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WHAT WE DO AND FIND 

  study the (in)stability of rotating black holes by 

large D expansion 

- compute QNM frequency explicitly 

 MP-BH becomes unstable at  𝑎 > 𝑎𝑐  

 relation with ultra-spinning condition 𝑎ultra   

 satisfy superradiance condition 

  consider odd-D MP-BH with equal angular momenta 

- cohomogenity-1 solution = perturbation eq. becomes ODE, 

but coupled  [ Murata-Soda (2008), Dias, et.al. (2010) ] 



ULTRA-SPINNING 

MP-BH can be unstable (at D>5)  

ultra-spinning 

“black brane is unstable” =  “MP-BH is also unstable” 

𝑎 > 𝑎ultra 

𝑎ultra =
𝐷 − 3

𝐷 − 5
 𝑎ultra =

𝐷 − 3

𝐷 − 1
≤ 𝑎extreme 

( MP-BH with single rotation ) ( MP-BH with equal spin ) 

e.g.  

[ Emparan-Myers (2003), 

                      Dias, et.al. (2010) ] 

 numerically confirmed for some modes 
[ Dias, et.al. (2010,2011) ] 



SUPERRADIANCE 

  we are also interested in non-axisymmetric 

perturbation  

𝛿𝑔𝜇𝜈 ∝ 𝑒−𝑖𝜔𝑡 𝑒𝑖𝑚𝜓 

 unstable mode (if exists) with Im 𝜔 > 0 satisfies 

superradiance condition? 

Re 𝜔 < 𝑚Ω𝐻 

- numerically checked this condition 

single rotation 𝑎𝑐 > 𝑎superradiance 

equal rotation 𝑎𝑐 = 𝑎superradiance 

[ Shibata-Yoshino (2010), 

Dias-Hartnett-Santos (2014) ] 

[ Hartnett-Santos (2013) ] 



CHECK LIST 

  we find threshold angular momentum of instability 

from QNM frequency 

𝑎𝑐
𝑚>0 𝑎𝑐

𝑚=0 

  relation with ultra-spinning condition and check 

superradiance condition 

𝑎𝑐 > 𝑎ultra 
or 

𝑎𝑐 < 𝑎ultra 

  what is the dominant instability? bar mode? 



ROTATION=BOOST 

  “rotation”, in general, makes a problem complicate 

(but so interesting)  

  at large D, “rotation” can be treated as “boost” 

Schwarzschild BH Myers-Perry BH 

𝜽 
boosting 

with  𝜶(𝜽) 

moving to “rest frame”, problem of MP-BH can 

be reduced to one of Schwarzschild BH  

Notion!!  “boost symmetry” exists only at 𝑫 = ∞  

[ Emparan-Grumiller-KT (2013) ] 



MP-BH WITH EQUAL 

ANGULAR MOMENTA 

 equal angular momenta case becomes much 

more tractable 

“cohomogenity-1”           boost 𝛼 is constant   

※ dynamics of 𝛼 𝜃  is trivial 

D=2N+3 dim MP-BH with equal spin 

metric on CP^N 



PERTURBATION EQ 

 consider scalar type perturbations on CP^N 

𝐷2 + 𝜆 𝑌ℓ𝑚 = 0 

𝜆 = ℓ ℓ + 𝐷 − 3 − 𝑚2 

( scalar harmonics on CP^N ) 

 perturbation can be expanded by 𝑌ℓ𝑚 

𝛿𝑔𝜇𝜈 = 𝐹𝜇𝜈 𝑟 𝑒−𝑖𝜔𝑡 𝑒𝑖𝑚𝜓𝑌ℓ𝑚 

 perturbation equations become coupled ODEs 
[ Dias-Figueras- Monteiro-Reall-Santos (2010)] 

ℓ = 0,2,4, … −ℓ ≤ 𝑚 ≤ ℓ 

- tensor type perturbation is stable          [  Kunduri-Lucietti-Reall (2006) ] 



… and more 
[ Dias-Figueras- Monteiro-Reall-Santos (2010)] 



PERTURBATION EQ 

𝛿𝑔𝜇𝜈 = 𝐹𝜇𝜈 𝑟 𝑒−𝑖𝜔𝑡 𝑒𝑖𝑚𝜓𝑌ℓ𝑚 

[ Emparan-Suzuki-KT (2014) ] 

- we can solve equations analytically 

 at “rest frame”, perturbation eqs. become one of 

Schwarzschild BH only at leading order of 𝑫 = ∞ 

 perturbation eqs. are decoupling at leading order 

 coupling effects appears as source terms in higher 

order equation in 1/𝐷 expansion 

- source terms does not have “boost symmetry”, which 

describe the difference from Schwarzschild BH 





WHICH MODE? 

QNMs of large D BHs has two types 

  non-decoupled QNMs (universal mode) 

- modes with frequency 𝜔 = 𝑂(𝐷/𝑟+) 

- roughly speaking, describes responses to 

external fields 

  decoupled mode (confined modes) 

- modes with frequency 𝜔 = 𝑂(𝐷0/𝑟+) 

- capture “internal DoF” of large D BHs 



RESULTS: LEADING 

 obtain QNM condition of 𝛿𝑔𝜇𝜈 = 𝐹𝜇𝜈 𝑟 𝑒−𝑖𝜔𝑡 𝑒𝑖𝑚𝜓𝑌ℓ𝑚 

- 3 modes as solutions of a cubic equation (explicitly solvable) 

 one mode describes instability at  𝑎 > 𝑎𝑐
ℓ𝑚 

𝑎𝑐
ℓm = 1 −

1

ℓ
 

dominant instability 

mode is ℓ = 2, 𝑚 = 2 
>    𝑎𝑐

ℓ=2,𝑚=2=
1

2
 



AXIS MODE 

  axisymmetric unstable mode has pure imaginary frequency 

  zero mode perturbation at threshold angular momentum 

- ℓ = 2, 𝑚 = 0 is angular momentum perturbation 

  ℓ = 4 is the dominant unstable mode in axisymmetric perturbation 

- appearance of new solution branch 

ℓ = 4, 𝑚 = 0 



NON-AXIS MODE 

  non-axisymmetric mode has complex frequency 

  all instability modes satisfy superradiance condition  

  ℓ = 2, 𝑚 = 2 is the dominant unstable mode in perturbations 

Re 𝜔 < 𝑚Ω𝐻 at 𝑎 > 𝑎𝑐
ℓ𝑚 

ℓ = 2, 𝑚 = 2 

Re 𝜔 = 𝑚Ω𝐻 

𝑎 = 𝑎𝑐
ℓ=2,𝑚=2

 𝑎 = 𝑎𝑐
ℓ=2,𝑚=2

 



RESULTS: NEXT LEADING 

𝜔𝑟+ = 𝜔0 +
𝜔1

𝐷 − 3
  

 we can obtain 1/𝐷 correction in higher order 

solution 

 threshold angular momentum is corrected 

𝑎𝑐
ℓ𝑚

𝑟+
= 1 −

1

ℓ
 1 −

2

𝐷 − 3
 
𝑚2

4ℓ2
  

 dominant unstable mode 

𝑎𝑐
ℓ=2,𝑚=2

𝑟+
<

𝑎ultra

𝑟+
=

1

2
 



INSTABILITY WINDOW 

up to 𝑂(1/𝐷) correction, we describe instability window 

𝑎 

𝑎extreme 𝑎ultra = 𝑎𝑐
ℓ=2,𝑚=0

 

𝑎𝑐
ℓ=2,𝑚=2

 𝑎𝑐
ℓ=4,𝑚=0

 

non-axisymmetrically unstable 

axisymmetrically unstable 

ultra-spinning region 

Schwarzschild BH 

𝑎 = 0 

instability window of MP-BH with equal spin 



COMPARISON 

  comparison with numerical result 

- very good agreement if we consider 𝑂(1/𝐷) correction 

[ Hartnett-Santos (2013) ] 

comparison of ℓ = 2, 𝑚 = 2 mode at D=15 
numerical 

leading 

with O(1/D) correction 



SUMMARY AND OUTLOOK 

  we solved perturbation equations of MP-BH with 

equal angular momenta by large D expansion 

  found explicit QNM frequency up to 𝑂(1/𝐷) 

 bar mode (ℓ = 2, 𝑚 = 2) is the most dominant 

unstable mode 

- out of the ultra-spinning region 

 unstable modes always satisfy superradiance 

condition 

 extension to single rotation case 

 consider the dynamics of  boost parameter 𝛼(𝜃) 

𝑎𝑐
𝑚>0 < 𝑎ultra < 𝑎𝑐

𝑚=0 


