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AdS/CFT (“early”)

Physics of local 
operators in CFT

Physics of Strings on AdS 

10 The gauge/gravity duality

The solution of (1.4) that decays at z → ∞ is

f(k, z) = eikzzd/2Kν(kz) , ν =

√

d2

4
+ (mR)2 (1.6)

where K is a BesselK function. In order to obey the boundary conditions
we set

φ(k, z) = φ0(k)ϵ
d−∆ f(k, z)

f(k, ϵ)
(1.7)

We now insert this into the action (1.1). We can integrate by parts and use
the equations of motion. The computation then reduces to a boundary term.
For each Fourier mode we get [7]

S = φ0(−k⃗)ϵd−∆ 1

ϵd
zdzφ(k, z)|z=ϵ = φ0(−k)φ0(k⃗)ϵ

d−2∆ zdzf(k, z)

f(k, ϵ)

S = φ0(−k)φ0(k⃗)

[

ϵ−2νPolynomial[k2ϵ2]− |k|2ν2−2ν Γ(−ν)
Γ(ν)

2ν

]

(1.8)

Note that the first term contains divergent terms when ϵ→ 0. These terms
are analytic in momentum and, upon Fourier transformation, give terms
that are local in position space. These terms were to be expected since the
boundary conditions we are considering are such that the field grows towards
the boundary. From the field theory point of view these divergencies can be
viewed as UV divergencies. On the other hand, the last term in (1.8) gives a
non-local contribution in position space and represents the interesting part
of the correlator. Transformed back to position space this gives

S = −2νΓ(∆)

π
d
2Γ(ν)

∫

ddxddy
φ0(x)φ0(y)

|x− y|2∆ (1.9)

The AdS/CFT dictionary states that this computation with fixed bound-
ary conditions is related to the generating function of correlation functions
for the corresponding operator in the field theory [2, 3]. In other words, for
a field φ related to the single trace operator O we have the equality

ZGravity[φ0(x)] = ZField Theory[φ0(x)] = ⟨e
∫
ddxφ0(x)O(x)⟩ (1.10)

The leading approximation to the gravity answer is given by evaluating the
classical action and it is given by e−S , with S in (1.9). Correlation functions
of operators are then given by

⟨O(x1) · · · O(xn)⟩ =
δ

δφ0(x1)
· · · δ

δφ0(x1)
ZGravity[φ0(x)] (1.11)

In the quadratic approximation the gravity answer is given by (1.9) and the

Lots of developments: 2 & 3-pt functions, Integrability, 
Operators with large R-charge and LLM geometries 

Seems well understood and explored…  

[Maldacena], 
[Witten,GKP…]



AdS/CFT (“modern”)

Entanglement

A common platform for holography, quantum many-body 
physics, QFT, information theory….  

Spacetime 
Geometry

SA =
Area(�d

A)

4Gd+2
N

Time dependence and thermalization, global and local 
quench, Universal Laws of entanglement

[Cardy&Calabrese;Solodukhin; Myers Sinha; Sinha et al.; Maldacena,Harman; 
Iizuka,Ogawa;Takayanagi,Bhattacharya;Ugajin; Das,Galante,Myers;Lopez et al.; 
Nozaki,Numasawa,Takayanagi;…….]

[Ryu,Takayanagi’06] 
[Hubeny,Rangamani, 
Takayanagi’07]



 (Can we learn anything new about local operators from the 
perspective of entanglement ?)

This Talk:

Universal physics of excitations created by a local operator acting  
on the ground state  

(milder version of a local quench)

Connection with AdS/CFT: Large N or large c

[intro: M.Nozaki’s talk]

| i = O(z, z̄) |0i

Program: Modern look on early holography



Our Results:

• von-Neuman (n=1) and Renyi entropies behave very differently 

• Naive large N limit breaks down for the Entanglement Entropy 

• Universal scaling of the Renyi entropy for excited states at large c 

• Holographic analysis consistent with large c and large N 
analysis…



Main Tool:

Relative Renyi entropies for states excited by local operators 

Connection with AdS/CFT: Large N or large c

replica method in quantum field theories refer to e.g.[2].

Consider a QFT in d dimensional flat spacetime R1,d�1, whose time and d�1 dimensional

space are denoted by t and xi (i = 1, 2, · · ·, d� 1). We focus on an excited state | Oi defined
by acting a local operator O(⌧, xi) on the vacuum state |0i at a point xi and time t = 0 in a

given QFT: | Oi = O(0, xi)|0i. Its time evolution under the Hamiltonian H is described by

| O(t)i =
p
N · e�iHte�✏HO(0, xi)|0i, (3)

where N is a normalization and an infinitesimal parameter ✏ is the regularization of the

ultraviolet behavior of local operator, which, as we will see later in subsection 2.3, makes the

energy of this excited state finite.

Now we choose the location of insertion of the local operator O to be

x1 = �l(< 0), (x2, x3, · · ·, xd�1) = x, (4)

at the time t = 0. The final result does not depend on the choice of the vector x owing to

the translational invariance.

We would like to compute the (Renyi) entanglement entropy S(n)
A defined by (1) in the

replica method (see e.g.[2]), performing the Euclidean continuation ⌧ = it. To define the

(Renyi) entanglement entropy, we choose the subsystem A to be the half space x
1

> 0. It is

useful to introduce a complex coordinate as follows:

w = x1 + i⌧, w̄ = x1 � i⌧. (5)

The density matrix at real time t for the locally excited states (3) is written as

⇢(t) = N · e�iHte�✏HO(0, xi)|0ih0|O†(0, xi)e�✏HeiHt

= N ·O(w
2

, w̄
2

,x)|0ih0|O†(w
1

, w̄
1

,x), (6)

where the normalization factor N is determined by the condition Tr⇢(t) = 1. Also here we

defined

w
1

= i(✏� it)� l, w
2

= �i(✏+ it)� l, (7)

w̄
1

= �i(✏� it)� l, w̄
2

= i(✏+ it)� l. (8)

Throughout the computation we treat ✏ ± it as purely real numbers until the end of calcu-

lations as in [16, 19, 9].

Now, if we define �S(n)
A by subtracting the ground state result from S(n)

A , then �S(n)
A is

computed as

�S(n)
A =

1

1� n
log

 
Tr⇢nA

Tr(⇢(0)A )n

!
, (9)

where ⇢(0)A is the ground state reduced density matrix.

3

⇢A = TrB(⇢)

Excited Renyi entropies at finite temperature/size

A note written by PC and TT

May 23, 2014

The main idea of this project is to study Renyi entropies for excited states created by

local operators acting on the vacuum [1] in CFTs at finite temperature (or size). Our focus

will be on CFT2 and primary operators, where the answer can be obtained from the zero

temperature by an appropriate conformal map. We will first consider rational CFTs where

the zero temperature result is given by the quantum dimension of the local operator [2] and

then, along the lines of [3], CFTs at large central charge c which can have a gravity dual

description via the AdS/CFT.

1 Excited Renyi entropies

Lets recall a few basic facts about the zero temperature excited Renyi entropies.

The main object of our interest is the Renyi entropy for excited states given by

¢S
(n)
A =

1

1° n
log

√
Tr(Ωn

A)

Tr(Ω(0)
A )n

!
=

1

1° n
log

∑
hO(w1, w̄1)O†(w2, w̄2)...O(w2n, w̄2n)ißn

(hO(w1, w̄1)O†(w2, w̄2)iß1)
n

∏
(1)

The crucial ingredient is then the 2n-point function of local operators on n-sheeted Riemann

surface ßn where each sheet has a cut that corresponds to the entangling interval A.

By construction this Renyi entropy corresponds to the time dependent density matrix

Ω(t) = N e°iHte°≤HO(0, xi) |0i h0|O†e°≤HeiHt ¥ NO(w2, w̄2) |0i h0|O†(w1, w̄1) (2)

were we defined

w1 = t° l + i≤ w̄1 = °l ° t° i≤ (3)

w2 = t° l ° i≤ w̄2 = °l ° t + i≤ (4)

The constant N is fixed such that Tr(Ω) = 1 and the reduced density matrix is obtained by

tracing out the complement of A.

Since the insertion points are time dependent, we can study the real time evolution of Renyi

entropies. In rational CFT it was shown in [2] that at late time and ≤ ! 0 excited Renyi

entropies are ¢S
(n)
a = log d0 where d0 is the quantum dimension of the primary operator

under consideration. In large c CFT Renyi entropies behave similarly to the local quenches

e.g. ¢S
(2)
A ' 4¢a log(2t/≤).

1

[M.Nozaki’s talk]

Reduced



CFTs and large N limit

Tr(ZJ) = Tr(�1 + i�2)
J

�S(n)
A =

Jn� 1

n� 1

log 2

�S(1)
R = log

⇣
2

p
2N

⌘

�S(n)
R =

1

1� n
log

✓
2

1�2n
+

1

2

nN2(n�1)

◆

Operator:

e.g. J=2 (Free Field or L-R decomposition)

n    2�

(n=1) von-Neuman entropy

Ground State
Both scale as c~N^2N2

!!

d.o.f



2d CFTs 

(n=2)

hO(w1, w̄1)O(w2, w̄2)O(w3, w̄3)O(w4, w̄4)i⌃2

(hO(w1, w̄1)O(w2, w̄2)i⌃1)
2 = |z|2�O |1� z|2�0GO(z, z̄)

In rational CFTs 

where the coe�cients Fbd[O] are constants, which are called fusion matrices [27]. Thus by

using (67), in the limit (z, z̄) ! (1, 0), the conformal block is reduced to the contribution

from the vacuum sector:

G(z, z̄) ' F
00

[O] · (1� z)�2�O z̄�2�O , (69)

where we employed the fact that C0

OO = 1.

Therefore we find the following expression from (33):

�S(2)

A = � logF
00

[O] = log dO, (70)

where dO = 1/F
00

[O] is called the quantum dimension [27] and is related to the S-matrix of

the modular transformation by

dO = S
0O/S00

. (71)

4.3 Large c limit

Now we move on to the large c limit of 2d CFTs. We are interested in the time period

l < t < L+ l, where we expect non-trivial results, corresponding to the limit (z, z̄) ! (1, 0)

as explained in (30). We will keep only the leading order of �O

c (⌧ 1) expansion. We will

discuss sub-leading corrections in the subsection 4.5 later.

Since we are motivated by the AdS/CFT, we are interested in those CFTs with gravity

duals. Therefore we would like to assume the existence of the gap in the spectrum such

that the density of states d(�) behaves like d(�) ⇠ O(1) for � < O(c). This corresponds

to the threshold where AdS black holes appear. Moreover, in the summation of conformal

blocks (65) we can ignore the contributions from intermediate states with large conformal

dimension �b ⇠ O(c), as their conformal blocks are exponentially suppressed in the large c

limit [29, 30].

These arguments are parallel with the paper [30], where the ground state entanglement

entropy in large c limit was analyzed. However, note that in that paper, the large c limit was

taken with �O

c kept finite because the correlation functions of twist operators were computed.

In our case, the operator O expresses the excitation above the vacuum and we do not need

any twist operators as we employed the conformal map to describe the replicated Riemann

surface ⌃
2

.

In our large c limit �O

c , �b

c ⌧ 1, we have the following simple and universal expression of

the vacuum conformal block [32, 29]:

FO(b|z) ' z�b�2�O ·
2

F
1

(�b,�b, 2�b, z), (72)

where
2

F
1

(a, b, c, z) is the hypergeometric function. This shows that for any �b ⌧ c the

conformal block FO(b|z) can only possess at most a logarithmic singularity ⇠ log(1 � z) in

the limit z ! 1.
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At late time 

quantum dimension

(z, z̄) ! (1, 0)

[He,Numasawa,Takayanagi,Watanabe’14]

d� =
S0�

S00

3

t = 0, we insert this operator at the point x = −l, which
creates an entangled pair. The pair propagates in the
left and right directions at the speed of light. When
l < t < l + L, one fragment stays on the subsystem A
and the other on B, which leads to the log 2 entropy.
When 0 < t < l or t > l + L, both fragments live in B
and thus the entropy vanishes. This argument based on
the causal propagations explains the result (15).
This behavior is universal for any primary operators in

any CFTs as is clear from (12), though the explicit value
of Renyi entropy for l < t < l+ L depends on the choice
of operator and CFT as we will study below.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 t

0.2

0.4

0.6

0.8

1.0
!SA!2"

FIG. 2. The time evolution of ∆S
(2)

A for O2. We set l =
1, L = 1.

In general CFTs, the function G(z, z̄) can be expressed
using the conformal blocks [8]:

Ga(z, z̄) =
∑

b

(Cb
aa)

2Fa(b|z)F̄a(b|z̄), (16)

where b runs over all primary fields. In our normalization,
the conformal block Fa(b|z) behaves in the z → 0 limit:

Fa(b|z) = z∆b−2∆a(1 +O(z)), (17)

∆b is the conformal dimension of Ob.
Since we found (z, z̄) → (0, 0) when 0 < t < l or t >

l + L, we get the behavior Ga(z, z̄) ≃ |z|−4∆a, as the
dominant contribution arises when b = 0 i.e. when Ob

coincides with the identity O0(≡ I). Applying (12), we

get ∆S(2)
A = 0, as expected from the causality argument.

To analyze the entropy when the causality condition
l < t < l + L is satisfied, we need to apply the fusion
transformation, which exchanges z2 with z4 (or equally
z with 1− z):

Fa(b|1− z) =
∑

c

Fbc[a] · Fa(c|z), (18)

where Fbc[a] is a constant, called Fusion matrix [9, 10].
In the limit (z, z̄) → (1, 0), we obtain

Ga(z, z̄) ≃ F00[a] · (1− z)−2∆a z̄−2∆a . (19)

Therefore we find the following expression from (12):

∆S(2)
A = − logF00[a]. (20)

Moreover, in rational CFTs, based on the arguments
of bootstrap relations of correlations functions [9, 11], it
was shown in [10] that F00[a] coincides with the inverse
of the quantity called quantum dimension da:

F00[a] =
1

da
=

S00

S0a
, (21)

where Sab is the modular S matrix of the rational CFT
we consider. In this way we obtain the remarkably simple
result for two dimensional rational CFTs:

∆S(2)
A = log da, (22)

when l < t < l + L.
For example, if we consider the (p+1, p) unitary min-

imal model and choose Oa to be the (m,n) primary op-
erator [8], we can explicitly confirm (18) and (21) using

the expressions of four point functions in [12] and ∆S(2)
A

for l < t < l+ L is found to be

∆S(2)
A = log

⎡

⎣

(−1)n+m · sin
(

π(p+1)m
p

)

sin
(

πpn
p+1

)

sin
(

π(p+1)
p

)

sin
(

πp
p+1

)

⎤

⎦ .

(23)

RENYI ENTROPY FOR GENERAL n

The n-th Renyi entanglement entropy can be obtained
from the formula (5) by computing the 2n point func-
tions. Owing to the previous discussions, since we are
interested in the non-trivial time period: l < t < l + L,
we can assume the limit L → ∞ and employ the simple
conformal map w = zn. Then the 2n points z1, z2, · · ·, zn
in the z coordinate are given by

z2k+1 = e2πi
k
n (iϵ+ t− l)

1
n = e2πi

k+1/2
n (l − t− iϵ)

1
n

z2k+2 = e2πi
k
n (−iϵ+ t− l)

1
n = e2πi

k+1/2
n (l − t+ iϵ)

1
n ,

z̄2k+1= e−2πi k
n (−iϵ− t− l)

1
n = e−2πi k+1/2

n (l + t+ iϵ)
1
n

z̄2k+2= e−2πi k
n (iϵ− t− l)

1
n = e−2πi k+1/2

n (l + t− iϵ)
1
n . (24)

Then we get

⟨O†
a(w1, w̄1)Oa(w2, w̄2) · · · Oa(w2n, w̄2n)⟩Σn

(⟨Oa(w1, w̄1)†Oa(w2, w̄2)⟩Σ1
)n

= Cn · ⟨O†
a(z1, z̄1)Oa(z2, z̄2) · · · Oa(z2n, z̄2n)⟩Σ1

, (25)

where we defined

Cn =

(

4ϵ2

n2(l2 − t2)

)2n∆a

·
2n
∏

i=1

(ziz̄i)
∆a . (26)



2d CFTs at large c

FO(b|z) ' z�b�2�O · 2F1(�b,�b, 2�b, z)

G(z, z̄) =
X

b

(Cb
OO†)2FO(b|z)F̄O(b|z̄)

�S(2)
A ' 4�O · log 2t

✏

Conformal block expansion

at large central charge c [Fateev,Ribault’11]

at late time

10
t

DSA
H2L

similar to a local quench

[PC,M.Nozaki,T.Takayanagi14]
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Holographic Checks



Geodesics and propagators

10 The gauge/gravity duality

The solution of (1.4) that decays at z → ∞ is

f(k, z) = eikzzd/2Kν(kz) , ν =

√

d2

4
+ (mR)2 (1.6)

where K is a BesselK function. In order to obey the boundary conditions
we set

φ(k, z) = φ0(k)ϵ
d−∆ f(k, z)

f(k, ϵ)
(1.7)

We now insert this into the action (1.1). We can integrate by parts and use
the equations of motion. The computation then reduces to a boundary term.
For each Fourier mode we get [7]

S = φ0(−k⃗)ϵd−∆ 1

ϵd
zdzφ(k, z)|z=ϵ = φ0(−k)φ0(k⃗)ϵ

d−2∆ zdzf(k, z)

f(k, ϵ)

S = φ0(−k)φ0(k⃗)

[

ϵ−2νPolynomial[k2ϵ2]− |k|2ν2−2ν Γ(−ν)
Γ(ν)

2ν

]

(1.8)

Note that the first term contains divergent terms when ϵ→ 0. These terms
are analytic in momentum and, upon Fourier transformation, give terms
that are local in position space. These terms were to be expected since the
boundary conditions we are considering are such that the field grows towards
the boundary. From the field theory point of view these divergencies can be
viewed as UV divergencies. On the other hand, the last term in (1.8) gives a
non-local contribution in position space and represents the interesting part
of the correlator. Transformed back to position space this gives

S = −2νΓ(∆)

π
d
2Γ(ν)

∫

ddxddy
φ0(x)φ0(y)

|x− y|2∆ (1.9)

The AdS/CFT dictionary states that this computation with fixed bound-
ary conditions is related to the generating function of correlation functions
for the corresponding operator in the field theory [2, 3]. In other words, for
a field φ related to the single trace operator O we have the equality

ZGravity[φ0(x)] = ZField Theory[φ0(x)] = ⟨e
∫
ddxφ0(x)O(x)⟩ (1.10)

The leading approximation to the gravity answer is given by evaluating the
classical action and it is given by e−S , with S in (1.9). Correlation functions
of operators are then given by

⟨O(x1) · · · O(xn)⟩ =
δ

δφ0(x1)
· · · δ

δφ0(x1)
ZGravity[φ0(x)] (1.11)

In the quadratic approximation the gravity answer is given by (1.9) and the

for operators with “large” conformal dimension (semiclassical)

a particular corner of the CFT parameter space, observables like correlation functions of

primary operators can be computed by evaluating the supergravity action on the classical

solution for the field dual to the operator under consideration [34].

In our CFT analysis of (Renyi) entanglement entropies, we tried to be as general as

possible and considered a large class of field theories in two dimensions at large c or higher

dimensions at large N . In two dimensions, our main object in the replica construction of the

n-th Renyi entropy was the 2n-point function of operators O(wi, w̄i) on the n copies of the

complex plane (⌃n). In principle, if we knew the holographic dictionary for all the 2d CFTs

on ⌃n, we could compute the 2n-point function holographically using e.g. Witten diagrams.

This is of course far from reality and we will be able to perform only a modest step towards

this direction. Namely, we will approximate the 2n-point function on ⌃n by a product of

two-point functions computed using geodesic approximation in an Euclidean AdS topological

black hole by employing the coordinate transformation found in [23]. This corresponds to

the leading term in the large N limit. As we learned from the field theoretic analysis, there

are subtle problems of the leading term large N approximation in the late time limit and

n ! 1. In this section, we will ignore these issues and address them again in the final section.

The topological black hole, as we will review below, has an asymptotic boundary given

by S1⇥Hd�1 where Hd�1 is a d�1-hyperbolic plane (Euclidean AdSd�1

). We can identify it

with ⌃n up-to a conformal factor [23]. Then, similarly to [35], we assume that the two-point

functions of the bulk fields �
�

dual to operators O(x) with (su�ciently large) dimension �

can be computed semi-classically

h�
�

(x)�
�

(x0)i ⇠ e�
�
R

L(�) (99)

where � is the geodesic between the operator’s insertion points that we schematically denoted

x and x0. Our approximation should be valid for a general class of CFTs at large central

charge c. We further refer to [36] for a discussions on validity and subtleties of (99).

In formulas below we will not use �
�

’s anymore since they don’t play any role in our general

derivations. Instead, we identify the holographic result for the two point function on ⌃n with

the exponent of the geodesic length as

hO†(x)O(x0)ihol ⇠ e�
2�O
R

L(n)
(100)

Let us now review a few basic facts about topological black holes and proceed with compu-

tation of the geodesic lengths.

5.1 Topological Black Holes in AdS

The Euclidean topological black hole in AdSd+1

is given by metric [37]

ds2 = f(r)d⌧ 2 +
dr2

f(r)
+ r2

d⇣2 + dxidxi

⇣2
(101)
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Geodesics in topological Black Holes
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Geodesics in topological Black Holes
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Temperature and “n”

holographic ratio of the propagators (eg d=2)

perfectly matches the 2d CFT result



n � 2

contracted with the operator on sheet i + 1 ( operator on the n-th sheet is contracted with

the operator on sheet i = 1). As a result, using the holographic ratio (129), we obtain the

late time limit of the Renyi entropy

�S(n)
A ' 1

1� n
log

2
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⇡
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t

!
2n�O

3

5 . (130)

More explicitly, for example for n = 2 in d = 2 we have

�S(2)

A = 4�O log

✓
2t

✏

◆
� log 2. (131)

Our holographic results (130) perfectly agree with our 2d CFT results (85) in the large c

limit. This confirms our large c approximation studied in section 4 corresponds to the dual

gravity calculation with the geodesic approximation, which ignores all backreactions of the

massive particle in the AdS.

The geodesic approximation regards the 2n point function as n disconnected two point

functions. As usual, this can be naively justified in the large N limit. However, our previous

CFT arguments suggests that this approximation breaks down when t is very large (t ! 1)

as in (80) or when we take the von-Neumann entropy n ! 1 limit. In both cases, it is

expected that we need to take into account non-perturbative corrections about the large N

limit.

5.4 Analysis in Higher Dimensions

For higher d the integrals become more complicated and the analytical answer seems very

hard to obtain (inverting C
2

and r⇤). However we can still extract the late time answer

(t >> l but still smaller than 1) for �S(n)
A . Here we briefly describe the procedure and state

the main results but more details can be found in App. B.

Analyzing the geodesic lengths in d � 2 (see App.B for details) one can check that at

late time �S(n)
A has the same divergent behavior

�S(n)
A ' 4n�

d(n� 1)
log

✓
F
(d,n) t

2 ✏

◆
+ C

(n,d) �
1

n� 1
log 2 (132)

where C
(n,d) is some non-universal constant and F

(d,n) was defined in (107). Note that higher

Renyi entropies all behave similarly and for example in the extremal limit we get the min-

entropy

�S(1)

A ' 4�

d
log

✓
t

✏

◆
(133)

Again, we expect that our geodesic approximation may break down when t is very large

as in the 2d CFT case. It is also clear that for any d, in the limit of n ! 1 we cannot trust

the holographic computation. In both cases, we expected that non-perturbative corrections

about the large N limit will become important.
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We can find the two-point function of operators O(wi, w̄i) on ⌃n
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Moreover, it can be shown (see (129)) that the ratio of the two-point function on ⌃n to the

two point function on ⌃
1

at late time is given by
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Using the fact that leading divergent contribution to the correlation function comes from

two types of Wick contractions as in the arguments in section 3.1, we get at late time
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That leads to the n-th Renyi entropy
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Setting n = 2 we recover the logarithmic behavior at large c (76).

However, the same caution should be o↵ered as previously. If we take ✏ ! 0 strictly,

our large c approximation breaks down. In other words, if t gets very large such that

t � (D0

O)
1

4�O , the logarithmic growth will be terminated and �S(n)
A approaches to some

constant of order logD0

O as in (80).

A related observation is that we cannot trust the results in the limit n ! 1 since not only

n sin ⇡/n ! 0 but the constant term blows-up when n ! 1. We believe that this problem

occurs because our large c approximation breaks down in the n ! 1 limit. A similar situation

occurs in local operator excited states in free Yang-Mills as we studied in section 3, where

the large N expansion breaks down in the limit n ! 1. We will comment more on this later

by comparing with holographic results.

Before we proceed, it is useful to rewrite the ratio of the two-point functions on ⌃n and ⌃
1

in terms of coordinates w = e�+i⌧/R. We will later compare it with the same ratio obtained

holographically using geodesics in topological black hole. In {⌧,�} coordinates we have
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therefore we can simplify the ratio to
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higher d at late time

Results

n->1 

n->1 from holography?



Falling particle in AdS (n=1)

↵ ⌘ ✏

�S(1)
A = 0 (t < l)
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CFT (chain)

In our setup:

[Nozaki,Numasawa,Takayanagi’13]



General picture (summary)
entanglement entropy using the holographic entanglement entropy, which is essentially same
as the earlier work [19]. Below we would like to summarize main part of our results schemat-

ically.
Generally within our analysis, being weakly coupled or strongly coupled, the growth of

entanglement entropy ∆S(n)
A behaves as follows (assuming the limit t ≫ l ≫ ϵ, where we can

suppress l dependence):

∆S(n)
A = − 1

n− 1
log

⟨O†O · · ·O†O⟩Σn

(⟨O†O⟩Σ1
)n

≃ − 1
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log
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+ µn ·
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t

)νn
]

. (135)

Here, Dn(> 0), νn(> 0) and µn are n dependent constants. Since the 2n point function is

reduced to the two point function at n = 1, we obtain the relation

1

D1
+ µ1 ·

(ϵ

t

)ν1
= 1. (136)

In our free field theory example of four dimensional U(N) scalar field, for the Renyi

entanglement entropy n ≥ 2, we found

Dn = 2Jn−1 +O(N−2), (137)

while µn = O(2−Jn) and νn = O(1). If we take the von-Neumann limit n → 1 we cannot

ignore subleading terms of large N expansion in (137) as we mentioned. However, once we
take this into account, the late time limit t → ∞ is smoothly taken and we obtain a finite
entropy. A similar behavior is true for the rational CFTs in two dimension, where Dn is

given by the quantum dimension dO of the primary operator O as Dn = (dO)n−1 [10] and
therefore ∆S(n)

A approach the same value log dO for any n in the late time limit t → ∞. It is

also helpful to note that in these examples, there is no time range where the second term in
(135), which is time-dependent, gets dominant over the first term 1/Dn. In other words, we

cannot find the logarithmic grows of ∆S(n)
A in the above examples.

On the other hand, our holographic analysis of strongly coupled large N CFTs in d
dimensions lead to following behavior for an operator with the conformal dimension ∆:

νn ≃ 4n∆

d
+O

(

∆2

c

)

, (138)

where c ∼ N2 is the central charge of each CFT. We reproduced the same result for d = 2

from field theoretic calculations. The fact that the constant part, i.e. 1/Dn term, is missing
in the perturbative large N expansions, suggest that it behaves like

Dn ∼ ebn·N
an
, (139)

where an and bn are positive constants. This of course corresponds to a non-perturbative
contribution in the large N expansion. In our holographic and field theoretic arguments, it
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where an and bn are positive constants. This of course corresponds to a non-perturbative
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was very difficult to compute this non-perturbative term Dn. However, since we expect that
it is very large, we find that there is a long time period where ∆S(n)

A grows logarithmically

with time as
∆S(n)

A ≃ νn
n− 1

log
t

ϵ
, (140)

as in (80). It is intriguing to note that this logarithmic growth is peculiar to strongly coupled
large N CFTs. At late time limit t → ∞, ∆S(n)

A approaches11 to a constant 1
n−1 logDn.

The von-Neumann limit n → 1 is more subtle in strongly coupled large N CFTs than that
in free field CFTs. The leading order results (138) and (140) already tell us that ∆S(n)

A gets
divergent at n = 1 and thus this says that the large N expansion will break down again. On

the other hand, our holographic result (134) based on the holographic entanglement entropy
[19] implies the following behavior

νn = (n− 1) · ν +O
(

(n− 1)2
)

, (141)

where ν should satisfy

µ1ν =
c

6
. (142)

Moreover, the relation (136) leads to

1

D1
+ µ1 = 1. (143)

These suggest that ν ∼ O(c) and this is possible only if we assume non-perturbative terms

in (138).
This von-Neumann entanglement entropy grows logarithmically ∆S(1)

A ≃ c
6 log

t
ϵ even in

the late time limit. This looks similar to the local quantum quenches [17]. However, notice
the difference that in our setup we consider a single local operator excitation and that it is

much simpler than the one for local quenches, which are triggered by a sudden change of
Hamiltonian at a particular point and which produce infinitely many operators. In this way,
the results for the strongly coupled large N CFTs looks different from those for free CFTs.

Therefore it is an important future problem to confirm our prediction for strongly coupled
CFTs and understand both n → 1 limit and the late time limit t → ∞ in more details.

11However, notice that from our computations in this paper we cannot completely deny the possibility
that Dn is infinitely large such that 1

Dn
= 0 precisely, though physically this may look unusual. If this

happens, even in the late time limit t → ∞, the Renyi entanglement entropy grows logarithmically and
does not approach to a constant. On the other hand, our previous rough argument in the footnote 5 and
its generalization to any n following [10], give the estimation Dn ! epn(n−1)c, where pn is a positive O(1)
constant. If this is true, both Renyi and von-Neumann entanglement entropy approaches finite constants
∆S(n)

A ! O(c) in the late time limit t → ∞. It is very important future problem to examine this issue more
closely.
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