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OUT OF EQUILIBRIUM DYNAMICS
OF ISOLATED QUANTUM SYSTEMS

On general grounds:    expected a fast approach to a stationary state 
at the macroscopic level appears as thermal equilibrium

Not always the case:

Integrable systems conserved charges prevent thermal equilibration

Even in presence of (small) integrability breaking parameters

Macroscopic system 



OUT OF EQUILIBRIUM DYNAMICS
OF ISOLATED QUANTUM SYSTEMS

pre-thermalization plateau

Ex: quantum Newton’s cradle (Kinoshita,Wegner,Weis, Nature 2006)

atoms in a 1d anharmonic trap

initial state partially reconstructs

thermalization only after a long time scale

k0 k0-k0

f(k)(quasi) stationary state keeps memory 
of initial conditions

revivals

holography

FT thermalization gravitational collapse



asymptotically AdS 

reflecting boundary

(Bizon,Rostworowski, 2011)

GRAVITATIONAL COLLAPSE

asymptotically flat spacetime + massless spherical scalar shell

narrow pulses: always collapse 

(Choptuik, 1993)

above Mth below Mth

broad pulses: might not form a horizon
(Buchel,Liebling,Lehener, 2013)

period of a bounce:  ≃π



OUTLINE

bouncing geometries out of equilibrium dynamics
of strongly coupled FTs

holographic
dictionary

HEE:

(Ryu,Takayanagi 2006;
Hubeny,Rangamani,Takayanagi 2007)     

SA =
Area(�A)

4GN

A 

A
𝛄

revivals

probe observable:    entanglement entropy

SA = �TrA(⇢A ln ⇢A) measure of quantum correlations between A and B

A
B

⇢A = TrB⇢



no entangled dof are contained in the interval

2t > 

𝓁
𝓁t

t=0

2t <  𝓁 𝓁

(Cardy,Calabrese 2005)2d CFT after a massive to critical quench:

QUANTUM QUENCHES

initial state: correlations stronger among nearest neighbours

late time: the system appears thermal on ever larger regions

unitary evolution

|Ψ ⟩ ➝ |Ψ (t)⟩0 0

H ➝ H
0 global quench

S(t,l)∝2t
S(t,l)∝l



HOLOGRAPHIC MODEL

t=0

t

radial position of the pulse 
appears to capture the

typical separation of entangled dof

AdS3 null dust thermalization model: (Abajo-Arrastia,Aparicio,EL 2010;
 Balasubramanian et al  2010)

2t = 𝓁

BH

AdS

BH

AdS

2t < 𝓁

close to the boundary: 
entanglement mainly over neighboring dof

infall of the pulse:
excitations fly apart at the speed of light

holographic model for a local quench
(Nozaki,Numasawa,Takayanagi,2013)



t
t=0

2t <  𝓁 𝓁

no global dephasing for finite  t

DEPHASING AND SELF-RECONSTRUCTION

dephasing:  loss of quantum coherence
(macroscopic observables)

compact space:   excitations flying apart reunite again

propagation time: t  = L
2v0

L=2πR

different scenarios depending on  0t  / t dph



DEPHASING AND SELF-RECONSTRUCTION

free system with non-linear dispersion relation

ex: periodic chain of coupled harmonic oscillators

low momenta initial state tdph ∝ 1/ω

!p / 2 sin
p

2

free system with linear dispersion relation

O(t)=O(t+t )0 initial state reconstructs with period  t0 t     =dph ∞ never equilibrates

revivals

afterwards stationary (but non-thermal) state

revivals before dephasing

(Takayanagi,Ugajin 2010)
holographic dual?    black hole evaporation/formation at weak coupling



DEPHASING AND SELF-RECONSTRUCTION

proposal:   although not generic, revivals might appear also at strong coupling

bouncing geometries

interacting system 3

1

21 2

2 3 on general grounds, initial state does not reconstruct

as in non-compact case

no revivals expected 



DUAL INTERPRETATION OF THE BOUNCES

initial state partially reconstructs
several times before equilibration 0t    > tdph

large BHbounces only for M < M
small BH have negative specific heat

preferred states at fixed M

Hawking radiation suppressed at small GN

(Dias,Horowitz,Santos, 2002)

small FT energy density

global AdS               CFT     4 3    in S2

t  = L
2v0 = π  ≃	 periodicity of the bounces

R=1



ENTANGLEMENT ENTROPY

entanglement entropy: 

    oscillating EEbouncing processes:
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ENTANGLEMENT ENTROPY:
EARLY TIME DYNAMICS

1

2

independent of M

1 2

as in non-compact case

2 interactions may induce a phase shift 
delaying reconstruction

this effect grows with M-1
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no difference
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ENTANGLEMENT ENTROPY:
NARROW PULSES

maxima of the EE decrease

weak turbulence: 

a fraction of the pulse sharpens
the rest disperses 

blackening factor           A(t,x)
horizon forms

x

ρ(t,x): energy distribution function x=0: origin
x=π/2: boundary

ρ
Δt≃3.5



ENTANGLEMENT ENTROPY:
POST-HORIZON EVOLUTION

stepwise relaxation

the growing horizon leads to damped oscillations

the EE is smooth across horizon formation

x

ρ

emergence of an additional modulation with Δt≃π/3
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ENTANGLEMENT ENTROPY:
BROAD PULSES

delocalized dynamics: efficient EE growth

pre-horizon: radial localization

intermedium broadness maximal broadness

post-horizon: radially delocalized

radially delocalized
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BROAD VERSUS NARROW PULSES

broad pulses:  FT actions with a finite time span  

t1
t2>t1

x1 x2 1.5 x

ρ

t≈x-π/2

narrow pulses:  sudden FT action   

radial position of the pulse typical separation of entangled dof

2t < 𝓁

BH

AdS



BROAD VERSUS NARROW PULSES
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time for horizon formation controlled by max(ρ) 

no collapse for masses 40% below large BH threshold 

large overlap with the lowest oscillon

broad pulses:
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scattering of pulses works against weak turbulence

(Buchel,Liebling,Lehener, 2013)



REGULAR EVOLUTIONS: DISCUSSION

localized pulses:

delocalized pulses:

(weak turbulence) narrow peak develops 

relaxation triggered by a subsystem

 

entanglement over all scales

partial decoherence unfavored

 

∀ M

 

M<M   , no collapse σ



CONCLUSIONS

stepwise relaxation

dynamics of bounces (weak turbulence) tends to decrease EE

holography offers a unique setup to study out of equilibrium dynamics

finite size close systems

deep relation between Einstein eq. and evolution of entanglement in the dual QFT

at linearized level  (Nozaki,Numasawa,Prudenziati,Takayanagi 2013; Lashkari,McDermott,van Raamsdonk 2013;...)

MERA approach (Swingle 2009; Nozaki,Ryu,Takayanagi 2012;...)


