Axion Bosenova and Gravitational Waves

Hirotaka Yoshino Hideo Kodama

(KEK)

PTP128, 153 (2012) PTEP2014, 043E02 (2014) arXiv:1406.xxxx (in progress)

3-day workshop (holographic vistas) @ YITP at Kyoto U. (May 26th, 2014)

CONTENTS

Introduction

PTP128, 153 (2012) PTEP2014, 043E02 (2014)

 Constraining string axion models from GW observations
in Progress

Summary

Introduction

Very interesting era of GR

Advanced LIGO

Advanced VIRGO

One of the interesting possibilities is to find new physics beyond GR!

Can we find a signal of string theory?

Arvanitaki, Dimopoulos, Dubvosky, Kaloper, March-Russel, PRD81 (2010), 123530.

- Maybe Yes, if there are String Axions with very tiny mass
- In string theory, many moduli appear when the extra dimensions get compactified.
- Some of them (10-100) are expected to behave like scalar fields with very tiny mass, which are called string axions.

Axion field around a rotating BH

 Axion field extracts BH rotational energy and forms an "axion cloud"

Detweiler, PRD22 (1980), 2323. Zouros and Eardley, Ann. Phys. 118 (1979), 139.

Gravitational Atom

Gross phenomena of the axion-BH system

Gross phenomena of the axion-BH system $T_{\rm BN} \sim 100 M$ Scalar field amplitude Bosenova Bosenova Bosenova $\varphi \approx 1$ GW GW GW Superradiant Superradiant Superradiant instability instability instability If the bosenova happens at Cygnus X-1 Superradiant instability $\omega_{\rm GW} \sim 10^2 \ {\rm Hz}$ $T_{\rm sr} \sim 10^7 M$ GW amplitude is marginal to be detected by 2nd generation ground based detectors (order estimate) Yoshino and Kodama, PTP128, 153 (2012) Time

Constraining string axion models from GW observation

Preliminary

- They looked for continuous waves from distorted pulsars
- Detectable amplitude can be made smaller by increasing observation time

$$h_{\rm rss} \sim h \sqrt{T_{\rm obs}}$$

LIGO's continuous wave search

No GWs have been detected, upper limit on the amplitude is given.

Our idea (1)

Consider continuous waves from BH-axion system

 $50 \text{ Hz} \le f \le 1200 \text{ Hz}$ $\Leftrightarrow 10^{-13} \text{ eV} \le \mu \le 2.4 \times 10^{-12} \text{ eV}$

• If we assume $M \approx 15 M_{\odot}$, $0.0125 \le M \mu \le 0.3$

- $\Rightarrow \begin{array}{l} \text{We consider axion cloud in the } l = m = 1 \text{ mode} \\ \text{We use the approximate formula for small } M\mu \end{array}$
- \Rightarrow The wave form is same as the distorted pulsar case

Amplitude:
$$h_0 \approx \left(\frac{E_a}{M}\right) (\mu M)^6 \left(\frac{M}{d}\right)$$

Our idea (2)

 We adopt the axion cloud energy when the nonlinear selfinteraction becomes important

$$\frac{\Phi_{\max}}{f_a} \approx \frac{1}{\sqrt{8\pi e^2}} \sqrt{\frac{E_a}{M}} \left(\frac{f_a}{M_p}\right)^{-1} (\mu M)^2 \approx 1$$

$$\Rightarrow 10^{-22} \left(\frac{f_a}{10^{16} \text{GeV}}\right)^2 \left(\frac{M}{15M_{\odot}}\right)^3 \left(\frac{\mu}{10^{-12} \text{eV}}\right)^2 \left(\frac{d}{1 \text{kpc}}\right)^{-1} < h_{\text{UL}}$$

 In order to exclude the situation where gravitational backreaction is significant, we require

$$\frac{E_a}{M} < 0.05 \quad \Rightarrow \quad \left| \frac{f_a}{10^{16} \text{GeV}} < 0.1 \times \left(\frac{M}{15M_{\odot}} \right)^2 \left(\frac{\mu}{10^{-12} \text{eV}} \right)^2 \right|$$

Remark

- The result of the continuous wave search cannot be used in our case because
 - In the data analysis, isolated pulsar is assumed.
 - Cygnus X-1 is a binary system, and therefore, GW frequency fluctuates by the Doppler shift
 - The data analysis strongly depend on the assumed situation
 - If the target search of continuous waves from the Cygnus X-1 is carried out, that kind of constraint can be obtained.

Dependence on the distance

 Some estimates give the BH number in our galaxy as 10⁸-10⁹

Timms, Woosley, Weaver, ApJ457, 834 (1996).

- The averaged distance in the neighbouring BHs is expected to be 7–15 pc
 - ⇒ There might exist invisible isolated BH at relatively close position

Summary

Summary

- It is possible to constrain string axion models from existing LIGO observational data.
- Target search from continuous GWs from Cygnus X-1 is required to obtain rigorous constraint.
- Invisible isolated solar mass BHs are likely to exist relatively close to us, and this suggests that string axions may be constrained more strongly.