Interaction-Driven Insulators and Superconductors in Holography, and Homes Law

René Meyer

Kavli IPMU, Tokyo University

May 27, 2014

WIP w. J. Erdmenger, B. Herwerth, S. Müller/Klug, K. Schaalm

(ロ) (同) (三) (三) (三) (○) (○)

Introduction: High T_c and AdS/CFT

- Difficulty in understanding High T_c via AdS/CFT: Don't know the IR field theory (DOFs, operator content, action, scaling properties) - very different from AdS/QCD
- Need universal signatures to guide AdS/CFT model building
- Most prominent: Linear temperature resistivity
 - Many tunable bottom-up models , free parameters

[Hyperscaling Violating Lishitz 1005.4690, Probe Branes 1005.4690, Holographic Lattices 1302.6586, p-wave Herzog etal. 1405.3714]

• Different more or less generic mechanisms, also with free parameters, assumptions

[Hartnoll+Hofman 1201.3917, Davison+Schalm+Zaanen 1311.2451, Hartnoll 1405.3651]

- Need additional universal signatures to distinguish between models/mechanisms
- Homes' law provides such a universal signature

Introduction: Homes' Law

Homes' Law

[Homes etal Nature 2004]

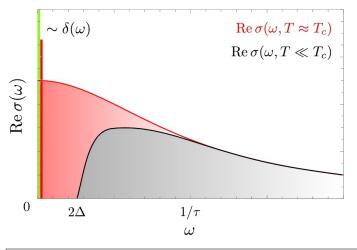
イロト イポト イヨト イヨト

$$\rho_{\mathcal{S}}|_{\mathcal{T}=\mathbf{0}} = \mathcal{C}\sigma_{\mathcal{D}\mathcal{C}}(\mathcal{T}_{\mathcal{C},+})\mathcal{T}_{\mathcal{C}}$$

C is universal for families of superconductors In-Plane Cuprates, Elemental BCS: $C \approx 35$ C-Axis Cuprates. Dirty Limit BCS (Nb.Pb): $C \approx 65$ 10^{9} Linear Fi 10^{9} $\rho_{\rm s} \equiv \omega_{\rm Ps}^2 \ [{\rm cm}^{-2}]$ $\equiv \omega_{\rm Ps}^2 \; [{\rm cm}^{-2}]$ 10^{8} 108 $\rho_{\rm s}$ 10^{6} 10^{5} 10^{5} 10^{6} 10^{7} $\sigma_{\rm DC}T_c$ [cm⁻²] $\sigma_{\rm DC}T_c$ [cm⁻²]

- Experimentally verified to good accuracy
- In Holographic Superconductors?

Towards Homes' Law in AdS/CFT [1206.5305]



 $Re\sigma_n = K\delta(\omega) + \dots, \quad Re\sigma_s = (K' + \rho_s)\delta(\omega) + \dots$

Idea: Rewrite Homes' Law by sum rules, τ from diffusion

Towards Homes' Law in AdS/CFT [1206.5305]

- Three Assumptions
 - Oscillator/FGT sum rules hold in Holography

[1302.6586]

- Tanner's law: $n_s \sim n_n \Rightarrow \omega_{Pn}^2 \sim \omega_{Ps}^2$
- Drude model applicable (two scales ω_P^2 and τ)
- Using $\sigma_{DC} \sim \omega_{Pn}^2 \tau(T_c)$ one can rewrite

$$\rho_{s} = \omega_{Ps}^{2} \sim \sigma_{DC} T_{c} \sim \rho_{s} \tau(T_{c}) T_{c} \quad \Rightarrow \quad T_{c} \tau_{c} = const.$$

Relaxation time \(\tau_c\) from Momentum or R-charge diffusion

$$| \tau_c \propto D_{M/R}(T_c) \Rightarrow D_{M/R}(T_c)T_c = \text{const.}$$

s-wave holographic Superconductor in probe limit:

[1,34-36] in 1206.5305

$$D_M = \frac{1}{4\pi T}$$
 $D_R = \frac{1}{4\pi T} \frac{d}{d-2}$

Homes' law holds in probe limit

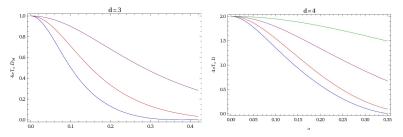
・ロ・・四・・ヨ・・ヨ・・日・

Towards Homes' Law in AdS/CFT [1206.5305]

Finite backreaction changes T_c and $D_{M/R}$

 \rightarrow Changing the charge of the order parameter

Homes' Law does not hold any more: (for D_M and D_R , p wave)



What could have gone wrong?

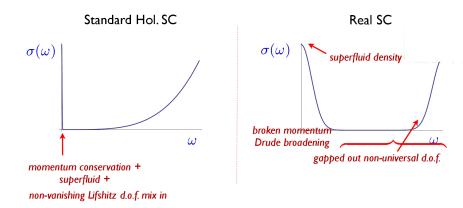
• Sum rules may not hold (at T = 0?).

[Horowitz+Santos]

(日) (日) (日) (日) (日) (日) (日)

- Diffusion and T_c depend on backreaction.
- Relaxation time not given by diffusion constant alone?
- Lifshitz IR = Extra IR DOFs!

- Two puzzles:
 - separate delta (momentum breaking/superconductor)
 - lift extra IR d.o.f. ("insulating/gapped geometry")



- Can we make the holographic superconductor more like a real superconductor by
 - Getting rid of the $\delta(\omega)$ in the normal phase (momentum breaking)?
 - Lift extra d.o.f. \rightarrow insulating/gapped geometry [Donos,Hartnoll]

$$S = \int d^{5}x \sqrt{-g} \left(R + 12 - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}W_{\mu\nu}W^{\mu\nu} - \frac{m^{2}}{2}B_{\mu}B^{\mu} \right) - \frac{\kappa}{2} \int B \wedge F \wedge W$$
$$ds^{2} = -U(r)dt^{2} + \frac{dr^{2}}{U(r)} + e^{2v_{1}(r)}\omega_{1}^{2} + e^{2v_{2}(r)}\omega_{2}^{2} + e^{2v_{3}(r)}\omega_{3}^{2}$$
Bianchi VII₀ helix geometry period *p*; strength λ

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

has an "insulating" groundstate

Erdmenger, Herwerth, Meyer, Mueller/Klug, KS

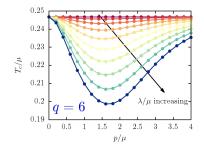
・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

• Add a charged scalar

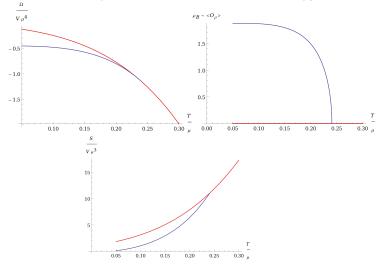
$$S = \int d^5x \sqrt{-g} \left(R + 12 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} W_{\mu\nu} W^{\mu\nu} - \frac{m^2}{2} B_{\mu} B^{\mu} \right) - \frac{\kappa}{2} \int B \wedge F \wedge W - |(\partial_{\mu} - 2iqA_{\mu})\eta)|^2$$

 Holographic superconductor in a translationally broken "insulating" background



Thermodynamics

Second order phase transition of mean field type:



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Erdmenger, Herwerth, Meyer, Mueller/Klug, KS Resistivity in Donos Hartnoll model

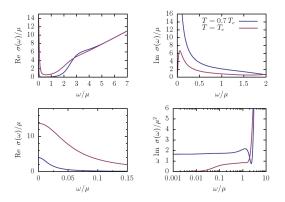
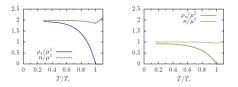


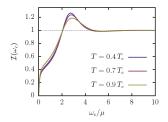
Figure 7: Optical conductivity for T = 0.7 T_c (blue line) and at the transition temperature (red line). The real part of the conductivity (top left and bottom left) exhibits a Drude peak for small frequencies. Additionally, there is a 1/ω pole in the imaginary part in the broken phase (top right and bottom right, where Im(σ) has been multiplied by ω). All graphs have p/μ = 2.4, λ/μ = 1, and q = 6.

Erdmenger, Herwerth, Meyer, Mueller/Klug, KS
 Homes' Law in holography (DH model)



can now extract the density reliably

Figure 10: Superfluid density ρ_s (solid lines) and charge density n (dashed lines) as a function of T/μ. For T > T_c, the superfluid density vanishes, i.e. the DC conductivity is finite. As T is lowered, the superfluid density increases. The left graph has q = 6, λ/μ = 1, and p/μ = 2.4. In the right graph, q = 4, 1, λ/μ = 1, and p/μ = 1.



Ferrell-Glover-Tinkham sum rule

$$I(\omega_c) = rac{1}{
ho_s} \int_0^{\omega_c} d\omega \left[{
m Re} \sigma_n(\omega) - {
m Re} \sigma_s(\omega)
ight]$$

$$p/\mu = 2.4, \; \lambda/\mu = 1, \; q = 6$$

Towards a T=0 solution

Break translations by Bianchi VII₀ Helix

[1212.2998]

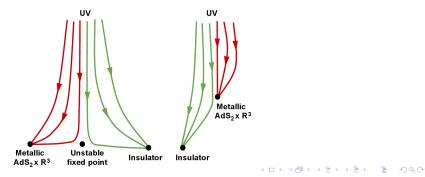
$$egin{aligned} &\omega_1=dx\,,\quad \omega_2+i\omega_3=e^{ipx}(dy+idz)\ &ds^2=-U(r)dt^2+rac{dr^2}{U(r)}+\sum\limits_{i=1}^3e^{2v_i(r)}\omega_i^2 \end{aligned}$$

Charge density and Helix Field, Order Parameter

$$A = a(r)dt$$
, $B = w(r)\omega_2$, $\rho = \rho(r) \in \mathbb{R}$

• QPT by μ or Helix source/pitch: $|\kappa_c| \approx 0.57$

[1212.2998]



Towards a T=0 solution

► Usual superconducting instability: AdS₂ × ℝ³ with the charged scalar mode becoming unstable (relevant) if

 $3 + m_{
ho}^2 - 2q^2 < 0$

• Insulating geometry with charged hair: ($\kappa = 1/\sqrt{2}$)

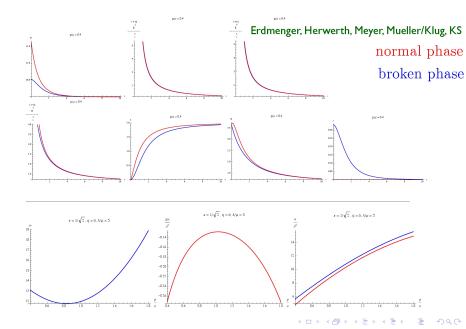
$$a = a_0 r^{5/3} + \dots, \quad w = w_0 + w_1 r^{4/3} + \dots, \quad U = U_0 r^2 + \dots$$

$$e^{v_1} = e^{v_{10}} r^{-1/3} + \dots, \quad e^{v_2} = e^{v_{20}} r^{2/3} + \dots, \quad e^{v_3} = e^{v_{30}} r^{1/3} + \dots,$$
$$\rho = \rho_0 + \rho_1 r^{4/3} + \dots$$

(日) (日) (日) (日) (日) (日) (日)

- Cohesive Phase (no flux): $\int_{\mathbb{R}^3} *F \bigg|_{horizon} = 0$
- Has only marginal & irrelevant perturbations within this ansatz.
- Expected to be the superconducting ground state.

Towards a T=0 solution



Conclusions & Outlook

- Homes' law as another candidate for a universal relation in high temperature superconductivity
- For s- and p-wave holographic superconductors in the probe limit, but not with backreaction included
- Problematic: Translation invariance & IR D.O.Fs
- Break translation invariance via Bianchi VII₀
 Calculate both sides of Homes' law independently
- Normal and superconducting ground states
- Thermodynamics Second order mean field
- $\rho_s(T = 0)$ extractable, sum rules hold
- To Do List:
 - DC conductivity in normal phase, Homes law?
 - Complete finite T & T = 0 phase diagram
 - Other instabilities?
- Expect Homes' Law to hold

[lizuka's talk]

(ロ) (同) (三) (三) (三) (○) (○)