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Motivation

Large D limit seems to be a successful analytical 
method in the linear analysis of Black holes

- Gregory-Laflamme instability   
- QNMs of BH (AdS/rotating/brane)   
- Inst. of MPBH (bar/axissym. mode)

etc...

How about beyond the linear analysis?

Let us solve the Einstein Eq with 1/D expansion.



characterizing this e↵ect. This length, however, can equally well be obtained from the

horizon area,

`A ⇠ A
1 / ( D� 2 )

H ⇠ r
0p
D
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It derives from the geometric e↵ect discussed in eq. (2.4). The conceptual prevalence of

geometric magnitudes must be borne in mind whenever we choose, for physical illustration,

to frame our discussion in terms of non-geometric, secondary quantities. 2

The picture of black holes as non-interacting dust also agrees well with other properties.

The Bekenstein-Hawking entropy of the Schwarzschild black hole behaves like

S ( M ) ⇠ M
D�2
D�3

D!1����! M . (2.14)

In contrast to the situation at finite D , where S / M ↵ with ↵ > 1, the fact that S / M

means that there is no entropic gain in merging two black holes. 3 Nor is there any entropic

penalty in splitting a black hole in two (recall that the horizon becomes singular in the

limit). This is a reflection of the absence of interactions noted above.

Consider now a black p -brane,
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This brane is characterized by an energy density " and a pressure P along its worldvolume

such that

P = � "

D � p � 2
. (2.17)

When D ! 1 this pressure vanishes: the brane has a dust equation of state.

The instability of the dust brane to fragmentation in this limit is easy to establish. At

any finite D , neutral black branes su↵er from a Gregory-Laflamme instability to growing

inhomogeneities along the worldvolume, and are expected to eventually break up [25]. The

threshold mode at the onset of this instability has been studied at large D in [6, 7], with

the result that perturbations with wavelength longer than

�c =
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�
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�
(2.18)

are unstable. Thus, when D ! 1 perturbations of arbitrarily short wavelength drive the

break up of the brane. We will revisit this instability in more detail in section 7.

For black p -branes we can regard p as a parameter that can scale with D in di↵erent

manners. The case of p ⇠ O ( D 0 ) has been discussed above. Another possibility is that

2
Note that the quantum theory introduces the Planck length, which may be chosen to scale or not with

D, see sec. 5.

3
The shrinking e↵ect of angular spheres may be eliminated by considering, e.g., the ratio between initial

and final entropies. This also eliminates the dependence on G and the Planck length.
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Setup
D=n+4 Static Cylindrical Ansatz
Written by Two variables : A(r,v), B(r,v) ( HarmarkObers’02)

Rrr = 0, Rzz = 0, Rrz = 0, R⌦⌦ = 0

4 nonzero components

Einstein Eq.

The merger transition at the large D limit

May 2, 2014

Abstract

In this note , we will study the large D limit of the solution of the Einstein equation in the
static cylindrically symmetric space times. We see that the solution at the large D limit nicely
describes the BH/BS transition.

1 Derivation of the large D limit of the horizon

1.1 Setup

The general static cylindrically symmetric spacetimes in (n + 4)-dimension are written in the
following ansatz [1]
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We define B(r, z) = K(r, z)n+1

instead of K(r, v) in the original paper for the later convenience. The scale factor

RT is included in the definition of the coordinate and A,B.
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Abstract

In this note , we will study the large D limit of the solution of the Einstein equation
in the static cylindrically symmetric spacetimes.

1 Derivation of the large D limit of the horizon
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1We define B(r, v) = K(r, v)n+1 instead of K(r, v) in the original paper for the later convenience. The
scale factor RT is included in the definition of the coordinate and A,B.
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Large D limit

R = rn/rn0

As the linear analysis,

r0 = 1

and

Here after
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where we used f(r) = 1� rn
0

/rn and �ab is the (n+ 1)-sphere metric

1.2 Leading order

Now, we consider the large D limit with R = rn/rn
0

fixed. The position of the horizon
is always fixed at R = 1. We expand the metric by 1/n as
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For the convenience, we set r
0

= 1 from now on. Here note that if we want to recover
the dimension, v should be replaced by rn

0

v. From the large D expansion of Rrr =
0, Rvv = 0 and Rab = 0, we can construct a master equation for B(0),
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This becomes an second order ODE for @R(lnB(0)). A(0) is just given by B(0), using
the leading order of Rab = 0,
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@v ⇠ O(1)

so that



Leading order equation

Rrr = 0, Rzz = 0, R⌦⌦ = 0
Master Equation
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(z) should be, at least, positive for the horizon stay at R = 1. The remaining equation
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Instead of solving this equation directly, we consider the asymptotic behavior. Assuming b
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A is expressed by B from R⌦⌦ = 0



Leading order Solution

≈ Horizon Cross Section

S(v) cannot be determined 
in the leading order !

Non-interactive picture of BH 
horizons in the Large D limit

where b
1

(v) should be, at least, positive for the regularity at R = 1. The remaining
equation Rrv = 0 gives
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Instead of solving this equation directly, we consider the asymptotic behavior. The
condition for this metric to be connected to the asymptotically flat coordinate is
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We see also the asymptotic behavior of A(0) at R ! 1 becomes,
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In this note, we will consider the latter case and then the solution becomes even simpler
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section. In the leading order, S(v) is an arbitrary function. This is consistent with the
non-interactional picture of the horizon at the large D limit discussed in [3].

Here we note that the latter case in Eq. (14) gives the solution for Eq. (11),
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LO Solution with appropriate BCs

S(v)



Next to Leading Order

- Ordinary linear analysis
                  with unknown function S(v)

A = A(0) +
A(1)

n
, B = B(0) +

B(1)

n

Rrr = 0, Rzz = 0, R⌦⌦ = 0

regularity@R=1

1.3 Next to Leading order

From now on, the problem reduces to solving the linear equation with source terms.
Though, di↵erent from the usual perturbation problem, the background metric is not
yet determined.

Opposite to the leading order, we solve A(1) first, since NLO equation from Rrr = 0
becomes

@2

RA
(1) = 0 ) A(1) = a

1

(v) + a
2

(v)R (21)

where we should set a
2

(v) = 0 for the asymptotic flatness. Remaining equations are

R(R� 1)@2

RB
(1) + (2R� 1)@RB

(1) � 2S(v)3S00(v) = 0, (22)

R(R� 1)@2

RB
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(1) + 2S(v)2(�a
1

(v) + 2 lnS(v) + S0(v)2 + S(v)S00(v)) = 0,

(23)

2@R@vB
(1) � 2S0(v)

S(v)
@RB

(1) � S(v)((2R� 1)S(v)a0
1

(v)� 4(R� 1)S0(v))

R(R� 1)
= 0. (24)

The first two equations determine a
1

(v) and B(1) as

A(1) = a
1

(v) = 2 lnS(v) + S0(v)2 + 2S(v)S00(v), (25)

and

B(1) = b(1)(v) + 2S(v)3S00(v) lnR (26)

where the regularity at R = 1 is imposed on B(1).

Horizon equation

Substituting a
1

(v) and B(1) into Eq. (24) gives the equation for S(v),

S0(v)(1 + 2S(v)S00(v)) + S(v)2S(3)(v) = 0. (27)

The left hand side is found to be just propotional to @RA(1) given by Eq. (25) which
means that a

1

(v) should be constant. Writing a
1

(v) = 2a, we have the second order
ODE for S(v)

2a = 2 lnS(v) + S0(v) + 2S(v)S00(v). (28)

This equation can be integrated further by multiplying S0(v),

S(v)(�2� 2a+ 2 lnS(v) + S0(v)2) = 2b � �ea (29)

where b is an integration constant. Since a is the scaling degree of freedom,

S(v) ! e�aS(e�av), v ! e�av, b ! e�ab (30)
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Potential Problem

Solving S(v) → Potential Problem

a can be set a = -1 ( a is a scaling)
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b = 0

If b=0, S(v) has an analytic form
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Figure 1: The shape of the horizon cross-section at b = 0.

This equation can be integrated further by multiplying S0(z),

S(z)(�2� 2a+ 2 lnS(z) + S0(z)2) = 2b (25)

where b is an integration constant. Since a is the scaling degree of freedom,

S(z) ! e�aS(e�az), z ! e�az (26)

then we can set a = �1. After we obtained the solution S(z) = Sb(z) for b, the scaling is
recovered by

S(z) ! Sb/L(z/L)/L, a ! �1� lnL (27)

Eq. (25) can be seen as a potential problem for the motion of S(z) evolving with the ’time’ z,

1

2
S0(z)2 = � lnS(z) +

b

S(z)
⌘ V (S) (28)

First, we consider the special case b = 0 in which Eq. (28) can be solved by the error function
(Fig. 1),

Sb=0

(z) = exp

2

4�erf�1

 r
2

⇡
z

!
2

3

5 (29)

where z can be freely shifted by a constant. For b 6= 0, we can’t find the analytic form for the
integration, but the solution completely determined by the value of b. Using the scaling freedom
again, we can set b = ±1 so that

V (y) = � ln y ± 1

y
� ln |b| (30)

where y = S/|b| � 0. If b > 0, the potential monotonically decreases from V = 1 to V = �1
and has a single zero y

max

for every given value of b, which means that the horizon shape collapse
into the zero size as seen in the b = 0 case. If b < 0, the potential has a maximum at y = 1
and the solution only exists for b > �1/e. For b = 1/e, the solution becomes a constant, y = 1,

4

r
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⇡

Figure 1: The shape of the horizon cross-section at b = 0.

then we can set a = �1. Once you have the solution S(v) = Sb(v) for a specific value
of b, the scaling is recovered by

S(v) ! (e/�)Seb/�(ev/�), a ! � ln� (31)

Eq. (29) can be seen as a potential problem for the motion of S(v) evolving with the
’time’ v,
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(32)

First, we consider the special case b = 0 in which Eq. (32) can be solved by the inverse
error function (Fig. 1),
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where v can be freely shifted by a constant. For b 6= 0, we can’t find the analytic form
for the integration, but the solution completely determined by the value of b. It is
convenient if we rescale the equation by |b|,

|b|2
2

y0(v)2 = E � V (y), (34)

where we defined y = S/|b| and

E = � ln |b|, V (y) = ln y � sgn(b)
1

y
. (35)

If b > 0, the potential always has a single zero y
max

for every given value of b, which
means that the horizon shape collapse into the zero size as seen in the b = 0 case. If
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Figure 1: The shape of the horizon cross-section at b = 0.
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(v) = exp

2

4�erf�1

 r
2

⇡
v

!
2

3

5 (33)

where v can be freely shifted by a constant. For b 6= 0, we can’t find the analytic form
for the integration, but the solution completely determined by the value of b. It is
convenient if we rescale the equation by |b|,

|b|2
2

y0(v)2 = E � V (y), (34)

where we defined y = S/|b| and

E = � ln |b|, V (y) = ln y � sgn(b)
1

y
. (35)

If b > 0, the potential always has a single zero y
max

for every given value of b, which
means that the horizon shape collapse into the zero size as seen in the b = 0 case. If

5

No analytic form has found for any b ≠ 0
But, can be understood by the Potential

“Energy”



Figure 2: Potential for b > 0 and b < 0. In the b > 0 case, the potential monotonically

increases. In the b < 0 case, the potential has a minimum at y = 1 where V (y = 1) = 1.

b < 0, the potential has a minimum at y = 1 and the solution only exists for b > �1/e.
For b = 1/e, the solution becomes a constant, y = 1, which represents the black string
solution. For �1/e < b < 0, there exist two zeros y

min

and y
max

in which case the
solution will oscillate between y

min

and y
max

.
Integrating dv/dS from S

max

to S
min

, we obtain the shape of the horizon for a half
period (Fig. 3).

v(S) = ±
Z S

S
max

dS0
p�2 lnS0 + b/S0

(36)

where b is related to S
max

as

b = S
max

lnS
max

. (37)

We here mention that the deformation parameter for UBS/NUBS introduced in [4]
is expressed by

(2�+ 1)n+1 =
S
max

S
min

. (38)

Next-to-Leading order solution

From Eq. (29), S00(v) can be written in terms of S(v) as

S(v)2S00(v) = �b� S(v). (39)

Finally, the next-to-leading order solution becomes for given S(v),

A(1) = 2a, B(1) = 2S(v)2
h
s(1)(v)� (1 + b/S(v)) lnR

i
. (40)

where we introduced b(1)(v) = 2S(v)2s(1)(v). s(1)(v) gives the correction term to S(v)
and again will be determined at the next order.

6

b > 0

・collapse into y=0 ? ( assumption not valid, though )

   → Caged BH or BH with a waist ?

・One zero for every b>0

� ln y +
1

y
� ln |b|



Figure 2: Potential for b > 0 and b < 0. In the b > 0 case, the potential monotonically

increases. In the b < 0 case, the potential has a minimum at y = 1 where V (y = 1) = 1.

b < 0, the potential has a minimum at y = 1 and the solution only exists for b > �1/e.
For b = 1/e, the solution becomes a constant, y = 1, which represents the black string
solution. For �1/e < b < 0, there exist two zeros y

min

and y
max

in which case the
solution will oscillate between y

min

and y
max

.
Integrating dv/dS from S

max

to S
min

, we obtain the shape of the horizon for a half
period (Fig. 3).
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0 > b > -1/e

Oscillate between y_min and y_max : NUBS
・2 zeros for 0>b>-1/e (y_min, y_max)
・Minimum@y=1,(b=-1/e) : UBS

b = �1/e

Large D limit of Cylinder Spacetime

� ln y � 1

y

� ln |b|



Figure 3: The shape of the horizon cross-section in the periodic direction. The red curves are

the plot with b = �0.34,�0.24,�0.15,�0.08 and the blue curves are with b = 0, 0.25, 0.5.
The analytic formula for b = 0 is also plotted as the dashed curve.

UBS and NUBS

If b = �1/e, Eq. (32) admits only the solution S(v) = 1/e, which corresponds to the
uniform black string. We can obtain the NUBS solution in the series expansion from
the UBS solution. If we consider b̄ = eb+1 ⌧ 1, the NUBS solution is given by, up to
O(b̄7/2),

S(v) = 1 + b̄� b̄2

12
+

b̄3

216
+

✓
1� 55b̄

144
+

2347b̄2

20736
� 1664741b̄3

74649600

◆p
2b̄ cos

⇣ v

L

⌘

�
✓
2b̄

3
� 5b̄2

9
+

40937b̄3

155520

◆
cos

✓
2v

L

◆
+

✓
17

12
� 1289

720
b̄+

415849

345600
b̄2
◆

b̄3/2

23/2
cos

✓
3v

L

◆

�
✓
247

540
� 4159b̄

5400

◆
b̄2 cos

✓
4v

L

◆
+

✓
34117

12960
� 6012619

1088640
b̄

◆
b5/2

25/2
cos

✓
5v

L

◆
� 920119b̄3 cos

�
6v
L

�

1814400

+
214140653b̄7/2 cos

�
7v
L

�

261273600
p
2

+O(b̄4) (41)

where we set the maximum of the solution comes at v = 0 and the period 2⇡L is also
expanded as

L =
1

e

✓
1 +

b̄

12
+

b̄2

576
+

41b̄3

311040
+O(b̄�4)

◆
. (42)

Critical behavior

1.4 Asymptotics

A

f
dr2 +

A

B
dv̄2 + r2B

1

n+1d⌦2

n+1

= d⇢2 + dz2 + r2d⌦2

n+1

+O(r̃�n) (43)

7

Numerically Integrating from            to

b=0.25

b=0.5

b=-0.34, -0.24, -0.15, -0.08

b=0

Horizon Cross section
Smin(b)S

max

(b)

Large D limit of Cylinder Spacetime

b=-1/e=-0.368...

UBS

NUBS (-1/e<b<0)

Caged BH? (b>0)

b=0: BH with a waist ?

v(S) =

Z S

S
max

dS0
p

�2 lnS0 + b/S0

S(v) = 1/e

@vS ⇠ S ⇠ O(1)

Assumptions

Other patch 
at S~0 ?



Summary



Summary

- Solved Einstein Eq. in static cylindrical ansatz
  in the large D limit (only near horizon)
- Obtained an equation of horizon
- Solution may describe NUBS to BH

- Check 1st Law
- Match with Asymptotics (→ Mass, Tension)

                    near axis (for BH solution)
- Comparison with Numerics

work in progress

done



Future Work

- Other Ansatz : Spherical Collapse( r,z→r,t ),

                               (A)dS, Rotating BH

- Generalized formulation

- Application to Holography
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Leading order solution : General
General solution

as arbitrary functionsb1(v), b2(v), b3(v)

Rrv =
1

4rf(r)AB2

h
f(r)

✓
r(@rA)B +

nrA(@rB)

n+ 1
� 2AB

◆
(@vB)

+(@vA)
�
rf(r)(@rB)B + ((n+ 2)f(r) + n)B2

�� 2rf(r)AB(@r@vB)
i

(4)

Rab =
1

(n+ 1)B

h
2n(n+ 1)AB2 � r2f(r)(@2

rB)B
1

n+1

+1 + r2f(r)(@rB)2B
1

n+1

�r(f(r) + n)(@rB)B
1

n+1

+1 � nr2(@2

vB)B
1

n+1

+2 � 2n(n+ 1)B
1

n+1

+2

i
�ab(5)

where we used f(r) = 1� rn
0

/rn and �ab is the (n+ 1)-sphere metric

1.2 Leading order

Now, we consider the large D limit with R = rn/rn
0

fixed. The position of the horizon
is always fixed at R = 1. We expand the metric by 1/n as

A =
1

r2
0

X

k�0

A(k)(R, v)

nk
, B =

1

r2n+2

0

X

k�0

B(k)(R, v)

nk
. (6)

For the convenience, we set r
0

= 1 from now on. Here note that if we want to recover
the dimension, v should be replaced by rn

0

v. From the large D expansion of Rrr =
0, Rvv = 0 and Rab = 0, we can construct a master equation for B(0),

�3(R� 1)2R2(@RB(0))4

2B(0)4

� 3R
�
2R2 � 3R+ 1

�
(@RB(0))3

2B(0)3

+

 
3(R� 1)2R2(@2

RB
(0))

2B(0)

+ 9R2 � 9R+ 3

!
(@RB(0))2

B(0)2

+

 
3R
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2R2 � 3R+ 1

� @2

RB
(0)

B(0)

� (R� 1)2R2@3
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!
@RB(0)

B(0)

+ (R� 1)2R2

(@2

RB
(0))2

B(0)2

�2
�
3R2 � 3R+ 1

� @2

RB
(0)

B(0)

� R
�
2R2 � 3R+ 1

� @3

RB
(0)

B(0)

= 0. (7)

This becomes an second order ODE for @R(lnB(0)). A(0) is just given by B(0), using
the leading order of Rab = 0,

A(0) = 1� (R� 1)R(@RB(0))2

2B(0)2

+
(2R� 1)@RB(0)

2B(0)

+
(R� 1)R@2

RB
(0)

2B(0)

. (8)

The solution for the master equation have 3 functional degree of freedom b
1

(v), b
2

(v), b
3

(v)

A(0) = �b
1

(v)2b
2

(v)(R� 1)b1(v)�1Rb
1

(v)�1

(Rb
1

(v) + b
2

(v)(R� 1)b1(v))2
, (9)

B(0) =
b
2

(v)b
3

(v)(R� 1)b1(v)�1�
p

b
1

(v)2�1Rb
1

(v)�1+

p
b
1

(v)2�1

�
Rb

1

(v) + b
2

(v)(R� 1)b1(v)
�
2

. (10)
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Rab =
1

(n+ 1)B

h
2n(n+ 1)AB2 � r2f(r)(@2

rB)B
1

n+1+1 + r2f(r)(@rB)2B
1

n+1

�r(f(r) + n)(@rB)B
1

n+1+1 � nr2(@2
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1

n+1+2 � 2n(n+ 1)B
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n+1+2

i
�ab (5)

where we used f(r) = 1� rn
0

/rn and �ab is the (n+ 1)-sphere metric

1.2 Leading order

Now, we consider the large D limit with R = rn/rn
0

fixed. The position of the horizon is always
fixed at R = 1. We expand the metric by 1/n as

A =
1

r2
0

X

k�0

A(k)(R, z)

nk
, B =

1

r2n+2

0

X

k�0

B(k)(R, z)

nk
. (6)

For the convenience, we set r
0

= 1 from now on. Here note that if we want to recover the
dimension, z should be replaced by rn

0

z. From the large D expansion of Rrr = 0, Rzz = 0 and
Rab = 0, we can construct a master equation for @RB(0),

�3(R� 1)2R2(@RB(0))4
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RB
(0) = 0. (7)

This is an ODE and then can be solved. A(0) is just given by B(0), using the leading order of
Rab = 0,

A(0) = 1� (R� 1)R(@RB(0))2

2B(0)2

+
(2R� 1)(@RB(0))
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+
(R� 1)R(@2

RB
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. (8)

The solution for the master equation have 3 functional degree of freedom b
1

(z), b
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(z), b
3

(z)
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where b
1

(z) should be, at least, positive for the horizon stay at R = 1. The remaining equation
Rrz = 0 gives
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Instead of solving this equation directly, we consider the asymptotic behavior. Assuming b
1

(z) >
0, A(0) becomes at R ! 1,

A(0) = � b1(z)
2b2(z)
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2
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2

should satisfy（　　     ）Rrz = 0

★

b1, b2, b3



Leading order : Asymptotics

★ cannot be solved directly.
Instead, we focus on the asymptotics

looks better ?
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where we used f(r) = 1� rn
0

/rn and �ab is the (n+ 1)-sphere metric

1.2 Leading order

Now, we consider the large D limit with R = rn/rn
0

fixed. The position of the horizon is always
fixed at R = 1. We expand the metric by 1/n as
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For the convenience, we set r
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= 1 from now on. Here note that if we want to recover the
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where b
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(z) should be, at least, positive for the horizon stay at R = 1. The remaining equation
Rrz = 0 gives
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Instead of solving this equation directly, we consider the asymptotic behavior. Assuming b
1

(z) >
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Leading order Solution
So that the coordinate R can be extended to the infinity, we must choose b

2

(z) = �1. Then,
Eq. (??) reduces to

2b
3

(z)b0
1

(z) + b
1

(z)(b
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(z)2 � 1)b0
3

(z) = 0 (14)

which can be solved as

b
3

(z) =
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1

(z)2C

b
1

(z)2 � 1
or b

1

(z) = 1. (15)

In this note, we will consider the latter case and then the solution becomes even simpler form

A(0) = 1, B(0) = S(z)2 (16)

where we set b
3

(z) = S(z)2 since B(0) is propotional to the square of the horizon cross-section.
In the leading order, S(z) is a arbitrary function. This is consistent with the non-interactional
picture of the horizon at the large D limit discussed in [?].

1.3 Next to Leading order

From now on, the problem reduces to solving the linear equation with source terms. Though,
di↵erent from the usual perturbation problem, the background metric is not yet determined.

Opposite to the leading order, we solve A(1) first, since NLO equation from Rrr = 0 becomes

@2
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Horizon equation

Substituting a
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Horizon equation
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(z) and B(1) into Eq. (??) gives the equation for S(z),
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a
1

(z) should be constant. Writing a
1

(z) = 2a, we have the second order ODE for S(z)

2a = 2 lnS(z) + S0(z) + 2S(z)S00(z). (24)

3

For now, we take

So that the coordinate R can be extended to the infinity, we must choose b
2

(z) = �1. Then,
Eq. (??) reduces to

2b
3

(z)b0
1

(z) + b
1

(z)(b
1

(z)2 � 1)b0
3

(z) = 0 (14)

which can be solved as

b
3

(z) =
b
1

(z)2C

b
1

(z)2 � 1
or b

1

(z) = 1. (15)
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In the leading order, S(z) is a arbitrary function. This is consistent with the non-interactional
picture of the horizon at the large D limit discussed in [?].
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A(0) = 1, B(0) = b3(z) = S(z)2
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Figure 1: The shape of the horizon cross-section at b = 0.

then we can set a = �1. Once you have the solution S(v) = Sb(v) for a specific value
of b, the scaling is recovered by

S(v) ! (e/�)Seb/�(ev/�), a ! � ln� (31)

Eq. (29) can be seen as a potential problem for the motion of S(v) evolving with the
’time’ v,

1

2
S0(v)2 = � lnS(v) +

b

S(v)
(32)

First, we consider the special case b = 0 in which Eq. (32) can be solved by the inverse
error function (Fig. 1),

Sb=0

(v) = exp

2

4�erf�1

 r
2

⇡
v

!
2

3

5 (33)

where v can be freely shifted by a constant. For b 6= 0, we can’t find the analytic form
for the integration, but the solution completely determined by the value of b. It is
convenient if we rescale the equation by |b|,

|b|2
2

y0(v)2 = E � V (y), (34)

where we defined y = S/|b| and

E = � ln |b|, V (y) = ln y � sgn(b)
1

y
. (35)

If b > 0, the potential always has a single zero y
max

for every given value of b, which
means that the horizon shape collapse into the zero size as seen in the b = 0 case. If

5

Recover the scaling


