Vortices in Holographic Superconductors (SCs) & Superfluids (SFs)

Óscar Dias

Southampton

(moving from IST, Lisbon)

Boundary

UV CFT₃

Horizon

IR defect CFT₃

Based on:

OD, Gary Horowitz, Nabil Iqbal & Jorge Santos, arXiv:1311.3673 Holographic Vistas of Kyoto & Gravity and Strings, Yukawa Institute

May 2014

- Previous works considered the probe limit: dynamical Φ , A_{μ} but NO backreaction on $g_{\mu\nu}$
 - Albash, Johnson;
 - Montull, Pomorol, Silva;
 - Maeda, Natsuume, Okamura;
 - Kachru, Sachdev;
 - Bao, Harrison;

- Here, I will consider the full nonlinear problem with backreaction on $g_{\mu\nu}$:
 - fully characterise the system: find properties not seen in probe limit
 - follow physics all way down to low temperatures,
 - learn about the IR field theory that describes the system at zero Temperature

→ Accommodating SCs in the gauge/gravity correspondence

• Ginzburg–Landau (GL) theory:

SC wavefunction Φ has order parameter properties:

its equilibrium value is zero above T_c and increases gradually below T_c

 $\Phi = |\Psi| e^{\widetilde{\varphi}}, \qquad |\Psi| \sim \rho_C^{1/2}$ (Cooper pair charge 2e, mass m), $\widetilde{\varphi}$ is macroscopic SC phase

GL free energy density for a SC expanded around $T = T_c$ for small expansion parameter $|\Psi|$:

$$F_s(\mathbf{r},T) = F_n(\mathbf{r},T) + \alpha |\Phi|^2 + \frac{\beta}{2} |\Phi|^4 + \frac{1}{2m} \left| \left(-ih\nabla - 2e\mathbf{A}\right) \Phi \right|^2 + \frac{1}{2\mu_0} B^2$$

Minimize F_s , $\delta F_s/\delta \Phi = 0$:

$$\frac{1}{2m} \left| \left(-ih\nabla - 2e\mathbf{A} \right) \Phi \right|^2 + \alpha \Phi + \beta |\Phi|^2 \Phi = 0$$

Ginzburg-Landau eq. I

 $\langle O_{\Phi} \rangle$

 T/T_c

1

 $\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \Rightarrow \mu_0 \mathbf{J} = -\nabla^2 \mathbf{A}$ (London gauge: $\nabla \times \mathbf{A} = 0$) & Minimize $F_s, \ \delta F_s / \delta \mathbf{A} = 0$:

 $\mathbf{J} = \frac{e}{m} \left[\Phi^* \left(-ih\nabla - 2e\mathbf{A} \right) \Phi + c.c. \right] \qquad \textbf{Ginzburg-Landau eq. II}$

• Note that GL eqs follow from Abelian Higgs model (Klein-Gordon eq for charged scalar):

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} F_{ab} F^{ab} - 2(D_a \Phi) (D^a \Phi)^{\dagger} - 2V(|\Phi|^2) \right]$$

• To discuss SCs in the holographic context add bulk gravitational AdS background

→ Normal/SC phase transition even in the absence of a chemical potential $(A_t=0)$

$$S = \int d^4x \sqrt{-g} \left[\mathbf{R} + \frac{6}{L^2} - \frac{1}{2} F_{ab} F^{ab} - 2(D_a \Phi) (D^a \Phi)^{\dagger} - 2V(|\Phi|^2) \right]$$

• Mexican hat potential:

$$V(\eta) = \eta \,\mu^2 \left(1 - \frac{\eta \,\mu^2}{4 \,V_0}\right) \,, \qquad \eta = \Phi \Phi^\dagger$$

• Asymptotic decay of scalar field

$$\Phi|_{z=0} = \frac{\alpha}{r^{\Delta_{-}}} + \frac{\beta}{r^{\Delta_{+}}} + \cdots$$

- For $\mu_{BF}^2 < \mu^2 < \mu_{Unit}^2$, impose Robin BCs: $\beta = \kappa \alpha$ ($\alpha = \langle O \rangle$)
- Corresponds to a relevant double trace deformation of the boundary theory of the form :

$$S_{bdry} \to S_{bdry} - \kappa \int d^3 x \mathcal{O}^{\dagger} \mathcal{O}$$

• Instability breaks a U(1) symmetry at low T:

 $T_{\rm C} \sim \mathcal{K}$ 2xTr HHH condensate forms

[BF], [Ishisbashi,Wald], [Faulkner, Horowitz, Roberts (2xTr HHH)], [Witten], [Sever, Shomer]

→ Adding SC & SF vortices: how to do ?

- Bdry: vortex is pointlike excitation around which phase of condensate winds
 - $$\begin{split} \Phi &= |\Psi| e^{\widetilde{\varphi}}, \qquad \qquad \widetilde{\varphi} = in\varphi \\ \Phi &= |\Psi| e^{\widetilde{\varphi}}, \qquad \qquad \widetilde{\varphi} = in\varphi \\ \end{array} \end{split}$$
- Static axisymmetric vortices: ∂_t , $\partial \varphi$ are KV.
- Problem depends on holog distance $z \sim 1/r$, and bdry radius *R*.
- SF or SC vortex means that $A \varphi \neq 0$
- Solve Einstein-deTurck PDEs for $\{ |\psi|, A_{\varphi}, g_{\mu\nu} \}$ [Wiseman] using Newton-Raphson relaxation algorithm on a pseudospectral collocation grid
- BCs for $g_{\mu\nu}$: Fefferman-Graham form and its bdry expansion

 $g(x)|_{bdry} = g^{(0)} + \dots + z^3 g^{(3)} + \dots, \text{ with } \langle T_{\alpha\beta}(x) \rangle = g^{(3)}_{\alpha\beta}(x)$

[Haro, Solodukhin, Skenderis]

• Dirichlet BC: fix $g^{(0)}$ to be planar AdS. (Find $< T > \sim g^{(3)}$)

Previously in the Probe limit:

- Albash, Johnson;
- Montull, Pomorol, Silva;
- Maeda, Natsuume, Okamura;
- Kachru, Sachdev;
- Bao, Harrison;

→ Distinguishing SC & SF vortices: BCs for Maxwell field

 $\nabla_a F^{ab} = g_c J^b$ • CFT has a gauge coupling: SF case: $g_c = 0$ • Global U(1): not gauged (just rotational sym) • Gauged U(1)

- Do not want external applied field
 - \Rightarrow SF BC: $A\varphi|_{z=0} = 0$
- J_{φ} creates the vortex

SC case w/
$$J=0: g_{c} \rightarrow \infty$$

- Dynamical field $\nabla_a F^{ab}=0$
- \Rightarrow SC BC: $J_{\varphi}|_{z=0} = 0$
- A_{φ} creates the vortex

$$A_{\varphi} = A_{\varphi}^{(0)} + J_{\varphi} z + \dots$$

\rightarrow T=0, near-horizon & field theory considerations:

• **Conventional SFs** has few low-energy excitations:

Standard Higgs mechanism at *T*=0, there is *single* gapless Goldstone mode associated with spontaneous symmetry breaking. Conventional SCs does not even have this mode: it is eaten by the dynamical photon.

- However, typical holographic SFs or SCs have many gapless dof: their gravity dual has BH horizon at low T.
- Vortex is localised point in the UV CFT₃ directions. It becomes a bulk cosmic string, carrying Φ_{mag} down to bulk horizon where it interacts with IR dof. This interaction is described by an IR CFT₃ (\neq UV CFT₃):
- We propose:

Use *defect* CFT formalism to describe interaction of a heavy, point like object (e.g. a vortex) with IR CFT3 Defect breaks translational invariance of the conformal group

• Construct the Near-Horizon solution of the *T*=0 configuration on the boundary of which the defect IR CFT₃ lives

→ Near-Horizon solution (T=0) & IR defect CFT3

- Vortex (defect) breaks translational invariance of the conformal group SO(3,2): broken SO(2,1) × SO(2)
- Most general element with these symmetries: [Vortex core: $\theta = 0$. ∂AdS_4 : $\theta = \pi/2$ is conf to $AdS_2 \times S^1$]

$$ds^{2} = \frac{L^{2}}{\cos^{2}\theta} \left[F(\theta) \left(\frac{-dt^{2} + d\rho^{2}}{\rho^{2}} \right) + H(\theta) d\theta^{2} + G(\theta) \sin^{2}\theta d\varphi^{2} \right] \qquad \begin{cases} F(\theta), G(\theta), H(\theta) \\ A_{\varphi}(\theta), \Phi(\theta) \end{cases}$$

- SO(2,1) is sym. group of a *CFT*₁ extending along vortex worldline: nontrivial *CFT*₁ lives on the defect. Defect is mapped to *AdS*₂ boundary and BCs therein. Phase of vortex should wind around S^1 .
 - $\exists AdS_2$ endows bulk solution with a **Poincaré horizon at** $\rho \to \infty$. There is an **entropy** associated with this horizon, which extends from $\theta = 0$ to $\theta = \pi/2$: $\rho = \infty$

Bdry

$$\Delta S_{imp} = \lim_{\theta_{\Lambda} \to \frac{\pi}{2}} \frac{\pi L_{\text{IR}}^2}{2G_N} \left(\int_0^{\theta_{\Lambda}} d\theta \frac{\sin\theta}{\cos^2\theta} \sqrt{H(\theta)G(\theta)} - \int_0^{\theta_{\Lambda}} d\theta \frac{\sin\theta}{\cos^2\theta} \right)$$

- Horizon \cap conformal bdry $AdS_2 \times S^1$ at $\theta = \pi/2$: it's a bulk minimal surface that hangs down from bdry. ΔS_{imp} computes entanglement entropy via the Ryu-Takayanagi prescription
- Minimal surface wraps the S^1 that surrounds the defect on the bdry. So ΔS_{imp} is *boundary* or *impurity* entropy of the defect with its surrounding

 \rightarrow Near-Horizon solution (T=0) & IR defect CFT₃

• Scalar curvature of the T = 0 horizon is large near the core:

Defect is breaking the translational invariance of the 2xTr HHH near-horizon solution.

Signals a "bubble of RN-AdS horizon" (carrying Simp) sticking out of the usual Poincaré horizon.

 \rightarrow SC vortex (full geometry @ any T) vs Simp (NH solution T=0)

• Confirming we have the correct NH geometry:

Entropy of the **full vortex solution** (that extends to UV) as a function of Temperature $\Delta S \nearrow$ as $T \searrow$: vortex causes RN horizon to bubble out as $T \rightarrow 0$

approaches S_{imp} as $T \rightarrow 0$.

→ (FULL geometry) SC results: type I vs type II

Holographic SCs can be either type I or type II, depending on the scalar charge

Probe limit is $q \rightarrow \infty$ so misses it Conventional wisdom assumed all holographic SCs are type II

[Umeh 2009 for earlier suggestion I / II]

→ SC results: vortex thermodynamics & stability

- Applied magnetic field penetrates the condensate sample and creates region of normal phase with flux.
 - Bdry Z H
- **Domain wall** (DW) separating normal / SC phase **costs energy.**

For type I SCs, DW costs positive E: to minimize cost system creates a single large lump of Normal phase.
n=2 vortex should be energetically favoured over two n=1 vortices

• For type II SCs, DW costs negative *E*: to maximize DW length, system tries to creates as many vortices with Normal phase as possible (eventually a Abrikosov lattice of vortices is favoured).

n=2 vortex should be unstable to fragmentation into two *n*=1 vortices

• For type I SCs ($qL \gtrsim 1.9$), n=2 vortex is energetically favoured over two n=1 vortices

• For type II SCs ($qL \leq 1.9$), n=2 vortex is unstable to fragmentation into two n=1 vortices

→ SC results: holographic SCs ≠ conventional SCs

• Boundary magnetic field B_{bdry} as a function of distance R to SC Vortex core for several Temperatures

- *B* falls-off exp outside a $R_{core} (\sim \kappa)$. R_{core} remains finite even as $T \rightarrow 0$.
- This contrasts with the fall-off of energy density:

 $\mathcal{E}(R) \sim e^{-\alpha(T) R}$, inverse "energy screening-length" $\alpha(T) \to 0$ as $T \to 0$.

- Thus @ T=0 the vortex sources a fong-range disturbance in the stress tensor (requires back-reaction), due to its interaction with the IR GFT.
- Long-range tail demonstrates a **difference** between **Holographic & Conventional** SC vortices (latter source no long range fields).

→ SUPERFLUID results:

• Recall: SC vortex sourced by a boundary magnetic field $B \sim \partial_R A_{\varphi}$

SF vortex sourced by boundary current J_{φ} (no applied *B* field)

• Boundary Current $J_{\varphi|_{z=0}}$ as a function of distance R to the SC Vortex core for several Temperatures:

R: distance (@ bdry) to vortex core

→ SUPERFLUID results:

- SF low-energy dynamics is given by the action for a Goldstone mode θ : $S = \rho_s \int d^3x \ (\nabla \theta)^2$
- A vortex with winding charge *n* has $\theta(\mathbf{R} \to \infty) \sim n \varphi$. It has energy:

$$E \sim \rho_s \int dR \frac{1}{R} n^2 \sim \rho_s n^2 \log\left(\frac{R_{IR \, cutoff}}{R_{core}}\right)$$

• dE = T dS: divergent $E \Rightarrow$ divergent S

Gravity:

• Entropy & energy densities decay polynomially as $1/R^2$ when $R \to \infty$ (in SC case they decay exponentially)

• But $\Delta s \sim f(T) n^2 / R^2$ with $f(T) \to 0$ as $T \to 0 \Rightarrow \Delta S SF \to \Delta S_{imp}$ as $T \to 0$ (like SC; same NH)

• $S \sim n^2 \Rightarrow$ any high winding charge SF vortex is unstable to fragmentation into n = 1 vortices [agrees with time evolution of Adams, Chesler, Liu, 1212.0281]

→ Take-home messages:

- Constructed nonlinear (backreaction) holographic vortices at any temperature T and condensate charge q.
- Superfluid [Global $U(1); A_{\varphi|_{z=0}} = 0$] & Superconductor [Gauged $U(1); J_{\varphi|_{z=0}} = 0$] vortices.
- SC vortices can be type I or type II depending on the scalar charge [so far it was thought they were type II]
- Type I / II SC classification is correlated with thermodynamic stability
- Vortex carries magnetic flux down to horizon where it interacts with IR dof: IR CFT₃ (\neq UV CFT₃)
- Use formalism of *defect* CFT to describe interaction of vortex (breaks translational invariance) with IR CFT3
- Constructed the associated **near-horizon solution** (a) **T=0**:
 - "bubble of RN-AdS horizon" sticking out of the usual Poincaré horizon.
 - There is an entropy (S_{imp}) associated with this bubble horizon
 - Simp computes entanglement entropy via the Ryu-Takayanagi prescription
 - Simp is boundary or impurity entropy of the defect with its surrounding
- *ⓐ T*=0 the vortex sources a long-range disturbance in the stress tensor (requires back-reaction), due to its interaction with the many gapless dof of the IR CFT.
- Long-range tail demonstrates a **difference** between **Holographic & Conventional** SC vortices (latter: no tail).

Canary Wharf, London, 2014

Ooki ni ! ("**Arigato**" in Kyoto's dialect)