Λ.

I We want to compute the coefficients of the logarithmically
divergent term in the entanglement entropy for this theory.
The answer is given by,



I

SE ⊃ −n
∂

∂n
|n=1

∫
cone

d4x
√
h (

∆c

16π2
W 2−2∆aE4) ln

Λg

Λ
(2)

The integral is done over a background having conical
singularities with the angular excess at the vertices given by
2π(n − 1). W 2 and E4 are the Weyl squared term and the
Euler density in four dimensions. ∆a and ∆c are the
differences of the central charges between the UV and the IR,
given by, ∆a = aUV − aIR and ∆c = cUV − cIR , respectively. Λ
is the UV-cutoff and Λg is the renormalization group invariant
scale associated with the coupling constant g , given by,

Λg = Λe
−

∫ dg
β(g) (3)

β(g) is the beta function defined as, β(g) = Λ d
dΛg(Λ).



I In four dimensions there is one more term which can occur as
the coefficient of the logarithmically divergent term. The term
can be written as,

SE ⊃ a2 Λ2
g AΣ ln

Λg

Λ
(4)

where a2 is a coupling constant independent dimensionless
number and AΣ is the area of the entangling surface. Our
method does not allow us to compute the number a2, but it
fixes the geometry dependence of this term completely and
unambiguously.



Method

I Let us now calculate the logarithmically divergent terms in
this deformed theory.

I The coefficient of the logarithmically divergent term is
dimensionless and so let us write ,

SE = A(g(Λ),ΛR) lnΛ + ........ (5)

where R denotes the length scale associated with the
background geometry or the entangling surface.

I Let us now change the cut-off to Λ′ = etΛ.

I So

A(g(Λ′),Λ′R) lnΛ′ = A(g(Λ′),Λ′R) lnΛ+t A(g(Λ′),Λ′R) (6)



I When we say that the coefficient of the logarithm is a
universal term, what we mean is actually the equation,

A(g(Λ′),Λ′R) = A(g(Λ),ΛR) (7)

which expresses the fact that A is renormalization group
invariant.

I There is a unique function which satisfies this condition and
can be written as,

A(g(Λ),ΛR) = A(ΛgR) (8)

where Λg is the unique RG invariant scale given by,

Λg = Λe
−

∫ dg
β(g) (9)



I Eqn-6 and 7 give us a strategy for computing the universal
coefficient of the logarithmically divergent term.

I The strategy is to compute the entanglement entropy along
the RG trajectory parametrized by t and pick up the RG
invariant terms linear in t.

I So

A(ΛgR) = (
d

dt
|t=0SE (t))RG−Invariant (10)

I Along the RG trajectory the action can be parametrized as,

S(t) = SUV
CFT +

∫
d4x
√
h g(Λet)Λ4−∆O (11)

I We want to compute the entanglement entropy for this one
parameter family of actions.

I What makes the computation possible is the identification of
t with a constant background dilaton field.



Brief introduction to the method Komargodski and
Schwimmer

I Our deformed field theory is not conformal but it can be made
conformally invariant by coupling to a background dilaton
field.

I The dilaton couples to the deformed theory as,

S = SUV
CFT +

∫
d4x
√
h g(eτ(x)Λ)Λ4−∆O (12)

I This is conformally invariant if the metric and the background
field are transformed as,

hab → e2σhab, τ(x)→ τ(x) + σ (13)

I Since we are interested in a constant rescaling we can couple
to a constant dilaton background field.



I Since we want to differentiate with respect to the dilaton
what we need is the effective action for the dilaton.

I KS have shown that this action consists of two terms. One is
the Weyl non-invariant universal term which is completely
determined by the conformal anomaly matching between the
UV and the IR.

I The other part is the Weyl invariant part of the effective
action which can be written as a functional of the Weyl
invariant combination e−2τhab.



Replica Trick

I Entanglement entropy is usually computed by replica trick.

I In replica trick the entanglement entropy is defined as,

SE = n
∂

∂n
(F (n)− nF (1)) |n=1 (14)

where F (n) is the free energy of the Euclidean field theory on
a space with conical singularities. The angular excess at each
conical singularity is given by 2π(n − 1). The detailed
geometry of the space is determined by the geometry of the
background space and the geometry of the entangling surface.



Final Formulae

I So we can write,

SE (t) = n
∂

∂n
(F (n, t)− nF (1, t)) |n=1 (15)

I F (n, t) is the free energy or the effective action computed on
the conical space in the presence of the constant background
dilaton field t.

I Since we want to differentiate with respect to t we can
replace F with the dilaton effective action.

I With this we can now compute the universal terms.



Two dimensions

I In two dimensions the universal (Weyl non-invariant) part of
the dilaton effective action for a constant dilaton filed is given
by,

F (n, t) = −cUV − cIR
24π

t

∫
cone

√
hR(h) (16)

I For an infinite half-line this gives us the known answer derived
by Calabrese and Cardy, in a different way

A =
cUV − cIR

6
(17)



Four Dimensions

I In Four dimensions dimensions the universal (Weyl
non-invariant) part of the dilaton effective action for a
constant dilaton filed is given by,

F (n, t) = −t
∫
cone

d4x
√
h (

∆c

16π2
W 2 − 2∆aE4) (18)

I This gives us the answer quoted in the beginning and it
matches with both the perturbative answer for massive free
fields and holographic answers obtained for field theories
deformed by relevant operators.



Contributions from the Weyl invariant part of the dilaton
effective action

I The dilaton effective action can be expanded in terms of
tensors built out of ĥab = e−2thab. Let us arrange these terms
in order of increasing mass dimensions of the integrand.

I The first term is∫
cone

d4x
√

ĥ = e−4t

∫
cone

d4x
√
h (19)

This term does not contribute to the entanglement entropy
because the volume of the cone does not get any contribution
from the tip.



I The second term is,∫
cone

d4x
√
ĥR(ĥ) = e−2t

∫
cone

d4x
√
hR(h) (20)

I In order to be dimensionless and universal this term has to be
multiplied by Λ2

g and so this gives rise to a universal term of
the form,

a2 Λ2
g AΣ (21)

where AΣ is the area of the entangling surface.



I The dimension four terms can be written as linear
combinations of R2(ĥ), R2

ab(ĥ) and R2
abcd(ĥ). So a general

dimension four term in the dilaton effective action has the
structure,∫

cone
d4x

√
ĥ(AR2(ĥ) + BR2

ab(ĥ) + CR2
abcd(ĥ)) (22)

where A, B and C are dimensionless constants. Since this
term is marginal, it does not couple to a constant dilaton and
so does not contribute to the universal term.

I In fact this is the reason why the universal term of the first
kind does not get any contribution from the Weyl invariant
part of the dilaton effective action. This term is marginal and
if this term contributed to the universal term then it would
have changed our answer for the universal term of the first
kind.



I The next term is dimension six and in order to be universal it
has to be multiplied by negative powers of Λg .

I So this term cannot occur in the dilaton effective action
because it will diverge in the conformal limit which
corresponds to Λg → 0. and we do not expect the dilaton
effective action to be singular in the CFT limit.

I This ends our proof that the universal coefficient of the
logarithmically divergent term has only two terms in four
dimensions, as promised in the introduction.

I This can be extended to arbitrary even dimensions.



Scale versus conformal invariance

I One can argue that the method we have used is equally
applicable to field theories which are described by scale
invariant but not conformally-invariant fixed points in the UV
and the IR.

I The only change is in the form the universal term which
comes from the anomalous part of the dilaton effective action.

I For theories like that we get an extra term given by,

n
∂

∂n
|n=1 ∆e

∫
cone

d4x
√
h R2(h) ln

Λg

Λ
(23)

where e is the ”central charge” corresponding to the R2 term
and ∆e = eUV − eIR .

I So this term will not show up for example for a massive scalar
field in four dimensions although it is allowed by naive
dimensional analysis.


