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§Introduction and Motivation

Recently noncommutative gauge theory have
been investigated enthusiastically.

It is interesting not only as a model of nonlo-
cal field theory but also as a low energy effective
theory of strings on nonzero NS-NS B-field back-
ground.

D-brane on flat and constant B-field background
||

Noncommutative gauge theory (Moyal product)

Seiberg-Witten (1999) and its references and citations,...

With the nocommutative parameter:

θij = −(2πα′)2

(
1

g + 2πα′B
B

1

g − 2πα′B

)ij

,

this Moyal product is given by

f(x) ∗ g(x) = f(x) exp

⎛
⎝ i

2

←−
∂

∂xi
θij

−→
∂

∂xj

⎞
⎠ g(x),
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More generic backgrounds?
curved and nonconstant B-field...

� Deformation Quantization
There are some techniques to construct noncom-
mutative associative ∗ product as a generalization
of Moyal product on R2n.

Kontsevich, Fedosov, Omori-Maeda-Yoshioka, De Wilde-Lecomte,...

Most general one is that on Poisson manifold.

� Nonlinear σ-Model of Strings
There are some tractable cases by using CFT.

If the relation between them becomes clear on
more generic backgrounds, deformation quanti-
zation may be useful to study string theory on
nontrivial backgrounds.

Formally there are prescriptions to construct
general ∗ products, but to investigate the rela-
tion concretely, explicit form of ∗ product is more
useful.
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� Here we construct ∗ product explicitly in
tractable but nontrivial case:

on 2 dimensional constant curvature space
S2, H2

by using Fedosov’s deformation quantization.

The resulting ∗ products form su(2), su(1, 1) al-
gebra which is known as fuzzy sphere, hyperbolic
space algebra respectively.

� Fuzzy Sphere in String Theory (an example)

�

�

�

�

Strings on S3 (radius R3) with H = dB
||

SU(2) WZW model at level k (∼ R2
3)

D-brane in SU(2) WZW at k→∞
↓

OPE among boundary fields
||

Fuzzy sphere algebra MN+1(C)
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§Fedosov’s ∗ Product

Fedosov’s procedure to construct ∗ product:

1. Weyl algebra bundle (W, ◦) on (M, Ω0)
← input: ∇, θ with parameter �

2. Abelian connection D on W
← input: μ, Ω1

3. one to one map between WD and C∞(M)[[�]]
⇒ map σ, Q

a0 ∗ b0 := σ(Q(a0) ◦Q(b0)), a0, b0 ∈ C∞(M)[[�]]

This is noncommutative and associative product and

[a0, b0]∗ = i�{a0, b0}+O(�2),

where { , } is Poisson bracket with respect to Ω0.

We can calculate this ∗ product order by order
in � at least formally for general symplectic mani-
fold (M, Ω0).
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� Difficulities to obtain explicit formula of this
∗ product to full order in � :

• Construction of an Abelian connection D.
Exact solution of iteration equation for r:

r = δμ + δ−1

(
∇(ωijy

iθj) + R− Ω1 +∇r +
i

�
r ◦ r

)

• Construction of the map Q.
Exact solution of flat section equation:
Da = 0, i.e.,

∇a− δa +
i

�
(r ◦ a− a ◦ r) = 0, a ∈W

More concretely,

rk,i1···ip,j = r0
k,i1···ip,j +

p

2(p + 1)
(∇(i1r|k|,i2···ip),j −∇jrk,(i1···ip−1,ip))

+
∑ i

m!p1!p2!

p!

2(p + 1)

ωl1l′1

2i
· · · ω

lml′m

2i
[rk1,l1···lm(n1···np1 ,j′, r|k2,l′1···l′m|n′

1···n′
p2

),j}

where

r =
∑

2k+p≥2,k≥0,p≥0

�
k 1

p!
rk,i1···ip,jy

i1 · · · yipθj,

r0 =
∑

2k+p≥2,k≥0,p≥0

�
k 1

p!
r0
k,i1···ip,jy

i1 · · · yipθj

=
∑

2k+p≥2,k≥0,p≥0

�
k 1

p!
μk,i1···ipjy

i1 · · · yipθj +
1

3
ωimT m

jky
iyjθk

+
1

8
Rijkly

iyjykθl − 1

2
(i�REkl + Ω1kl)y

kθl.

:
:

:
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§‘Fuzzy Sphere and Hyperbolic Space’

In special case we can get explicit formula of Fe-
dosov’s ∗ product.

• Flat space R
2n

⇒ Moyal product:
a0 ∗ b0 = a0 exp

(
i
2

←−
∂

∂xiθ
ij
−→
∂

∂xj

)
b0, θij = −θji:constant

• 2 dimensional constant curvature space
positive curvature : sphere S2

negative curvature : hyperbolic space H2

In the former case, we can carry out Fedosov’s
procedure rather trivially.

In the latter case, we get explicit formulae by
adjusting input parameters, i.e., we select ∇, θ, μ, Ω1

to be able to solve iteration equation for r easily.
In practice we required stronger conditions for

r :

∇r +
i

�
r ◦ r = 0,

r = δμ + δ−1
(∇(ωijy

iθj) + R− Ω1

)
and solved them.
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� For rotationally symmetric 2 dimensional space with
a metric:

ds2 = eΦ(r)(dr2 + r2dθ2),

a symplectic form is given by

Ω0 = eΦ(r)rdr ∧ dθ.

In this setup, we solved stronger conditions for r,
by adjusting input parameters:

r = y1y2r−1dr,

and obtained the map Q by solving Da = 0 for
this r :

a = Q(a0(r, θ)) = a0

(
G(r, y1), θ +

y2

r

)
,

where G(r, y1) is given by∫ G(r,y1)

r

eΦ(r′)r′dr′ = y1r.

Then we have obtained a ∗ product:

a0(r, θ) ∗ b0(r, θ) =

(
a0

(
G(r, y1), θ + y2

r

)
·exp

(
−i�

2

( ←−
∂

∂y1

−→
∂

∂y2−
←−
∂

∂y2

−→
∂

∂y1

))
b0

(
G(r, y1), θ + y2

r

))∣∣∣∣y1=0,
y2=0
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S2 case

We embed S2 in R
3 as

(X1)2 + (X2)2 + (X3)2 = R2

and parameterize as

X1 =
2R2r

r2 + R2
cos θ , X2 =

2R2r

r2 + R2
sin θ, X3 = R

r2 −R2

r2 + R2
,

then we get the explicit formula of a ∗ product
with

G(r, y1) =

√√√√r2 + y1

2R2r(r2 + R2)

1− y1

2R4r(r2 + R2)
.

Using this ∗ product we get

[Xi, Xj]∗ = i
�

R
εijkXk,

X1 ∗X1 + X2 ∗X2 + X3 ∗X3 = R2
(
1− �

2

4R4

)
.

This is fuzzy sphere algebra (� su(2)) with radius

R
√

1− �2

4R4. Namely, we have obtained “fuzzy

sphere” by deforming S2 using our ∗ product!
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H2 case

We embed H2 in R
1,2 as

−(Y 0)2 + (Y 1)2 + (Y 2)2 = −R2,

and parameterize as

Y 0 = R
R2 + r2

R2 − r2
, Y 1 =

2R2r

R2 − r2
cos θ, Y 2 =

2R2r

R2 − r2
sin θ,

then we get the explicit formula of a ∗ product
with

G(r, y1) =

√√√√r2 + y1

2R2r(R2 − r2)

1 + y1

2R4r(R2 − r2)
.

Using this ∗ product we get

[Y 0, Y 1]∗ = i �

R
Y 2, [Y 2, Y 0]∗ = i �

R
Y 1, [Y 1, Y 2]∗ = −i �

R
Y 0,

−Y 0 ∗ Y 0 + Y 1 ∗ Y 1 + Y 2 ∗ Y 2 = −R2
(
1− �2

4R4

)
.

This is fuzzy H2 algebra (� su(1, 1)) with radius

R
√

1− �2

4R4. Namely, we have obtained

“fuzzy H2” by deforming H2 with our ∗ product!
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Large R limit of fuzzy S2, H2

For the complex coordinates
z := reiθ, z̄ := re−iθ, we have commutation relations
with our ∗ product :

[z, z̄]∗ = − �

2R4
(R2 + z ∗ z̄)(R2 + z̄ ∗ z),

for ‘fuzzy S2,’ and

[z, z̄]∗ = − �

2R4
(R2 − z ∗ z̄)(R2 − z̄ ∗ z)

for ‘fuzzy H2.’
They are both reduced to fuzzy R

2 (Heisenberg
algebra) in the large R limit,i.e.,

[z, z̄]∗ = −�

2
as R→∞.

Using our ∗ product, we get

S2 �→0←−− fuzzy S2

R→∞
⏐⏐� ⏐⏐�R→∞

R
2 ←−−

�→0
fuzzy R

2

R→∞
�⏐⏐ �⏐⏐R→∞

H2 ←−−
�→0

fuzzy H2
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§An Application

We consider 4 dimensional noncommutative U(1)
gauge theory with one scalar:

S = Tr

(
1

4
GIJGKLFIK ∗ FJL +

1

2
GIJDIφ ∗DJφ

)
.

Here we assume only 2 dimensional space is non-
commutative (1,2 direction), and use a general
formulation of [A-K]:

GIJ = δIJ, I, J = 1, · · · , 4,

FIJ = ∂IAJ − ∂JAI − i[AI, AJ ]∗ −
JIJ

�
,

J12 = −J21 = 1, others = 0,

∂I =
i

�
[−JIJφ̃J, ]∗, I = 1, 2, ∂3 =

∂

∂x3
, ∂4 =

∂

∂x4

DIφ = ∂Iφ− i[AI, φ]∗,

where φ̃I is “canonical” noncommutataive coor-
dinate such as

i

�
[φ̃1, φ̃2]∗ = 1.

The action is invariant under noncommutative
U(1) gauge transformation:

δλAI = ∂Iλ− i[AI, λ]∗, δλφ = −i[φ, λ]∗.
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� In general, φ̃I can be constructed order by order
in � at least formally.

Now that we have explicit form of the ∗ product,
we can also calculate φ̃I explicitly as:

φ̃1 =
2Rr√

r2 + R2
cos θ, φ̃2 =

2Rr√
r2 + R2

sin θ

for fuzzy S2 and

φ̃1 =
2Rr√

R2 − r2
cos θ, φ̃2 =

2Rr√
R2 − r2

sin θ

for fuzzy H2.

We obtain a solution of the equations of motion:

DIFIJ = −i[φ, DJφ]∗, DIDIφ = 0,

by solving the U(1) noncommutative BPS equa-
tion:

BI = DIφ, I = 1, 2, 3, ∂4 = 0, A4 = 0,

BI :=
1

2
εIJK

(
FJK +

JJK

�

)
.
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Under the ansatz

A1 + iA2 = ifA(l, x3)(φ̃1 + iφ̃2), A3 = 0,

φ = f(l, x3), l :=

√
(φ̃1)2 + (φ̃2)2 + (x3)2,

we get a solution of them which becomes the U(1)
Dirac monopole in the commutative and flat limit
(�→ 0, R→∞) as

f =
g

l
+ �g2

(
2x3

l4
− 1

l3

)

+�
2

(−8g3x3

l6
− g

4l5
+

(
5g

8
+ 10g3

)
(x3)2

l7

)
+O(�3),

fA =
g

l(l + x3)
+ �g2

(
2

l4
− 1

l3(l + x3)
− 1

2l2(l + x3)2

)

+�
2

(−8g3

l6
+

4g3

l5(l + x3)
+

g3

l4(l + x3)2
+

g3

2l3(l + x3)3

−
(

5g

8
+ 10g3

)
x3

l7

)
+O(�3).

In the fuzzy R
2 limit case, i.e., R → ∞, the

O(�) terms coincide with those in the previous
work which solved the equations of motion with
the usual Moyal product. Hashimoto-Hirayama
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§Comparison with Conventional Fuzzy Sphere

There is a one to one mapping:�

�

�

�

su(2) representation matrix for spin N
2||

function expanded by Ylm(ϑ, ϕ), l ≤ N

Conventionally we identify

MN+1(C) � fuzzy sphere algebra

The induced noncommutative associative prod-
uct between functions is

Yl1m1∗NYl2m2

=

N∑
l=|l1−l2|

l∑
m=−l

(−1)m
√

(2l+1)(2l1+1)(2l2+1)
4π

(
l l1 l2

m −m1 −m2

)

·(−1)N
√

N + 1

{
l l1 l2
N
2

N
2

N
2

}
Yl,m .

N is noncommutative parameter and

Yl1m1∗NYl2m2 −→ Yl1m1Yl2m2

for N →∞.

15



This ∗N characterizes fuzzy sphere:

[Xi, Xj]∗N = iεijk
2R√

N(N+2)
Xk

X1 ∗N X1 + X2 ∗N X2 + X3 ∗N X3 = R2

where Xi, i = 1, 2, 3 are given by

X1 = R

√
2π

3
(−Y1,1(ϑ, ϕ) + Y1,−1(ϑ, ϕ)) = R sin ϑ cos ϕ,

X2 = R

√
2π

3
i(Y1,1(ϑ, ϕ) + Y1,−1(ϑ, ϕ)) = R sin ϑ sin ϕ,

X3 = R

√
4π

3
Y1,0(ϑ, ϕ) = R cos ϑ.

Comparing ∗N with our ∗ product, we expect
the correspondence between the noncommutative
parameters as

�

2R2
∼ 1

N
+O

(
1

N 2

)
To understand the meaning of ∼, we should in-

vestigate ∗ and ∗N more precisely.
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We can write down our ∗ product between spher-
ical harmonic functions as:

Yl1m1
(ϑ, ϕ) ∗ Yl2m2

(ϑ, ϕ) =

Yl1m1

(
cos−1

(
cos ϑ +

m2�

2R2

)
, ϕ

)
Yl2m2

(
cos−1

(
cos ϑ− m1�

2R2

)
, ϕ

)
.

The products ∗N and ∗ are expanded as:

Yl1m1 ∗N Yl2m2 = Yl1m1Yl2m2

+
1

N

∑
l+l1+l2=odd

Cl,l1m1l2m2Yl,m1+m2 +O
(

1

N 2

)
,

Yl1m1 ∗ Yl2m2 = Yl1m1Yl2m2

+
�

2R2

∑
l+l1+l2=odd

C′l,l1m1l2m2
Yl,m1+m2 +O

(
�

2

4R4

)
.

What is the relation between
Cl,l1m1l2m2 and C′l,l1m1l2m2

?

17



From explicit calculations, we get

Cl,l1m1l2m2
= (−1)m1+m2

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

·
(

l l1 l2
m1 + m2 −m1 −m2

)

·(−1)
l1+l2+l+1

2 (l1 + l2 + l + 1)
(

l1+l2+l−1
2

)
!(

l1+l2−l−1
2

)
!
(

l2+l−l1−1
2

)
!
(

l+l1−l2−1
2

)
!

·
√

(l1 + l2 − l)!(l2 + l− l1)!(l + l1 − l2)!

(l1 + l2 + l + 1)!
,

and

C�

���1�1�2�2

=
(m1 + m2)!

2�1+�2+�+1

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

(l1 −m1)!(l2 −m2)!(l−m1 −m2)!

(l1 + m1)!(l2 + m2)!(l + m1 + m2)!

·
∑
�

(−1)�(2r)!

r!(l− r)!(2r − l−m1 −m2)!

(
∑
���

(−1)�+�(2p)!(2q)!m1Γ
(
p + q + r −m1 −m2 − �1+�2+�

2

)
p!q!(l1 − p)!(l2 − q)!(2p− l1 −m1)!(2q − l2 −m2 − 1)!Γ

(
p + q + r − �1+�2+�

2

)
−

∑
���

(−1)�+�(2p)!(2q)!m2Γ
(
p + q + r −m1 −m2 − �1+�2+�

2

)
p!q!(l1 − p)!(l2 − q)!(2p− l1 −m1 − 1)!(2q − l2 −m2)!Γ

(
p + q + r − �1+�2+�

2

))

for m1, m2 ≥ 0.

Generally,

Cl,l1m1l2m2 �= C′l,l1m1l2m2
.
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§Summary and Discussion

�Summary

•We have obtained explicit formulae of ∗ products
on 2 dimensional constant curvature spaces
S2, H2 by completing calculations along the
Fedosov’s procedure for deformation quantiza-
tion.

•We have shown that they form
fuzzy S2, H2 algebra i.e., su(2), su(1, 1) algebra.

•We applied them to our general formulation of
[A-K] and solved U(1) noncommutative BPS
equation to O(�2).

•We compared our ∗ product on S2 with con-
ventional ∗N product for fuzzy sphere in the
nearly commutative region.
Naively �

2R2 ∼ 1
N

+ O (
1

N2

)
, but precisely their

relation is rather complicated.
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�Discussion

•We can get different ∗ products by other choice
of the input parameters. If we explicitly get
one which has simple relation with conventional
∗N , it might give some suggestions to
string theory.

•What is the relation between our ∗ product on
H2 and ‘conventional’ fuzzy H2 (or represen-
tations of su(1, 1)) ?

•More explicit examples?

• Deformation quantization provides associative
∗ product by definition.
In string theory, on nonzero H = dB back-
ground, corresponding ∗ product from OPE is
nonassociative.
Therefore some generalization of deformation
quantization is required in noncommutative con-
text.
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