Analysis of the Einstein equation in the Large D limit

Ryotaku Suzuki Osaka City University (OCAMI)

Holographic vistas on Gravity and Strings@YITP, May 26-28, 2014

Motivation

Large D limit seems to be a successful analytical method in the linear analysis of Black holes

- Gregory-Laflamme instability
- QNMs of BH (AdS/rotating/brane)
- Inst. of MPBH (bar/axissym. mode)

etc...

How about beyond the linear analysis?

Let us solve the Einstein Eq with 1/D expansion.

No interaction of BHs

Horizon can be in the arbitrary shape
→ Tractable beyond the linear regime ?

Hierarchy at Large D

Setup

D=n+4 Static Cylindrical Ansatz

original var. $B = K^{n+1}$

Written by Two variables : A(r,v), B(r,v) (HarmarkObers'02)

Large D limit

As the linear analysis,

$$\mathsf{R} = r^n / r_0^n$$

and

$$A = \frac{1}{r_0^2} \sum_{k \ge 0} \frac{A^{(k)}(\mathsf{R}, v)}{n^k}, \quad B = \frac{1}{r_0^{2n+2}} \sum_{k \ge 0} \frac{B^{(k)}(\mathsf{R}, v)}{n^k}.$$

Here after $r_0 = 1$

Also assume $\partial_v \sim \mathcal{O}(1)$

so that $\partial_{\bar{v}} = \sqrt{n} \partial_v \ll n \partial_R$ here $v = \sqrt{n} \bar{v}$

Leading order equation

Master Equation

from $R_{rr} = 0, \ R_{zz} = 0, \ R_{\Omega\Omega} = 0$

2nd order ODE for $\partial_{\mathsf{R}} \ln B^{(0)}$

A is expressed by B from $R_{\Omega\Omega} = 0$

$$A^{(0)} = 1 - \frac{(\mathsf{R} - 1)\mathsf{R}(\partial_{\mathsf{R}}B^{(0)})^2}{2B^{(0)2}} + \frac{(2\mathsf{R} - 1)(\partial_{\mathsf{R}}B^{(0)})}{2B^{(0)}} + \frac{(\mathsf{R} - 1)\mathsf{R}(\partial_{\mathsf{R}}^2B^{(0)})}{2B^{(0)}}$$

Leading order Solution

LO Solution with appropriate BCs

$$A^{(0)} = 1, \quad B^{(0)} = S(v)^2$$

 $S(v) \approx$ Horizon Cross Section

S(v) cannot be determined in the leading order !

Next to Leading Order

$$A = A^{(0)} + \frac{A^{(1)}}{n}, \quad B = B^{(0)} + \frac{B^{(1)}}{n}$$

- Ordinary linear analysis with unknown function S(v)

$$R_{rr} = 0, \ R_{zz} = 0, \ R_{\Omega\Omega} = 0$$

$$A^{(1)} = a_1(v) = 2\ln S(v) + S'(v)^2 + 2S(v)S''(v),$$
$$B^{(1)} = b^{(1)}(v) + 2S(v)^3S''(v)\ln \mathsf{R}$$

regularity@R=1

Horizon Equation

$$A^{(1)} = a_1(v) = 2 \ln S(v) + S'(v)^2 + 2S(v)S''(v),$$

$$B^{(1)} = b^{(1)}(v) + 2S(v)^3 S''(v) \ln \mathbb{R}$$

ODE for S(v)

$$R_{rz} = 0$$

ODE for S(v)

$$S'(v)(1+2S(v)S''(v)) + S(v)^2S^{(3)}(v) = 0.$$

Integration

$$a_1(v) = 2a = 2\ln S(v) + S'(v) + 2S(v)S''(v).$$

Integration

$$S(v)(-2 - 2a + 2\ln S(v) + S'(v)^2) = 2b \ge -e^a$$

2 parameters a,b

Potential Problem

a can be set a = -1 (a is a scaling)

$$S(v) \to e^{\Delta a} S(e^{\Delta a} v), \quad v \to e^{\Delta a} v, \quad b \to e^{\Delta a} b$$

$$\frac{1}{2}S'(v)^2 = -\ln S(v) + \frac{b}{S(v)} + a + 1$$

Solving $S(v) \rightarrow Potential Problem$

Large D limit of Cylinder Spacetime

b = 0

If b=0, S(v) has an analytic form

Large D limit of Cylinder Spacetime

Potential

No analytic form has found for any $b \neq 0$ But, can be understood by the Potential

$$\frac{1}{2}S'(v)^2 = -\ln S(v) + \frac{b}{S(v)}$$

b≠0 -> rescaling by |b|

$$y = S/|b| \ge 0.$$
 $\frac{|b|^2}{2}y'(v)^2 = \frac{\text{``Energy''}}{-\ln|b|} - V(y)$

$$V(y) = \ln y \pm \frac{1}{y}$$

b > 0

- One zero for every b>0
- collapse into y=0 ? (assumption not valid, though)

 \rightarrow Caged BH or BH with a waist ?

Large D limit of Cylinder Spacetime

- Minimum@y=1,(b=-1/e) : UBS
- 2 zeros for 0>b>-1/e (y_min, y_max)
 Oscillate between y_min and y_max : NUBS

Large D limit of Cylinder Spacetime

Horizon Cross section

Numerically Integrating from $S_{\max}(b)$ to $S_{\min}(b)$

Summary

done

- Solved Einstein Eq. in static cylindrical ansatz
 - in the large D limit (only near horizon)
- Obtained an equation of horizon
- Solution may describe NUBS to BH

work in progress

- Check 1st Law
- Match with Asymptotics (\rightarrow Mass, Tension)

near axis (for BH solution) – Comparison with Numerics

Future Work

- Other Ansatz : Spherical Collapse(r,z \rightarrow r,t), (A)dS, Rotating BH
- Generalized formulation
- Application to Holography

Appendix

Leading order solution : General

General solution

 $b_1(v), \ b_2(v), \ b_3(v)$ as arbitrary functions

$$A^{(0)} = -\frac{b_1(v)^2 b_2(v) (\mathsf{R} - 1)^{b_1(v) - 1} \mathsf{R}^{b_1(v) - 1}}{(\mathsf{R}^{b_1(v)} + b_2(v) (\mathsf{R} - 1)^{b_1(v)})^2},$$

$$B^{(0)} = \frac{b_2(v) b_3(v) (\mathsf{R} - 1)^{b_1(v) - 1 - \sqrt{b_1(v)^2 - 1}} \mathsf{R}^{b_1(v) - 1 + \sqrt{b_1(v)^2 - 1}}}{(\mathsf{R}^{b_1(v)} + b_2(v) (\mathsf{R} - 1)^{b_1(v)})^2}.$$

 b_1, b_2, b_3 should satisfy $(R_{rz} = 0)$

$$\frac{b_2(z)\left(2b_3(z)b_1'(z) + b_1(z)\left(b_1(z)^2 - 1\right)b_3'(z)\right) + \sqrt{b_1(z)^2 - 1}b_1(z)^2b_3(z)b_2'(z)}{(\mathsf{R} - 1)\mathsf{R}b_1(z)b_2(z)b_3(z)\sqrt{b_1(z)^2 - 1}} = 0$$

Leading order : Asymptotics

★ cannot be solved directly. Instead, we focus on the asymptotics

$$A^{(0)} = -\frac{b_1(z)^2 b_2(z)}{(1+b_2(z)^2)\mathsf{R}^2} + \mathcal{O}(\mathsf{R}^{-3}) \quad (b_2(z) \neq -1)$$
$$A^{(0)} = 1 + \frac{1-b_1(z)}{\mathsf{R}} + \mathcal{O}(\mathsf{R}^{-2}) \quad (b_2(z) = -1).$$

looks better ?

$$b_2(z) = -1$$

Leading order Solution

Substituting
$$b_2(z) = -1$$
 into \bigstar

$$2b_3(z)b_1'(z) + b_1(z)(b_1(z)^2 - 1)b_3'(z) = 0$$

$$b_3(z) = \frac{b_1(z)^2 C}{b_1(z)^2 - 1} \quad \text{or} \quad b_1(z) = 1.$$

For now, we take $b_1(z) = 1$.

$$A^{(0)} = 1, \ B^{(0)} = b_3(z) = S(z)^2$$

NUBS from UBS

Expansion from UBS (b = -1/e) $\overline{b} = eb + 1 \ll 1$

 $eS(v) = 1 + \bar{b} - \frac{\bar{b}^2}{12} + \left(1 - \frac{55\bar{b}}{144} + \frac{2347\bar{b}^2}{20736}\right) 2^{1/2}\bar{b}^{1/2}\cos(v/L)$ $- \left(\frac{2\bar{b}}{3} - \frac{5\bar{b}^2}{9}\right)\cos(2v/L) + \frac{17\bar{b}^{3/2}}{24\sqrt{2}}\cos(3v/L) - \frac{247\bar{b}^2}{540}\cos(4v/L) + \mathcal{O}(\bar{b}^{5/2})$ $\textbf{non-linear effect} \sim \bar{b}^{m/2}\cos(mv/L)$ Period $eL = 1 + \frac{\bar{b}}{12} + \frac{\bar{b}^2}{576} + \mathcal{O}(\bar{b}^{5/2})$

Recover the scaling

$$S(v) \to (e/\lambda) S_{eb/\lambda}(ev/\lambda), \quad a \to -\ln\lambda$$