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AdS/CFT

Gamow-Ivanenko-Landau physics cube--holographic version
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• Based on 1405.xxxx with Kallol Sen--This 

deals with holographic stress tensor 
correlation functions in general higher 
derivative gravity.

• and 1401.5089 with Shamik Banerjee, 
Arpan Bhattacharyya, Apratim Kaviraj, 
Kallol Sen and 1405.3743 with Shamik 
Banerjee, Apratim Kaviraj. This deals with 

constraining gravity using relative entropy.
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Motivation--I
• AdS/CFT is frequently used to gain intuition about 

physics at strong coupling.

• For instance the famous viscosity bound 
conjecture due to Kovtun, Son, Starinets spurred 
experiments in cold atoms to set records for the 
substance with the lowest shear viscosity to 
entropy density ratio.

• The evidence for this conjecture was calculations 
done in AdS/CFT in IIB α′3 sugra. (Buchel, Liu, Starinets; Myers, Paulos, AS)
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• It is now known that this conjecture is incorrect 
(although the ratio is small). Calculations 
showing bound violations in toy models in AdS/
CFT can be shown to be on firm footings and 
there are controlled 1/N violations of this 
bound. (Buchel, Myers, AS; for a 2 derivative example where this ratio vanishes see Sandip Trivedi’s talk on Friday)

• This suggests the importance to understand 1/N 
as well as finite ‘t Hooft coupling effects in such 
calculations.

• It is important to understand what physical 
quantities can be considered universal even at 
finite N and finite ‘t Hooft coupling.
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• Another example is the holographic c-theorems. Using 
intuition gained from certain toy models involving 
higher curvature terms Myers and I found evidence 
for the Cardy conjecture in even dim and proposed 
the finite part of the entanglement entropy across a 
sphere to play the role of the number of d.o.f. in odd 
dimensions. #UV>#IR. [Myers, AS 2010, 2011; EE proof by Casini, Huerta 2012; earlier related work by Emparan]

• However it was not clear to us how general these 
lessons were from the gravity point of view. 
Example:What about matter couplings at higher 
derivative order? ??NEC??

• For example it is still an unsolved problem what 
property in gravity guarantees c-theorems at finite 
coupling. 7
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• There are several more reasons why this 
problem is interesting. Another problem 
which has garnered a lot of recent attention is 
holographic entanglement entropy at finite 
coupling--namely corrections to the Ryu-
Takayanagi formula due to higher curvature 
bulk terms. [Hung, Myers, Smolkin; de Boer, Parnachev, Kulaxizi; Bhattacharyya, Kaviraj, AS; Fursaev, Solodukhin, 

Patrushev; Bhattacharyya, Sharma, AS] 

• Dong and Camps have proposed a general 
result but it appears to be at odds with an 
extension of Lewkowycz and Maldacena’s 
derivations. Will not talk about this![Bhattacharyya, Sharma]
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• How does one systematically proceed?

• Step 1, we need a general and useful procedure to 
write down the holographic stress tensor for an 
arbitrary higher derivative gravity.

• Step 2, we need a general and useful procedure to 
compute stress tensor correlation functions in 
arbitrary higher derivative gravity.

• Step 3,.....
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• To accomplish step 1, we appeal to entanglement 
entropy. 

• Recently Faulkner et al showed that for spherical 
entangling surfaces, using positivity of relative 
entropy, one recovers the linearized (general) 
gravity equations.  As a by product they obtain a 
simple way to compute the renormalized 
holographic stress tensor for a general theory of 
gravity.[Faulkner,  Guica, Hartman, Myers, Raamsdonk, 2013]
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• The final result obtained is remarkably simple--it is 
given in terms of a few parameters in the linearized 
Wald functional. 

• We will show that the parameters combine to a B-
anomaly coefficient in even dimensions or 
equivalently to the two point function coefficient 
cT in arbitrary dimensions.

• We will explain the simplicity using a background 
field approach (for anomalies, this was recently used by Rong-Xin Miao).

• We will further compute 2 and 3 point functions.
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• We wish to ask the following: Given a particular 
entanglement entropy functional what can we say 
about the gravity dual? For example, can we derive 
nonlinear Einstein equations from the Ryu-
Takayanagi entropy functional? 

• Partial progress has been achieved. Linearized 
Einstein equations can be shown to emerge. (Nozaki, Numasawa, 

Prudenziati, Takayanagi; Bhattacharya, Takayanagi; Lashkari, McDermott, Raamsdonk; Faulkner, Guica, Hartman, Myers, Raamsdonk) 

• The tool at our disposal to study this problem is 
holographic relative entropy. (Blanco, Casini, Hung, Myers)
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Relative Entropy follows

From Klein's Inequality

                          

We get

From Holography we can compute 

S (ρ∣σ ) ≥ 0

S (ρ∣σ ) = Δ〈H 〉−Δ S

Δ〈H 〉 ≥ Δ S

Δ S

Δ S = S (ρ )⏟
Area functonal

− S (σ )⏟
Area functional
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Change in modular 
hamiltonian H

Change in EE

Relative entropy

� = e�H/tr(e�H)

“1st law of entanglement” when 

saturated 
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We can compute              holographically provided we know H 
holographically

We know H in some special cases. 

For a spherical entangling surface

S (ρ∣σ )

H = 2π∫∣x∣<R
d
d−1
x
R
2−r2

2 R
T 00⏟( x⃗)

Can compute using holography
can compute H

If we knew how 
to calculate ΔS we 
would be able to
infer the stress 

tensor.

Sphere 
radius

[Blanco, Casini, Hung, Myers, 2013]

Wednesday, 28 May 14



• The causal development of a ball is mapped 
to the evolution generated by ordinary H in 
the hyperboloid. [Myers, AS; Casini, Huerta, Myers]

• EE gets mapped to thermal entropy.

• Can use Wald entropy to calculate the 
latter.[Myers, AS]

•

15

Faulkner et al, 2013.
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• More precisely we have

16

renormalized 
stress 

tensor: want 
to know

Can calculate using linearization 
of Wald entropy functional.

Small sphere limit makes integral local.

Holographic stress 
tensor from 𝝙S=𝝙H
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• Since linearization of the Wald entropy 
functional is involved in the underlying 
simplicity, this suggests that the calculation 
will be simpler if we do a background field 
expansion of the bulk lagrangian around a 
Riemann tensor of a maximally symmetric 
spacetime such that on the AdS background 
𝝙Riemann is zero. [Kallol Sen, AS, to appear]
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• So schematically we have the bulk 
lagrangian to have terms like (𝝙Riemann)n

• This suggests that the bulk action can be 
rearranged in terms of stress tensor 
correlation functions. For instance if we 
wanted n-point functions we only consider 
upto power n.

• The coefficients of these terms themselves 
would involve ALL higher derivative terms 
in the bulk lagrangian we started with.
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• There are some immediate advantages of 
doing this background field expansion. In TT 
gauge:
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R̄abcd = � 1

L̃2
(gacgbd � gadgbc)

�Rabcd = Rabcd � R̄abcd

Full metric

(�Rab)
linearized = 0

(�R)linearized = 0

(�Rabcd)
AdS = 0
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• Consider (𝝙 R)2 or (𝝙 Rab)2 in the action.

• To compute the effect of these terms on the n-
point function, we have to expand this around 
AdS upto n’th order in the perturbation.

• This immediately tells us that these will start 
contributing only to 4-point functions. This is the 
reason for the simple expressions we will find for 
one, two and three point functions.
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hTµ⌫i =
⇡d/2

2L̃2

d� 1

d+ 1

�[d/2]

�[d]
CTh(d)

µ⌫

Background field Lagrangian from

Two point function

Stress tensor and geometry A complete piece in 
the AdS/CFT 
dictionary!!

L(gab, Rcdef )  Kallol Sen, AS 2014

CT = 2
d+ 1

d� 1

�[d+ 1]

⇡d/2�[d/2]
L̃d�1[c1 + 2(d� 2)c6]

So simple!!

[Fefferman, Graham; de Haro, 
Skenderis, Solodukhin]
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• In even dimensions cT is related to a B-anomaly 
coefficient. Let me sketch the argument. RG 
equation gives [Erdmenger, Osborn; Osborn, Petkou]

• Hit twice more with 
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Quantum effective action

�

�gµ⌫
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• Since RHS is to be computed around flat 
space, it is easy to see that we need terms 
in the anomaly that have at most 2 Riemann 
curvatures. In 4 dimensions an explicit 
calculation picks out the c-anomaly 
coefficient.

• In 6 dimensions the only anomaly term 
with 2 Riemann’s is B3. Hence this 
coefficient is picked out.  All this we have 
explicitly check directly in holography.

23
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We can also compute 3 point functions!
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• When t4=0 (& c7=c8=0)

• Thus KSS bound is violated whenever we have t2>0 
in a perturbative expansion. 
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(
⌘

s
� 1

4⇡
)s / �c6

Wednesday, 28 May 14



• Even without unitarity, positive energy correlations lead to a bound on the 
shear viscosity. Easily calculable using pole method. (Paulos)

• For general four derivative, it is possible to tune couplings so that positive 
energy correlations are satisfied but the ratio is zero with no other obvious 
pathologies except ghosts (boundary conditions to eliminate them??).
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Weyl2

Gauss-Bonnet  
minimum

min.

Range of coupling fixed by -3 < t2 < 3

-0.05 0.05 0.10 0.15 0.20 0.25
lw2
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hês

t4=0

KSS
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S =
1

2`3P

Z
d

5
x

p
g(R+

12

L

2
+

�

2
L

2
W

2 + µL

4
W

3)

η/s=0.014

η/s=0.044
KSS(η/s)KSS=0.08
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• Till now the lessons we have learnt used 
the saturation of the inequality, i.e., the 1st 
law of entanglement.

• What about the inequality?
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An example showing 

Consider a scalar field in bulk

Choose  σ :  Empty AdS
d+1

               ρ : Scalar field turned on

Asymptotically

Δ〈 H 〉 ≥ Δ S

I =
1

2 l p

d −1∫d
d +1

x √G (R +
d (d−1)

L
2

−
1

2
(∂ϕ )2 −

1

2
m

2ϕ 2)

ϕ ∼ γ O z
Δ O :  scalar operator of dim Δ

m
2 = Δ(d−Δ)

𝝙H>𝝙S𝝙H>𝝙S

d

2
� 1 < � <

d

2
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Perturbed boundary metric:

In this case holographic stress tensor

So

And EE:  

ds
2=

L
2

z
2 [dz2 +ημν(1+z2Δ γ 2

O
2

4 d (d−1))dxμ
dx

ν ]
T μν = 0

Δ〈H 〉 = 0

Δ S =
2π
l p
d−1∫ d

d−1
xΔh

= −
γ 2
L
d−1

l p
d−1

π 3/2(Δ−
(d−2)2

2(d−1))Γ[Δ−
d

2
+1]

8Γ[Δ−
d

2
+
5

2 ]
Ωd−2

R
2Δ
O
2

Δ〈H 〉 ≥ Δ S if unitarity bound 
holds
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• Consider AAdS in FG expansion

• n1, n2 below most general for constant stress 
tensor at quadratic order in stress tensor
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Nonlinear constraints 
from 𝝙H>𝝙S
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• At linear order in stress tensor, inequality 
saturated. 

• Next order 𝝙H will not contribute so 

𝝙S<0. Correction to entangling surface is

• Leads to
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• We get the following inequalities

35

Wednesday, 28 May 14



36

Shamik Banerjee, Arpan Bhattacharyya, 
Apratim Kaviraj, Kallol Sen, AS 2014
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For non-constant stress tensor we find

Tµ⌫(x = 0) = 0To get rid of constant T contribution consider 

Derivative expansion: R@i ⌧ 1
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Allowed region 
has shrunk

38

Einstein theory

Shamik Banerjee,  Apratim Kaviraj,  AS 2014
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• Relative entropy taught us a clever way to do 
holographic renormalization.

• It led to using the background field method to 
compute one, two and three point functions for 
stress tensors in a large class of bulk theories 
quite easily arising from                         .

• It led to interesting nonlinear constraints on the 
metric hinting at a possible derivation of 
Einstein equations from entanglement.
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Lessons learnt

L(gab, Rcdef ,rpRcdef )
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