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Why black hole dynamics is difficult,
and

how D — oo can help



BH is an extended object whose dynamics
mixes strongly with background

BH’s own dynamics not well-localized

Quasinormal modes spread to distance
~1y from the horizon




Near-extremality (w/ charges or rotation)

Localizes dynamics near-horizon

AdS/CFT-type decoupling limit

Develop a throat with

effective radial
potential

decoupled dynamics MW\_/

Near-extremality — Small parameter



But this is not generically possible

eg for Schwarzschild: only scale is 1

BH dynamics lacks a generically
small parameter
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1/D as small parameter

Separates bh’s own dynamics from background
spacetime

— sharp localization of bh dynamics
Well-defined near-horizon geometry
— a very special 2D bh

— not a decoupling geometry

— but distinct decoupled/non-decoupled dynamics



Large D black holes

Basic solution

length scale 1y,



Large D black holes

o ot the only scale

Small parameter 1/D = scale hierarchy

r0/D K 1y



Localization of interactions

Large potential gradient:
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Far zone

Fixedr >1ry D — o
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Flat, empty space atr > 1y

no gravitational field



scale O(+,D")

Far zone geometry

Holes cut out in Minkowski space




Near zone

Gravitational field appreciable only in thin
near-horizon region

(%)D_B =0(1) & r—r <7I;_O




Near zone
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Near zone
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2d string black hole
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Grumiller et al



Black hole perturbative
dynamics @ large D



Massless scalar field
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Schwarzschild bh grav perturbations

Kodama+Ishibashi

Gravitational scalar, vector, tensor modes
SO(D — 1) reps




scalar vector tensor @ large D
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Near-horizon view

thear~ D t : fast n-h time
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Near-horizon excitations

w > W,
AN can freely leave/enter
Cl)g NN\, near-horizon region




Near-horizon excitations

W > w,: violate near-horizon unitarity (BF) bound

freely leave/enter
AU can
Cl)g EVAVAVAVANSE near-horizon region




Near-horizon excitations

0 <w< w,: non-normalizable

normalizable

a%

non-decoupled

decoupled




Near-horizon excitations

0<w<w,

horizon-ingoing states are non-decoupled

a%




w=0(D%) > ®=0:
normalizable zero-energy states = decoupled

a%

vector tensor scalar
£ = 0(D)

A decoupled states




w = O(DO) — w =0: zero-energy states

scalar vector tensor




w = O(DO) — w =0: zero-energy states

scalar vector tensor £ =001)

scalar & vector admit
zero-energy states

0.69 1.

3 decoupled states




Summing up so far
BH dynamics can be classified according to near-
horizon (n-h) geometry:
Unitarity (B-F)-violating states: freely leave n-h
Non-normalizable states: non-decoupled dynamics

Normalizable states: decoupled non-dynamics
(dynamical @ NLO in 1/D)



BH quasinormal modes



Quasinormal modes

ingoing

—

Free, damped
oscillations of

black hole

outgoing

horizon

infty



Quasinormal modes

—

QNMs as bound states in
inverted potential

-V

analytic continuation
___________________________ >

horizon

\o/



Non-decoupled QNMs

(,()ro — O(D)
M w * 0




Non-decoupled QNMs wry, = O(D)




Non-decoupled QNMs wry, = O(D)

Airy zeroes




Universal spectrum @ large D

1
D eiTL’ D 3
We k)0 =E+£— > (2 +£) ay

Depends only on bh radius 7

Same spectrum for:
e any charges, dilaton coupling etc
e scalar, vector, tensor perturbations



Universal spectrum @ large D

D e'™ (D
w(g,k)ro=§+€— > (2+£) ay

spectrum of scalar
oscillations of a hole
In space

W] =

Imw _
~D72/3 5 0:  sharp resonances

Rew
‘normal modes’ of bh



Decoupled QNMs

(L)TO — O(DO)
zero-energy states
at leading order

3 for vectors and
scalars

Nno tensors



Decoupled QNMs

(l)ro — O(DO)

zero-energy states

at leading order

0.89

1/D corrections to state give |
non-zero QNM frequencies |



Decoupled QNMs wry, = O(D")

We’ve computed the

gnm frequencies up

to1/D3




Quantitative accuracy

Decoupled spectrum wry = 0(1)
Vector mode (purely imaginary)
e AtD = 100:

£ =2 mode Im wry =-1.01044742 (analytical)
-1.01044741 (numerical Dias et al)



Quantitative accuracy

Decoupled spectrum wry = 0(1)
Vector mode (purely imaginary)
e AtD = 100:

£ = 2mode Im wry =-1.01044742 (analytical)
-1.01044741 (numerical Dias et al)
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Quantitative accuracy

Non-decoupled spectrum wry = O(D)

Re wry: good at moderate D
Re wry . / P =2

Im wry ~ D3 : only good at very high D




Outlook



Universal features @ large D

Far region

Vbhs: empty space

Near-horizon region
Vneutral bhs: 2D string bh



BH dynamics splits into:

wry = O(D) : non-decoupled dynamics
— scalar field oscillations of a hole in space
— universal normal modes

wry = O(DY) : decoupled dynamics

— |localized in near-horizon region



wry = O(D?) : decoupled dynamics
— specific of each bh
—|less numerous

— for rapidly rotating bhs, instabilities appear
in this sector Tanabe’s talk



w1y = O(D) : non-decoupled dynamics
— universal normal modes of hole in space
— much more numerous
— describe interaction of bh w/ environment

— connection to BH entropy?






