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• Previous works considered the probe limit:  dynamical  Φ, Aµ  but  NO  backreaction  on  gµν 
!

• Albash, Johnson; 
• Montull, Pomorol, Silva; 
• Maeda, Natsuume, Okamura; 
• Kachru, Sachdev; 
• Bao, Harrison; 
!
!
!
• Here, I will  consider  the full nonlinear problem  with   backreaction  on  gµν: 

    

       - fully characterise the system: find properties not seen in probe limit 

      - follow physics all way down to low temperatures,  

      - learn about the IR field theory that describes the system at zero Temperature 



• Ginzburg–Landau (GL) theory: 
      SC wavefunction  Φ  has  order  parameter  properties:  

        its equilibrium value is zero above Tc and increases gradually below Tc 

       

!
      GL  free energy density for a SC expanded around T= Tc  for small expansion parameter |Ψ|: 

!
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➙  Accommodating SCs in the gauge/gravity correspondence 

〈O  〉

II. THE HOLOGRAPHIC SET-UP

We begin by setting up the gravity description of a holographic superfluid. We would

like to construct a quantum field theory in two spatial dimensions with a complex scalar

operator,  (x), carrying charge q under a global U(1) symmetry. Let jµ(x) denote the

conserved current operator of this global U(1) symmetry. To induce a superfluid condensate

for  , we will turn on a chemical potential µ for the U(1) charge. For su�ciently large µ, we

expect  to develop a nonzero expectation value h i 6= 0 when the temperature falls below

a critical temperature T
c

, spontaneously breaking the global U(1) symmetry and driving the

system into a superfluid phase.

A simple holographic system with this structure begins with a classical field theory living

in an asymptotically anti-de Sitter spacetime with 3 spatial dimensions (AdS
4

). Under the

standard holographic dictionary, the conserved current jµ(x) is mapped to a dynamical U(1)

gauge field A
M

(x, z) in the gravitational bulk, while the scalar operator  (x) is mapped to

a bulk scalar field �(x, z) carrying charge q under the gauge field A
M

. Note z is the radial

coordinate of AdS
4

.1 Placing the system at nonzero temperature corresponds to adding

to the bulk spacetime a black hole whose horizon is a two-dimensional plane extended

in boundary spatial directions. Adding a chemical potential corresponds to imposing a

boundary condition on the bulk gauge field A
t

= µ at the boundary of AdS
4

.2 As found

in [30, 31], if the charge q and scaling dimension � of  lie in certain range, taking µ

su�ciently large drives the bulk scalar field � to condense through the Higgs mechanism,

so that the black hole develops scalar “hair” of � outside the horizon.

There are many examples of quantum theories with a low-temperature superfluid phase

which admit such a gravitational description [32, 33]. A universal bulk description for them

is an Abelian Higgs model of A
M

and � coupled to the Einstein gravity, with di↵erent

systems having di↵erent charge q and potentials for �. For definiteness we will choose a

quadratic potential with a mass for � correspond to  having scaling dimension � = 2 as

in [31]. We will work in the probe limit of [31], which applies when the charge q of � is

large. In this limit the gravitational system is approximated by an Abelian Higgs model of

A
M

and � in a Schwarzschild black hole geometry, with the backreaction of A
M

and � on

1 We label boundary indices by µ, ⌫, · · · , and bulk indices by M, N, · · · , with AM = (Aµ, Az).
2 Notably this gravitational system is dual to a conformal field theory; however, conformal symmetry is

broken by both the chemical potential and the temperature, so the conformal symmetry will plan no role

in what follows. 4

1 T/Tc

Ginzburg–Landau eq. I

Ginzburg–Landau eq. II

• Note that GL eqs follow from Abelian Higgs model  (Klein-Gordon eq for charged scalar): 
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•  To discuss SCs in the holographic context add bulk gravitational AdS background

〈O  〉

II. THE HOLOGRAPHIC SET-UP

We begin by setting up the gravity description of a holographic superfluid. We would

like to construct a quantum field theory in two spatial dimensions with a complex scalar

operator,  (x), carrying charge q under a global U(1) symmetry. Let jµ(x) denote the

conserved current operator of this global U(1) symmetry. To induce a superfluid condensate

for  , we will turn on a chemical potential µ for the U(1) charge. For su�ciently large µ, we

expect  to develop a nonzero expectation value h i 6= 0 when the temperature falls below

a critical temperature T
c

, spontaneously breaking the global U(1) symmetry and driving the

system into a superfluid phase.

A simple holographic system with this structure begins with a classical field theory living

in an asymptotically anti-de Sitter spacetime with 3 spatial dimensions (AdS
4

). Under the

standard holographic dictionary, the conserved current jµ(x) is mapped to a dynamical U(1)

gauge field A
M

(x, z) in the gravitational bulk, while the scalar operator  (x) is mapped to

a bulk scalar field �(x, z) carrying charge q under the gauge field A
M

. Note z is the radial

coordinate of AdS
4

.1 Placing the system at nonzero temperature corresponds to adding

to the bulk spacetime a black hole whose horizon is a two-dimensional plane extended

in boundary spatial directions. Adding a chemical potential corresponds to imposing a

boundary condition on the bulk gauge field A
t

= µ at the boundary of AdS
4

.2 As found

in [30, 31], if the charge q and scaling dimension � of  lie in certain range, taking µ

su�ciently large drives the bulk scalar field � to condense through the Higgs mechanism,

so that the black hole develops scalar “hair” of � outside the horizon.

There are many examples of quantum theories with a low-temperature superfluid phase

which admit such a gravitational description [32, 33]. A universal bulk description for them

is an Abelian Higgs model of A
M

and � coupled to the Einstein gravity, with di↵erent

systems having di↵erent charge q and potentials for �. For definiteness we will choose a

quadratic potential with a mass for � correspond to  having scaling dimension � = 2 as

in [31]. We will work in the probe limit of [31], which applies when the charge q of � is

large. In this limit the gravitational system is approximated by an Abelian Higgs model of

A
M

and � in a Schwarzschild black hole geometry, with the backreaction of A
M

and � on

1 We label boundary indices by µ, ⌫, · · · , and bulk indices by M, N, · · · , with AM = (Aµ, Az).
2 Notably this gravitational system is dual to a conformal field theory; however, conformal symmetry is

broken by both the chemical potential and the temperature, so the conformal symmetry will plan no role

in what follows. 4

1 T/Tc

RN-AdS  BH unstable  
to scalar condensation if 

µ2d NH ( µ, q ) < µ2d BF 

    although 
         µ > µ4d BF   (asymp. stable)
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1 T/Tc

Horizon

Boundary  
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r

Planar  RN-AdS  BH             normal  phase

T > Tc :

Gubser,!

Hartnoll, Herzog, Horowitz ( HHH ),!

Horowitz, Roberts,!

Murata, Kinoshita, Tanahashi  

OD, Monteiro, Reall, Santos

Hairy   BH  ( HHH )                SC   phase

Floating  

condensate  of  

scalar  field

� = hOi
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+  +  +  +
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➙ Normal / SC phase transition even in the absence of a chemical potential
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• Mexican  hat  potential: 
!
!
!
!
• Asymptotic  decay  of  scalar field 
!
!
!
!
• For                                         ,  impose  Robin  BCs:      β = κ α     ( α = ⟨O⟩ ) 
!
!
• Corresponds to a relevant double trace deformation of the boundary theory of the form : 
!
!
!!

•  Instability  breaks  a  U(1)  symmetry  at  low  T :  

                       Tc ~ κ                                  2xTr  HHH  condensate  forms
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II. THE HOLOGRAPHIC SET-UP

We begin by setting up the gravity description of a holographic superfluid. We would

like to construct a quantum field theory in two spatial dimensions with a complex scalar

operator,  (x), carrying charge q under a global U(1) symmetry. Let jµ(x) denote the

conserved current operator of this global U(1) symmetry. To induce a superfluid condensate

for  , we will turn on a chemical potential µ for the U(1) charge. For su�ciently large µ, we

expect  to develop a nonzero expectation value h i 6= 0 when the temperature falls below

a critical temperature T
c

, spontaneously breaking the global U(1) symmetry and driving the

system into a superfluid phase.

A simple holographic system with this structure begins with a classical field theory living

in an asymptotically anti-de Sitter spacetime with 3 spatial dimensions (AdS
4

). Under the

standard holographic dictionary, the conserved current jµ(x) is mapped to a dynamical U(1)

gauge field A
M

(x, z) in the gravitational bulk, while the scalar operator  (x) is mapped to

a bulk scalar field �(x, z) carrying charge q under the gauge field A
M

. Note z is the radial

coordinate of AdS
4

.1 Placing the system at nonzero temperature corresponds to adding

to the bulk spacetime a black hole whose horizon is a two-dimensional plane extended

in boundary spatial directions. Adding a chemical potential corresponds to imposing a

boundary condition on the bulk gauge field A
t

= µ at the boundary of AdS
4

.2 As found

in [30, 31], if the charge q and scaling dimension � of  lie in certain range, taking µ

su�ciently large drives the bulk scalar field � to condense through the Higgs mechanism,

so that the black hole develops scalar “hair” of � outside the horizon.

There are many examples of quantum theories with a low-temperature superfluid phase

which admit such a gravitational description [32, 33]. A universal bulk description for them

is an Abelian Higgs model of A
M

and � coupled to the Einstein gravity, with di↵erent

systems having di↵erent charge q and potentials for �. For definiteness we will choose a

quadratic potential with a mass for � correspond to  having scaling dimension � = 2 as

in [31]. We will work in the probe limit of [31], which applies when the charge q of � is

large. In this limit the gravitational system is approximated by an Abelian Higgs model of

A
M

and � in a Schwarzschild black hole geometry, with the backreaction of A
M

and � on

1 We label boundary indices by µ, ⌫, · · · , and bulk indices by M, N, · · · , with AM = (Aµ, Az).
2 Notably this gravitational system is dual to a conformal field theory; however, conformal symmetry is

broken by both the chemical potential and the temperature, so the conformal symmetry will plan no role

in what follows. 4

1 T/Tc
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FIG. 2. Choice for the potential (2.4), with µ2L2 = �2 and V
0

= �L�2.

The asymptotic behavior of � is then

� = ↵z + �z2 + · · · (2.6)

One has a choice of boundary conditions. For standard boundary conditions, ↵ = 0, � is

dual to a dimension two operator. For alternative boundary conditions, � = 0, � is dual to

a dimension one operator O. In this case, the double trace operator O†O is relevant, so it

is natural to add a coupling �
R

d3x O†O to the dual field theory action. As explained in

[19, 20], the e↵ect of adding such a term is to modify the boundary conditions in the bulk

to become

� = ↵ . (2.7)

Positive  corresponds to adding O†O to the dual field theory potential with a positive

coe�cient. This makes it harder for O to condense. One might have thought that setting

 < 0 would destabilize the theory and there would be no ground state. However this is not

the case. The full e↵ective potential contains higher powers of O which stabilize the theory.

This has been shown by proving a bulk “positive energy theorem” under the boundary

condition � = ↵ for � with  < 0 [21].

For a given  < 0, the planar Schwarzschild solution (with � = 0) is stable at high

temperature, but becomes unstable to developing scalar hair at low temperature. The critical

temperature is set by the only scale in the problem, , and can be explicitly computed [18]:

Tc =
3

4⇡

�(1/3)3

�(�1/3)�(2/3)2
 ⇡ �0.62 . (2.8)

As T ! 0, we are deep in the condensed phase, and the value of the scalar field on the

horizon approaches |�| = 1. The horizon reduces to the Poincaré horizon of a new IR AdS
4

8
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 [BF],  [Ishisbashi,Wald],  [ Faulkner, Horowitz, Roberts  ( 2xTr  HHH ) ] ,   [Witten],  [Sever, Shomer]	

  



➙  Adding  SC & SF vortices:  how to do ?

• Bdry: vortex is pointlike excitation around which phase of condensate winds 

!
!

• Static axisymmetric vortices: ∂t , ∂φ are KV. 

• Problem depends on holog distance z~1/r , and bdry radius R.    

• SF or SC  vortex  means  that  Aφ ≠ 0 

• Solve  Einstein-deTurck  PDEs  for  { |ψ|,  Αφ , gµν }   [Wiseman]   using  

    Newton-Raphson relaxation algorithm on a pseudospectral collocation grid 

• BCs  for gµν :  Fefferman-Graham form and its bdry expansion    

!
!

                               [ Haro, Solodukhin, Skenderis ] 

• Dirichlet  BC:  fix  g(0)  to be planar AdS.     Find  < T > ~ g(3)   
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Previously in the Probe limit: 
• Albash, Johnson; 
• Montull, Pomorol, Silva; 
• Maeda, Natsuume, Okamura; 
• Kachru, Sachdev; 
• Bao, Harrison;
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➙  Distinguishing SC & SF vortices:  BCs for Maxwell  field  

• CFT has a gauge coupling:
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   SF  case:  gc = 0  

• Global U(1):  not  gauged  (just  rotational sym) 

• Do  not  want  external  applied  field  

         ⇒  SF  BC:  Aφ|z=0 =0   

• Jφ creates the vortex

   SC  case w/ J=0:  gc → ∞ 

• Gauged  U(1)  

• Dynamical  field  ∇aFab=0 

       ⇒  SC  BC:  Jφ|z=0 =0   

• Aφ creates the vortex

R → ∞: 
 2xTr  HHH  + Aφ (z)
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R → ∞:

 2xTr  HHH  

B



➙ T=0,  near-horizon  &  field theory considerations: 

• Conventional SFs has few low-energy excitations:  

         at T=0, there is single gapless Goldstone mode associated with  spontaneous symmetry breaking.  

    Conventional SCs does not even have this mode: it is eaten by the dynamical photon.  

• However, typical holographic SFs or SCs have many gapless dof: their gravity dual has BH horizon at low T. 

•  Vortex is localised point in the UV CFT3 directions.   

    It becomes a bulk cosmic string, carrying Φmag  down to bulk horizon where it interacts with IR dof.  

    This interaction is described by an IR CFT3  ( ≠ UV CFT3 ): 

• We  propose: 

    Use  defect CFT formalism  to describe interaction of a heavy, point like object (e.g. a vortex) with  IR CFT3 

    Defect  breaks  translational invariance of the conformal group 

• Construct the Near-Horizon solution  

    of the T=0 configuration  

    on the boundary of which the defect IR CFT3 lives

UV  CFT3

IR  defect  CFT3

Standard Higgs mechanism



•  ∃  AdS2   endows  bulk solution with a Poincaré horizon at ρ → ∞.  

    There is an entropy associated with this horizon, which extends from θ = 0 to θ = π/2: 

!
!
!
!

• Horizon ⋂ conformal bdry AdS2 𝗫 S1 at θ = π/2: it’s a bulk minimal surface that hangs down from bdry. 
    ΔSimp  computes entanglement entropy via the Ryu-Takayanagi prescription 

• Minimal surface wraps the S1  that surrounds the defect on the bdry.   
    So ΔSimp is boundary or impurity entropy of the defect with its surrounding 

Bdry 
ρ=0 

(θ=π/2)

Poincaré H 
ρ= ∞

• BCs at bdry:   g → AdS4,      Aφ = n / q L,     arg Φ = n φ    

• BCs at origin:   g  regular,      Aφ = 0,     Φ= 0 

• Full solution (out to the UV AdS4) depends on 2 variables,  

                   but there is enhanced symmetry in the IR: cohomogeneity-1

➙ Near-Horizon solution (T=0) & IR defect CFT3

• Vortex  (defect) breaks translational invariance of the conformal group SO(3,2):  broken SO(2,1) 𝗫 SO(2) 

• Most general element with these symmetries:  [ Vortex core: θ=0.    ∂ AdS4: θ=π/2  is  conf to AdS2 𝗫 S1 ] 

!
!
!
• SO(2,1) is sym. group of a CFT1 extending along vortex worldline: nontrivial CFT1 lives on the defect.  

Defect is mapped to AdS2 boundary and  BCs therein. Phase of vortex should wind around S1. 
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• Scalar curvature of the T = 0 horizon is large near the core:  

    Defect is breaking the translational invariance of the 2xTr HHH near-horizon solution. 

    Signals a “bubble of  RN-AdS horizon” (carrying  Simp) sticking out of the usual Poincaré horizon.
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FIG. 4: The scalar curvature of the T = 0 horizon as a function of proper distance from the vortex

core. The large positive peak near the core denotes a “bubble of Reissner-Nordström horizon”

sticking out of the usual Poincaré horizon.

In our calculation we have taken the definition of the defect entropy to be the regulated

entanglement entropy evaluated in the AdS
2

⇥ S1 conformal frame (3.8), and have shown

that this matches very well with the T ! 0 limit of the thermodynamic entropy. While

from the bulk point of view the subtraction involved in (3.8) appears natural (in that we

are subtracting the areas of two bulk horizons) the precise reason for this agreement from

the field theory deserves further study.

Another comparison one can make is between the impurity entropy and the entropy of

an extreme Reissner-Nordström solution with one unit of total flux. To define this latter

quantity, one can start by compactifying the horizon into a finite volume torus. One finds

that the entropy of the extremal solution is proportional to the magnetic flux. One can thus

take the infinite volume limit and obtain a finite entropy. We have made this comparison

and find that our impurity entropy is roughly double the Reissner-Nordström entropy with

the same total flux. Confining the flux into finite volume apparently increases its entropy.

We have not yet been able to construct the near horizon scaling solution for vortices with

more than the minimum flux, i.e., n > 1. So in section V we will only compare the finite

temperature n = 1 solutions to their T = 0 limit.

our attention.
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Proper distance from vortex core

RH

➙ Near-Horizon solution (T=0) & IR defect CFT3

• mag  RN-AdS Bubble  (Φ=0)  
• B focused here 
• SRN ≠ 0  when  T→0. 

• SC (Φ ≠ 0)  Poincare Η 
• SSC sea = 0  when  T→0.

UV  CFT

IR  defect  CFT3



• Confirming we have the correct  NH  geometry: 

    Entropy  of  the   full   vortex solution  (that extends to UV)  as a function of  Temperature   

       ΔS ↗ as T ↘:   vortex causes RN horizon to bubble out as T → 0 

    approaches   Simp  as  T →0. 

➙ SC vortex  (full geometry @ any T)  vs  Simp (NH solution T=0 )

!!!!!!!!!!!!!!!!!!!!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
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FIG. 5: Full entropy di↵erence (defined later in (5.7)) as a function of T/(�) for q L = 2. Squares

correspond to n = 1 and diamonds to n = 2. The red triangle represents the impurity entropy

(defined in (3.8)) extracted from the scaling solution (3.10).

IV. FULL SOLUTION: BOUNDARY CONDITIONS AND NUMERICAL METH-

ODS

In this section we venture away from the infrared and describe the solution to the full

problem of constructing a vortex in the UV complete theory. We demand that in the UV we

approach the original AdS
4

, with the scalar approaching the local maximum of its potential

at |�| = 0 and satisfying the double-trace boundary conditions (2.7). We will first explain

the general ansatz used for determining both the metric and matter fields, and then discuss

the appropriate boundary conditions and numerical methods used to determine the solution.

For convenience of notation we refer to the homogeneous superconducting black hole solution

(to which our solutions asymptote in various limits) by the abbreviation HHH.

A. Metric and matter fields ansatz

We want a configuration that, from the metric perspective, is symmetric under rotations

about the origin of the vortex, so it is clear that we will have a rotation Killing vector @'.

In addition, we are interested in static black hole solutions, which also means we will have

a timelike Killing vector @t. Finally, we expect the physics to depend both on the radial

variable that measures the distance to the vortex core (we will call it x or R) and on the

holographic direction (which we denote as y or z). So, we anticipate that our problem will

be co-homogeneity two, and that cylindrical coordinates will be best adapted to study our

17

ΔS imp 
( NH; T=0 )

ΔS = Svortex - SNO vortex

Temperature

n = 1 (winding #)

n = 2 (winding #)



Landau-Ginzburg theory, the threshold between the two is at precisely ?
LG = 1p

2

. Thus we

conclude that this ratio of correlation lengths should be correlated with vortex stability.
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FIG. 14. Profile of magnetic field B(R) and order parameter hO(R)i for a single vortex with qL = 1

(left panel) and qL = 3 (right panel). � and ⇠ are found from exponential fits and measure the rate

of fall-o↵ of magnetic field and order parameter, respectively.

We now return to our gravitational description and see if these expectations are borne out.

We will do this for di↵erent values of the scalar charge q; interestingly we will find di↵erent

results. First, we construct the correlation lengths � and ⇠ by fitting an exponential profile

(with a subleading power-law correction) to the magnetic field B(R) and the order parameter

hO(R)i for a single vortex:

B(R) ⇠ b

✓

�

R

◆↵

exp

✓

�R

�

◆

, hO(1)i � hO(R)i ⇠ o

✓

⇠

R

◆�

exp

 

�
p
2R

⇠

!

. (5.9)

The results are shown in Fig. 14. It is clear that for qL = 1 we have ⇠ < � while for

qL = 3 we have ⇠ > �. The ratio LG depends weakly on temperature, but for qL = 1,

LG > 1p
2

and we might expect to be firmly in the Type II regime, while for qL = 3, we

have LG < 1p
2

and we expect to be in the Type I regime. For qL = 2, LG is close to the

expected transition at 1p
2

.

To check these expectations, we compare the entropy at fixed energy and free energy at

fixed temperature of an n = 2 vortex and two n = 1 vortices. We will see that both the

microcanonical and canonical analysis give the same answer for the stability of an n = 2

vortex.

We start with the qL = 1 case. Since the total energy, like the entropy, diverges due

to infinite volume, we will work with the di↵erence, �E, which is defined as the di↵erence
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Type  II  SC: q L = 1

Landau-Ginzburg theory, the threshold between the two is at precisely ?
LG = 1p

2

. Thus we

conclude that this ratio of correlation lengths should be correlated with vortex stability.
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FIG. 14. Profile of magnetic field B(R) and order parameter hO(R)i for a single vortex with qL = 1

(left panel) and qL = 3 (right panel). � and ⇠ are found from exponential fits and measure the rate

of fall-o↵ of magnetic field and order parameter, respectively.

We now return to our gravitational description and see if these expectations are borne out.

We will do this for di↵erent values of the scalar charge q; interestingly we will find di↵erent

results. First, we construct the correlation lengths � and ⇠ by fitting an exponential profile

(with a subleading power-law correction) to the magnetic field B(R) and the order parameter

hO(R)i for a single vortex:

B(R) ⇠ b

✓

�

R

◆↵

exp

✓

�R
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◆

, hO(1)i � hO(R)i ⇠ o
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exp

 

�
p
2R

⇠

!

. (5.9)

The results are shown in Fig. 14. It is clear that for qL = 1 we have ⇠ < � while for

qL = 3 we have ⇠ > �. The ratio LG depends weakly on temperature, but for qL = 1,

LG > 1p
2

and we might expect to be firmly in the Type II regime, while for qL = 3, we

have LG < 1p
2

and we expect to be in the Type I regime. For qL = 2, LG is close to the

expected transition at 1p
2

.

To check these expectations, we compare the entropy at fixed energy and free energy at

fixed temperature of an n = 2 vortex and two n = 1 vortices. We will see that both the

microcanonical and canonical analysis give the same answer for the stability of an n = 2

vortex.

We start with the qL = 1 case. Since the total energy, like the entropy, diverges due

to infinite volume, we will work with the di↵erence, �E, which is defined as the di↵erence
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Type  I  SC: q L = 3
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➙ (❨ FULL geometry )❩   SC results:  type I vs type II

Holographic SCs can be either type I or type II, depending on the scalar charge 
       Probe limit is q → ∞ so misses it 
       Conventional wisdom assumed all holographic SCs are type II

R: distance (@ bdry)  

     to vortex core

[ Umeh 2009 for earlier suggestion I / II ] 

• Ginzburg–Landau parameter:

•  Gravitational results:



• Applied magnetic field penetrates the condensate sample and creates region of normal phase with flux.  

!

!

• Domain wall  (DW)  separating normal / SC phase costs energy. 

!

!

• For type I SCs, DW costs positive E: to minimize cost system creates a single large lump of Normal phase.  

                              n=2 vortex should be energetically favoured over two n=1 vortices 

!

• For type II SCs, DW costs negative E: to maximize DW length, system tries to creates as many vortices with     

                                                  Normal phase as possible (eventually a Abrikosov lattice of vortices is favoured).  

                              n=2 vortex should be unstable to fragmentation into two n=1 vortices

➙ SC results:  vortex thermodynamics & stability

H

Bdry  

z



• For type I SCs   ( qL ≳ 1.9 ),   n=2 vortex is energetically favoured over two n=1 vortices 

!
!
!
!
!
!
!
!
!

• For type II SCs  ( qL≲ 1.9 ),  n=2 vortex is unstable to fragmentation into two n=1 vortices

unstable towards breaking into two n = 1 vortices. Thus this holographic superconductor is

Type II. This is in agreement with our study of the Landau-Ginzburg parameter LG above.

We now repeat the analysis for qL = 2, shown in Fig. 16: things have changed, and

now the entropies and free energies of the two configurations are very similar. Although the

points are very close, we have checked that in both cases the n = 2 vortex is favored over two

n = 1 vortices. Thus for this value of the scalar charge the vortex is Type I, but is very close

to the threshold for the crossover to Type II. This agrees perfectly with our expectations

from studying LG, which for this value of the charge was very close to the critical value
1p
2

. Finally, for qL = 3, we have verified that both the entropy and free energy di↵erences

are larger than qL = 2, and continue to favor the n = 2 vortex over the two n = 1 vortices.

This again agrees with our expectations from studying LG.
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FIG. 16: For qL = 2, the n = 2 vortex is (slightly) favored over two n = 1 vortices. Left Panel :

entropy di↵erence (5.7) as a function of �E/(�) for q L = 2. Disks correspond to n = 1 and

squares to n = 2. Right Panel : the di↵erence in free energies, ��F = �Fn=2

/2 � �Fn=1

, as a

function of T/(�).

We end our discussion of vortex stability with a final comment: we have seen that vortex

stability is precisely the distinction between Type I and Type II superconductors. From our

analysis it is clear that whether or not a particular holographic superconductor is Type I

or Type II depends on the detailed dynamics, i.e. the non-universal ratio of two di↵erent

correlation lengths, which appears to be sensitive to (for example) the precise value of the

scalar charge. While most of the literature on holographic superconductors states that they

are Type II [3, 10], this was originally based on the fact that the scalar condensate starts

to condense at a nonzero value of the magnetic field. This was interpreted as Bc2, the
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Microcanonical (fix E)

ΔSn=2  > 2 𝗫 ΔSn=1
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FIG. 15: For qL = 1, the n = 2 vortex prefers to break up into two n = 1 vortices. Left Panel :

entropy di↵erence (5.7) as a function of the energy di↵erence �E/(�). Disks correspond to n = 1

and squares to n = 2. Right Panel : the di↵erence in free energies, ��F = �Fn=2

/2 � �Fn=1

, as

a function of the temperature T/(�).

We start with the qL = 1 case. Since the total energy, like the entropy, diverges due

to infinite volume, we will work with the di↵erence, �E, which is defined as the di↵erence

in energy between the vortex solution and the corresponding HHH black hole at the same

temperature. If we use Eq. (4.22), one finds

�E = �y2
+
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(0)2
i

)

dx . (5.10)

Like the entropy, the fact that this expression is finite is in itself a test of the numerics.

First, we will plot the entropy di↵erence (5.7) as a function of the energy di↵erence (5.10)

for both n = 1 and n = 2. This comparison is appropriate for a microcanonical ensemble; the

solution with the higher entropy will dominate. The results are illustrated on the left panel

of Fig. 15 for q L = 1. We have also divided �S by the respective value of n, since we want to

compare the entropy of two isolated n = 1 vortices with the entropy of a single vortex with

n = 2. Note that the n = 2 vortex appears to be always unstable to breaking into two n = 1

vortices. The same result is obtained in a canonical ensemble when we compare the free

energies F = E � TS. The right panel of Fig 15 shows a plot of ��F = �Fn=2

/2��Fn=1

.

The fact that this quantity is always positive confirms that the n = 2 configuration is always

34

2 𝗫 ΔSn=1 > Δ Sn=2

unstable towards breaking into two n = 1 vortices. Thus this holographic superconductor is

Type II. This is in agreement with our study of the Landau-Ginzburg parameter LG above.

We now repeat the analysis for qL = 2, shown in Fig. 16: things have changed, and

now the entropies and free energies of the two configurations are very similar. Although the

points are very close, we have checked that in both cases the n = 2 vortex is favored over two

n = 1 vortices. Thus for this value of the scalar charge the vortex is Type I, but is very close

to the threshold for the crossover to Type II. This agrees perfectly with our expectations

from studying LG, which for this value of the charge was very close to the critical value
1p
2

. Finally, for qL = 3, we have verified that both the entropy and free energy di↵erences

are larger than qL = 2, and continue to favor the n = 2 vortex over the two n = 1 vortices.

This again agrees with our expectations from studying LG.
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FIG. 16: For qL = 2, the n = 2 vortex is (slightly) favored over two n = 1 vortices. Left Panel :

entropy di↵erence (5.7) as a function of �E/(�) for q L = 2. Disks correspond to n = 1 and

squares to n = 2. Right Panel : the di↵erence in free energies, ��F = �Fn=2

/2 � �Fn=1

, as a

function of T/(�).

We end our discussion of vortex stability with a final comment: we have seen that vortex

stability is precisely the distinction between Type I and Type II superconductors. From our

analysis it is clear that whether or not a particular holographic superconductor is Type I

or Type II depends on the detailed dynamics, i.e. the non-universal ratio of two di↵erent

correlation lengths, which appears to be sensitive to (for example) the precise value of the

scalar charge. While most of the literature on holographic superconductors states that they

are Type II [3, 10], this was originally based on the fact that the scalar condensate starts

to condense at a nonzero value of the magnetic field. This was interpreted as Bc2, the
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Canonical (fix T)

ΔFn=2  < 2 𝗫 ΔFn=1
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FIG. 15: For qL = 1, the n = 2 vortex prefers to break up into two n = 1 vortices. Left Panel :

entropy di↵erence (5.7) as a function of the energy di↵erence �E/(�). Disks correspond to n = 1

and squares to n = 2. Right Panel : the di↵erence in free energies, ��F = �Fn=2

/2 � �Fn=1

, as

a function of the temperature T/(�).

We start with the qL = 1 case. Since the total energy, like the entropy, diverges due

to infinite volume, we will work with the di↵erence, �E, which is defined as the di↵erence

in energy between the vortex solution and the corresponding HHH black hole at the same

temperature. If we use Eq. (4.22), one finds

�E = �y2
+
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Like the entropy, the fact that this expression is finite is in itself a test of the numerics.

First, we will plot the entropy di↵erence (5.7) as a function of the energy di↵erence (5.10)

for both n = 1 and n = 2. This comparison is appropriate for a microcanonical ensemble; the

solution with the higher entropy will dominate. The results are illustrated on the left panel

of Fig. 15 for q L = 1. We have also divided �S by the respective value of n, since we want to

compare the entropy of two isolated n = 1 vortices with the entropy of a single vortex with

n = 2. Note that the n = 2 vortex appears to be always unstable to breaking into two n = 1

vortices. The same result is obtained in a canonical ensemble when we compare the free

energies F = E � TS. The right panel of Fig 15 shows a plot of ��F = �Fn=2

/2��Fn=1

.

The fact that this quantity is always positive confirms that the n = 2 configuration is always
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 2 𝗫 ΔFn=1 < ΔFn=2 

F=E-TS 

δF=Fn=2-2Fn=1



➙ SC results:  holographic SCs ≠ conventional  SCs

• Boundary magnetic field Bbdry as a function of  distance  R to SC  Vortex core  for several  Temperatures
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FIG. 11: Boundary magnetic field profile as a function of R, plotted for several values of T/(�).

The left panel has n = 1, and the right panel n = 2. Here, disks, squares, diamonds, triangles and

inverted triangles have T/(�) = 0.029, 0.370, 0.495, 0.546, 0.571, respectively.
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FIG. 12: Maximum of the boundary magnetic field as a function of T/(�).

pared it to the impurity entropy of the T = 0 scaling solution for the n = 1 vortex. We see

that this entropy di↵erence grows as we decrease the temperature, approaching the T = 0

result computed previously. This is another illustration of the fact that the vortex causes

the horizon to “bubble out”. The n = 2 vortex is wider and causes a larger bubble on the

30

T

n = 1
 n = 2 (winding #) 

• B falls-off exp outside a Rcore (~ κ ). Rcore remains finite even as T →0.  

• This contrasts with the fall-off of energy density:   

        ε(R) ∼ e−α(T) R, inverse “energy screening length”   α(T) → 0   as   T → 0.  

• Thus @  T=0 the vortex sources a long-range disturbance in the stress tensor (requires back-reaction),  

     due to its interaction with the IR CFT.   

• Long-range tail demonstrates a difference between Holographic & Conventional SC vortices 

    (latter source no long range fields).

Bbdry = Fxy|bdry

R:  distance  (@ bdry)  to vortex core



➙ SUPERFLUID results:

•  Recall:    SC vortex sourced by a boundary magnetic field  B ~ ∂RAφ 

                   SF vortex sourced by boundary current  Jφ  (no applied B field) 

• Boundary Current Jφ|z=0  as a function of  distance R  to the SC  Vortex core  for several Temperatures:
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FIG. 17: Boundary current profile of a superfluid vortex as a function of R, plotted for sev-

eral values of T/(�). The left panel has n = 1, and the right panel n = 2 (both are for

qL = 2). Here, disks, squares, diamonds, triangles and inverted triangles have T/(�) =

0.029, 0.370, 0.495, 0.546, 0.571, respectively.

for a Goldstone mode ✓:

S = ⇢s

Z

d3x (r✓)2 . (5.12)

A vortex with charge n has ✓(R ! 1) ⇠ n' with ' the azimuthal angle around the vortex.

Evaluating the energy following from (5.12) on such a configuration, we find

E ⇠ ⇢s

Z

dR
1

R
n2 ⇠ ⇢sn

2 log

✓

R
max

a
0

◆

, (5.13)

where a
0

is the vortex core size and R
max

an IR cuto↵. This is a standard result. Perhaps

slightly less obvious is the fact that the first law of thermodynamics dE = TdS states that

at finite temperature this IR divergent energy implies also an IR divergent entropy. One

way to understand this is to note that at finite temperature the current J' will contain a

normal component, which falls o↵ slowly in space and carries an associated thermal entropy.

We now return to our gravitational description and compute the bulk energy density

di↵erence �E (5.10) and entropy density di↵erence �s (5.7) from our bulk gravitational

solution. As expected from the discussion above, both of these quantities decay only as

R�2 ⇠ (1 � x)2 at large boundary radius R, as shown in Fig. 19. The volume integrals of

both these densities diverge logarithmically at large R, as expected.10 The entropy density

10 Recall that in the superconducting phase �S and �E are finite because the corresponding densities �s

and �E have an asymptotic exponential decay.
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FIG. 17: Boundary current profile of a superfluid vortex as a function of R, plotted for sev-

eral values of T/(�). The left panel has n = 1, and the right panel n = 2 (both are for

qL = 2). Here, disks, squares, diamonds, triangles and inverted triangles have T/(�) =

0.029, 0.370, 0.495, 0.546, 0.571, respectively.

for a Goldstone mode ✓:

S = ⇢s

Z

d3x (r✓)2 . (5.12)

A vortex with charge n has ✓(R ! 1) ⇠ n' with ' the azimuthal angle around the vortex.

Evaluating the energy following from (5.12) on such a configuration, we find

E ⇠ ⇢s

Z

dR
1

R
n2 ⇠ ⇢sn

2 log

✓

R
max

a
0
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, (5.13)

where a
0

is the vortex core size and R
max

an IR cuto↵. This is a standard result. Perhaps

slightly less obvious is the fact that the first law of thermodynamics dE = TdS states that

at finite temperature this IR divergent energy implies also an IR divergent entropy. One

way to understand this is to note that at finite temperature the current J' will contain a

normal component, which falls o↵ slowly in space and carries an associated thermal entropy.

We now return to our gravitational description and compute the bulk energy density

di↵erence �E (5.10) and entropy density di↵erence �s (5.7) from our bulk gravitational

solution. As expected from the discussion above, both of these quantities decay only as

R�2 ⇠ (1 � x)2 at large boundary radius R, as shown in Fig. 19. The volume integrals of

both these densities diverge logarithmically at large R, as expected.10 The entropy density

10 Recall that in the superconducting phase �S and �E are finite because the corresponding densities �s

and �E have an asymptotic exponential decay.
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R:  distance  (@ bdry)  to vortex core

T

n = 1  n = 2 (winding #) 



➙ SUPERFLUID results:
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3

• SF low-energy dynamics is  given by the action for a Goldstone mode θ: 

• A vortex  with  winding  charge  n  has  θ (R → ∞) ∼ n φ.    It  has  energy: 

!
!
•  dE = T dS:      divergent E   ⇒    divergent S 

!
• Entropy & energy densities  decay polynomially as 1/R2  when R → ∞ (in SC case they decay exponentially)  

  

    ⇒   S & E  diverge  (∫vol ~ log R) 

!
!
!
!
!
!
• But  Δs ~ f(T) n2 / R2  with  f(T) → 0  as T → 0  ⇒  ΔS SF → ΔSimp  as  T → 0 (like SC; same NH) 

• S ~ n2 ⇒  any high winding charge SF vortex is unstable to fragmentation into n = 1 vortices
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FIG. 19. Entropy density (left panel) and energy density (right panel) as a function of R for the

vortex superfluid phase. Here, disks and squares describe, respectively, isolated vortices with n = 1

and n = 2 (both for qL = 2). At large R, both densities decay polynomially as 1/R2 as described by

the dashed curves that give the best fit of the asymptotic tails. For example, for n = 1 one finds the

fit �s/ (�)2 = A
0

/R↵ with {↵ ⇠ 2.006 ± 0.001, A
0

⇠ 0.0040 ± 0.0001} and �E/ (�)3 = B
0

/R�

with {� ⇠ 2.005 ± 0.001, B
0

⇠ 0.0602 ± 0.0002}.

report can be usefully organized by realizing that at low energies the vortex can be viewed

as a conformal defect, with a CFT
1

living on it. In this section we switch gears and use the

defect conformal invariance to compute the forces on a moving vortex in terms of universal

data. In particular, we show that there exist Kubo formulas for these forces in terms of

defect-localized operators. This section does not use our gravitational description in any

way, and should apply to any situation where a vortex coexists with conformal invariance.

As described before, the vortex worldline hosts a CFT
1

, which may be characterized by

the spectrum of operators living on the defect. The full spectrum of operators depends on

the theory in question, but every defect has at least a displacement operator Di. Adding Di

to the full CFT action corresponds to shifting the location of the defect. It is thus intimately

related to the breaking of translational symmetry; on R2,1 the following Ward identity is

satisfied:

@µT
µi = Di�(2)(x) . (6.1)

Note that this relation fixes the dimension of Di to be 2, and the correlation function of Di

then takes the form

hDi(t)Dj(0)i = CD�ij

t4
. (6.2)

As (6.1) fixes the normalization of Di, CD is a meaningful and universal number character-
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FIG. 19. Entropy density (left panel) and energy density (right panel) as a function of R for the

vortex superfluid phase. Here, disks and squares describe, respectively, isolated vortices with n = 1

and n = 2 (both for qL = 2). At large R, both densities decay polynomially as 1/R2 as described by

the dashed curves that give the best fit of the asymptotic tails. For example, for n = 1 one finds the

fit �s/ (�)2 = A
0

/R↵ with {↵ ⇠ 2.006 ± 0.001, A
0

⇠ 0.0040 ± 0.0001} and �E/ (�)3 = B
0

/R�

with {� ⇠ 2.005 ± 0.001, B
0

⇠ 0.0602 ± 0.0002}.

report can be usefully organized by realizing that at low energies the vortex can be viewed

as a conformal defect, with a CFT
1

living on it. In this section we switch gears and use the

defect conformal invariance to compute the forces on a moving vortex in terms of universal

data. In particular, we show that there exist Kubo formulas for these forces in terms of

defect-localized operators. This section does not use our gravitational description in any

way, and should apply to any situation where a vortex coexists with conformal invariance.

As described before, the vortex worldline hosts a CFT
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, which may be characterized by

the spectrum of operators living on the defect. The full spectrum of operators depends on

the theory in question, but every defect has at least a displacement operator Di. Adding Di

to the full CFT action corresponds to shifting the location of the defect. It is thus intimately

related to the breaking of translational symmetry; on R2,1 the following Ward identity is

satisfied:
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µi = Di�(2)(x) . (6.1)

Note that this relation fixes the dimension of Di to be 2, and the correlation function of Di

then takes the form
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As (6.1) fixes the normalization of Di, CD is a meaningful and universal number character-
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Bdry  FT

Gravity:

[ agrees with time evolution of    Adams, Chesler, Liu, 1212.0281 ]

http://turbulent.lns.mit.edu/Superfluid/1212.0281/1212.0281.html


➙ Take-home messages:

• Constructed nonlinear (backreaction) holographic vortices at any temperature T and condensate charge q. 

• Superfluid  [ Global U(1); Aφ|z=0 =0 ]   &    Superconductor  [ Gauged U(1); Jφ|z=0 =0 ]  vortices. 

• SC vortices can be type I or type II depending on the scalar charge [so far it was thought they were type II]  

• Type I / II  SC  classification  is  correlated  with  thermodynamic stability 

• Vortex carries magnetic flux down to horizon where it interacts with IR dof: IR CFT3  ( ≠ UV CFT3 ) 

• Use formalism of  defect CFT to describe interaction of  vortex (breaks translational invariance) with  IR CFT3 

• Constructed the associated near-horizon solution  @  T=0: 

• “bubble of  RN-AdS horizon”  sticking out of the usual Poincaré horizon. 

• There is an entropy (Simp) associated with this bubble horizon 

• Simp  computes entanglement entropy via the Ryu-Takayanagi prescription 

• Simp is boundary or impurity entropy of the defect with its surrounding 

• @  T=0 the vortex sources a long-range disturbance in the stress tensor (requires back-reaction),  

     due to its interaction with the many gapless dof of the IR CFT.   

• Long-range tail demonstrates a difference between Holographic & Conventional SC vortices   (latter: no tail).
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