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Our main question in the talk:

Suppose that

• M4 is Minkowski spacetime

• Σ is a compact co-dimension 2 entangling

surface in M4

• its area is fixed, Area(Σ) = A

• its topology is fixed

• UV cut-off ε in the theory is fixed

Then

For which surface Σ0 entanglement
entropy would take maximal value?
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A natural guess

If such a surface Σ0 exists it should be a special

surface, and thus invariant under rotations and

hence it should be a sphere

Σ0 = S2

A hint: geometric analogy with sandpile
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Holographic entanglement entropy

We shall use a holographic interpretation of

entanglement entropy in terms of area of min-

imal surface H in Anti-de Sitter space-time

SHE(Σ) =
Area(H)

4πGN

Ryu-Takayanagi (06)
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Statement
(mathematical version):

Consider Minkowski spacetimeM4 as a bound-

ary of AdS5. Let Σ be a compact closed 2d

surface in M4 and let HΣ be a minimal sur-

face in AdS5 which bounds Σ. Suppose that

area of Σ is fixed, Area(Σ) = A. So that area

of minimal surface Area(HΣ) is a functional

of surface Σ. Then in the class of surfaces

Σ with fixed area and fixed spherical topology

this functional takes maximal value if Σ is 2-

sphere S2.
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Statement
(physics version):

Entanglement entropy calculated in Minkowski

spacetime M4 is maximal if the entangling sur-

face Σ is 2-sphere S2
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Thus, spheres appear to be the most entropic

surfaces!
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We start with mathematical version

Area of minimal (d− 1)-surface in AdSd+1

Area(HΣ) =
A(Σ)

(d− 2)εd−2
−

1

32

∫
Σ

(TrK)2Cd(ε)

Cd(ε) =
1

(d− 4)εd−4
, d > 4

C4(ε) = ln
1

ε
, d = 4

K is extrinsic curvature of Σ

Graham-Witten (1999)
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Holographic EE

SHE(Σ) = N2
(
A(Σ)

4πε2
−

1

16

∫
Σ

(TrK)2 ln
1

ε

)

1

G
=

2N2

π
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We do some re-writing (in d = 4)

Area(HΣ) =
A(Σ)

2ε2
−

1

16

∫
Σ

(RΣ +KΣ) ln
1

ε

RΣ = (TrK)2 −TrK2

is intrinsic curvature of Σ

KΣ = TrK2 −
1

2
(TrK)2

is conformal invariant
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Since topology of Σ is fixed∫
Σ
RΣ = 8π

The other observation is that KΣ is a complete

square

KΣ = (Kij −
1

2
γijTrK)2

Thus, Area(HΣ) is maximal if

KΣ = 0
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If KΣ = 0 for some surface Σ0 then

Kij =
1

2
γijTrK

and using the Gauss-Codazzi equations

∇jKij = ∇itrK

we find that TrK = const

then intrinsic curvature

RΣ = (trK)2 − trK2 = const > 0

so that the maximizer is round sphere, Σ0 = S2
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Thus we proved that

SHE(Σ) ≤ SHE(S2)
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Generic 4d CFT in Minkowski space-
time

SCFT (Σ) =
Area(Σ)

4πε2
−

1

2π

(
a
∫

Σ
RΣ + b

∫
Σ
KΣ

)
ln

1

ε

where a and b are central charges related to

conformal anomalies

a ≥ 0 and b > 0 (for all fields except s = 3/2)

By same argument as before entropy is max-

imal for a surface Σ0 for which KΣ = 0 and

thus Σ0 = S2 and we have a bound

SCFT (Σ) ≤ SCFT (S2)
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A mass deformation of CFT

S(Σ) =
Area(Σ)

4πε2
−

1

2π

∫
Σ

(
aRΣ + bKΣ +

m2

12
Ds

)
ln

1

ε

Ds is dimension of representation of spin s

This entropy is still bounded by entropy of

round sphere Σ0 = S2
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Curved space-time

For 4d CFT in curved space-time entangle-

ment entropy

S(Σ) = Area(Σ)
4πε2

− 1
2π

∫
Σ (aRΣ + b(−Wabab +KΣ)) ln 1

ε

Theorem still holds if

• space-time is conformally flat, W = 0

• Weyl tensor on surface Σ is negative

15



However, this is not the end of the story,

life is more interesting!
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Willmore conjecture (1965)

•Willmore (bending) energy W (Σ) = 1
4

∫
Σ(TrK)2

• Willmore energy satisfies W (Σ) ≥ 4π with

equality if and only if Σ is sphere

• Willmore conjectured that for surfaces of

higher genus there exists a better bound. For

every torus in R3

W (Σ) ≥ 2π2

with equality if and only if Σ is Clifford torus

with a certain ratio
√

2 of the radius of revolu-

tion to the radius of the circle being revolved.
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Recent development

•Willmore conjecture proved by Fernando Codá

Marques and André Neves (2012)

• They also proved that Clifford torus is mini-

mazer of Willmore energy for any genus

W (Σg) ≥ 2π2
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More geometry facts

• Conformal invariant Willmore energy

W (Σ) =
∫

Σ
(
1

4
(TrK)2 −Rabab +

1

2
Raa)

• This problem can be considered for Σ em-

bedded in S3 of unite radius; surface in R3 is

then obtained by stereographic projection.

The binding energy then is

W (Σ) =
∫

Σ
(
1

4
(TrK)2 + 1)

For minimal embeddings W (Σ) = Area(Σ)

• Clifford torus in this case is square torus

described by equations

x2
1 + x2

2 =
1

2
= x2

3 + x2
4
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• Lawson conjecture (1970) (one of the Mil-

lennium Problems): Clifford torus is the only

torus minimally embedded in S3

proved by Simon Brendle (2012)

• For each genus g Lawson constructed a sur-

face which is minimally embedded in S3

• For higher genus Lawson surfaces are mini-

mizers of Willmore energy (conjectured by Rob

Kusner (1989))
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We conclude that

After all spheres are not the most entropic

surfaces!

Surprisingly, the Clifford tori are maximizers

of entanglement entropy!
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Questions

• more general curved spacetimes?

• higher dimensions d > 4 (work in progress)?

• and most importantly..
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What is it good for?

23



THANK YOU!
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