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® Previous works considered the probe limit: dynamical @, A,, but NO backreaction on g,,

- Albash, Johnson;
- Montull, Pomorol, Silva;

- Maeda, Natsuume, Okamura;
- Kachru, Sachdev;

- Bao, Harrison;

® Here, I will consider the full nonlinear problem with backreaction on g,,.

- fully characterise the system: find properties not seen in probe limit

- follow physics all way down to low temperatures,

- learn about the IR field theory that describes the system at zero Temperature



- Accommodating SCs in the gauge/gravity correspondence
® Ginzburg-Landau (GL) theory: <Oq)>

SC wavefunction @ has order parameter properties:

its equilibrium value 1s zero above T¢ and increases gradually below T¢

L T/T.

d = |Wle?, W ~ pé/Q (Cooper pair charge 2e, mass m), ¢ is macroscopic SC phase
GL free energy density for a SC expanded around 7= 7¢ for small expansion parameter |\P|:

B4 1 . 9 1
F.(r.,T)=F,(r,T d12 1+ 2| P — |(—=ihV — 2¢A) ® —
Minimize F,, 6F,/6® =0 :

1 .
o [(—ihV — 2eA) <I>]2 + ad + 5|<I>\2<I> =0 Ginzburg-Landau eq. I

V x B = joJ = pgpJ = —V*A  (London gauge: V x A = 0) & Minimize F,, 6F,/0A =0 :

J = % D* (—2hV — 2eA) D + c.c.] Ginzburg-Landau eq. II

e Note that GL egs follow from Abelian Higgs model (Klein-Gordon eq for charged scalar):
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® To discuss SCs in the holographic context add bulk gravitational AdS background
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= Normal / SC phase transition even in the absence of a chemical pa&em&ai
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® For Upp < U < Wynit , impose Robin BCs:

e Corresponds to a relevant double trace deformation of the boundary theory of the form :

dery — dery — K / d3$OTO <O<I>>
e Instability breaks a U(1) symmetry at low 7 :
Tece~K 2xTr HHH condensate forms
1 T/T. C

[BF], [Ishisbashi,Wald], [ Faulkner, Horowitz, Roberts ( 2xTr HHH ) |, [Witten], [Sever, Shomer]



- Adding SC & SF vortices: how to do ?

e Bdry: vortex is pointlike excitation around which phase of condensate winds G Bdry

©=[Ule?,  @=ing - ¢
e Static axisymmetric vortices: O¢ , 5¢ are KV. Horizon
® Problem depends on holog distance Z~1/r , and bdry radius K.
Boundary
® SF or SC vortex means that A¢ *( R
<
® Solve Einstein-deTurck PDEs for { |W|, Ap, uv} [Wiseman] using
Newton-Raphson relaxation algorithm on a pseudospectral collocation grid
Horizon

® BCs for g, : Fefferman-Graham form and its bdry expansion

Previously in the Probe limit:
- Albash, Johnson;
* Montull, Pomorol, Silva;
- Maeda, Natsuume, Okamura;
- Kachru, Sachdev;
- Bao, Harrison;

9(2)] gy = 90 o+ 209E £ with (Thp(a)) = g0) (x)

| Haro, Solodukhin, Skenderis |
® Dirichlet BC: fix g to be planar AdS.




- Distinguishing SC & SF vortices: BCs for Maxwell field

® CFT has a gauge coupling: va Fab = (. J b

', ‘ﬁ SF case: g.=0 SC case w/ J=0: g, — ©

® Global U(1): not gauged (just rotational sym) ® Gauged U(1)

® Do not want external applied field e Dynamical field V,F*=0
= SF BC: Ag|,=0=0 = SC BC: Jo|z=0 =0
e Jyp creates the vortex ® Ay creates the vortex

Ay =AY + J 2+ ...

R — oo R — oo;

2xTr HHH + Ay (2) 2xTr HHH

)
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~> T=0, near-horizon & field theory considerations:

e Conventional SFs has few low-energy excitations: H’ggs Mec han;
IS
at 7=0, there is single gapless Goldstone mode associated with spontaneous symmetry breaking. d

Conventional SCs does not even have this mode: it 1s eaten by the dynamical photon.

e However, typical holographic SFs or SCs have many gapless dof: their gravity dual has BH horizon at low T.

® Vortex is localised point in the UV CFT3 directions.

It becomes a bulk cosmic string, carrying @®mag down to bulk horizon where it interacts with IR dof.

This interaction 1s described by an IR CFT3 (# UV CFT3):

® We propose:
Use defect CFT formalism to describe interaction of a heavy, point like object (e.g. a vortex) with IR CFT3
Defect breaks translational invariance of the conformal group

UV CFT3

e Construct the Near-Horizon solution
of the 7=0 configuration

on the boundary of which the defect IR CFTj;lives IR defect CFT3




—> Near-Horizon solution (T=0) & IR defect CFT:
e Vortex (defect) breaks translational invariance of the conformal group S0(3,2): broken SO(2,1) X SO(2)

® Most general element with these symmetries: [ Vortex core: 6=0. 0 AdS4: 0=n/2 is confto AdS2 x S ]

2 g2 2
ds® = COZ;Q ; [F(@) ( df —2de ) + H(0)do* + G(0) sin® dp° (0),G(0), HO)} 2
P L Aw(e),Cb(@)\ ‘

® SO(2,1) 1s sym. group of a CFT1 extending along vortex worldline: nontrivial CFT7 lives on the defect.

Defect is mapped to 44S>2 boundary and BCs therein. Phase of vortex should wind around S’.

e 1 AdS? endows bulk solution with a Poincaré horizon at p — .
Poincaré H

There 1s an entropy associated with this horizon, which extends from 6 = 0 to 6 = n/2: p= o0
Bdry
. wL? U sm 0 o gin@ _
ASimp = = / 2 \/H — / db > p=0
A== 2G N \Jo cos? 6 0 cos? 6 (0=n/2)

® Horizon N conformal bdry 4dS2 x S at @ = w/2: it’s a bulk minimal surface that hangs down from bdry.
ASimp computes entanglement entropy via the Ryu-Takayanagi prescription

¢ Minimal surface wraps the S! that surrounds the defect on the bdry.
So ASimp 1s boundary or impurity entropy of the defect with its surrounding



—> Near-Horizon solubtion (T=0) & IR defect CFT:

® Scalar curvature of the 7= 0 horizon is large near the core:
Defect is breaking the translational invariance of the 2xTr HHH near-horizon solution.

Signals a “bubble of RN-AdS horizon” (carrying Simp) sticking out of the usual Poincaré horizon.

s \ IR defect CFT3

e SC (® #0) Poincare H
.SSC sea = 0 When T—>0.

e mag RN-AdS Bubble (®=0)
e B focused here

\ / e SRN#(0 when 7—0.
Proper distance from vortex core



- SC vortex (full geometry @ any T) vs Simp (NH solution T=o Y

e Confirming we have the correct NH geometry:

Entropy of the full vortex solution (that extends to UV) as a function of Temperature

AS " as T N: vortex causes RN horizon to bubble out as 7 — 0

approaches Simp as 7 —0.

11—

AS = Svortex - SNO vortex
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= ( FULL geometry) S$C resulks: %mm Iwvs %%'e 11

® Ginzburg-Landau parameter:

\ — —» London penetration depth: how quickly B falls off
Rog = ¢
S —> Coherence length: how quickly disturbances of the {@) fall off
1 1
® Gravitational results:
[Type 11 SC:g L =1 | Type 1 SC:gL=3

0.4 B(R)

0.3
| KO)I(R)

0.2
i KO)I(R)

R: distance (@ bdry)

01!
to vortex core f

0.0

Holographic SCs can be either type I or type II, depending on the scalar charge

Probe limit is ¢ — oo so misses it
Conventional wisdom assumed all holographic SCs are type 11 [ Umeh 2009 for earlier suggestion 1 /11 |



— SC resulks: vorkex &hermac&jmamws & s&o\biu%v

e Applied magnetic field penetrates the condensate sample and creates region of normal phase with flux.

G Bdry
G ' Gy

H

® Domain wall (DW) separating normal / SC phase costs energy.

e For type I SCs, DW costs positive £: to minimize cost system creates a single large lump of Normal phase.

n=2 vortex should be energetically favoured over two n=1 vortices

e For type II SCs, DW costs negative £: to maximize DW length, system tries to creates as many vortices with

Normal phase as possible (eventually a Abrikosov lattice of vortices is favoured).

n=2 vortex should be unstable to fragmentation into two n=1 vortices



® Fortype ISCs (gL = 1.9), n=2 vortex is energetically favoured over two n=1 vortices
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- SC results: holographic SCs # conventional SCs

e Boundary magnetic field Bhdry as a function of distance R to SC Vortex core for several Temperatures

Byary = Fxylbdry

0.0 05 1.0 15 2.0 25

" R: disfance (@ bdry) to vortex core

e B falls-off exp outside a Reore (~ K ). Reore remains finite even as 7' —0.

® This contrasts with the fall-off of energy density:

E(R) ~ e_a(T) R, iverse “energy screening length” a(7) — 0 as T — 0.
® Thus (@ 7=0 the vortex sources a long-range disturbance in the stress tensor (requires back-reaction),
due to its interaction with the IR CFT.
® [ong-range tail demonstrates a difference between Holographic & Conventional SC vortices

(latter source no long range fields).



- SUPERFLUID resulks;

e Recall: SC vortex sourced by a boundary magnetic field B ~ drAg
SF vortex sourced by boundary current Jg (no applied B field)

e Boundary Current Jg|,—y as a function of distance R to the SC Vortex core for several Temperatures:

R: distance (@ bdry) to vortex core



= SUPERFLUID resulks:
® SF low-energy dynamics 1s given by the action for a Goldstone mode §: S = p_ / d3x (VQ)Q

e A vortex with winding charge n has 8§ (R — ©) ~n ¢. It has energy:

1 R cuto
Ewps/dREnzprHQ 10g< Ig tff)

o dE=TdS: divergent E = divergentsS§

® Entropy & energy densities decay polynomially as 1/R2 when R — oo (in SC case they decay exponentially)
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® But As~A(T)n?/R? with AT) >0 asT— 0 = AS SF — ASimp as T — 0 (like SC; same NH)

® S~ n2= any high winding charge SF vortex is unstable to fragmentation into n = 1 vortices

[ agrees with time evolution of Adams, Chesler, Liu, 1212.0281 ]


http://turbulent.lns.mit.edu/Superfluid/1212.0281/1212.0281.html

—> Take-home messages:

e Constructed nonlinear (backreaction) holographic vortices at any temperature 7 and condensate charge q.
® Superfluid [ Global U(1); Ag|,-c=0] & Superconductor [ Gauged U(1); Jy|,—o=0 ] vortices.

e SC vortices can be type I or type II depending on the scalar charge [so far it was thought they were type 1]
e Type I/ Il SC classification 1s correlated with thermodynamic stability

® Vortex carries magnetic flux down to horizon where 1t interacts with IR dof: IR CFT3 (# UV CFT3)

® Use formalism of defect CFT to describe interaction of vortex (breaks translational invariance) with IR CFT3
® (Constructed the associated near-horizon solution @ 7=0:

e “bubble of RN-AdS horizon” sticking out of the usual Poincaré horizon.

e There 1s an entropy (Simp) associated with this bubble horizon

e Simp computes entanglement entropy via the Ryu-Takayanagi prescription

® Simp 1S boundary or impurity entropy of the defect with its surrounding

® (@ T=0 the vortex sources a long-range disturbance in the stress tensor (requires back-reaction),
due to its interaction with the many gapless dof of the IR CFT.

® [ong-range tail demonstrates a difference between Holographic & Conventional SC vortices (latter: no tail).
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