Some Properties of

String Field Algebra

Isao Kishimoto

YITP, Kyoto-U.

I.K., JHEP12(2001)007 [hep-th/0110124]
I.K., K.Ohmori, hep-th/0112169

Sen's conjecture (for bosonic open string field theory)

CSFT(cubic string field theory) Witten

$$
S_{\mathrm{CSFT}}=-\frac{1}{g_{o}^{2}}\left(\frac{1}{2}\left\langle\Phi, Q_{B} \Phi\right\rangle+\frac{1}{3}\langle\Phi, \Phi * \Phi\rangle\right)
$$

Sen's conjecture says there is a solution of CSFT $\Phi_{c}: Q_{B} \Phi_{c}+\Phi_{c} * \Phi_{c}=0$ and $-\left.S_{\mathrm{CSFT}}\right|_{\Phi_{c}} / V_{26}=T_{25}$.

VSFT(vacuum string field theory) Rastelli-Sen-Zwiebach

$$
S_{\mathrm{VSFT}}=-\kappa_{0}\left(\frac{1}{2}\langle\Phi, \mathcal{Q} \Phi\rangle+\frac{1}{3}\langle\Phi, \Phi * \Phi\rangle\right)
$$

This describes the physics around nonperturbative vacuum (no D25-brane). \mathcal{Q} should satisfy the following conditions to define a gauge theory

$$
\mathcal{Q}^{2}=0, \mathcal{Q}(A * B)=\mathcal{Q} A * B+(-1)^{|A|} A * \mathcal{Q} B,\langle\mathcal{Q} A, B\rangle=-(-1)^{|A|}\langle A, \mathcal{Q} B\rangle
$$

and have vanishing cohomology and universality (no matter information). This requirement is satisfied by

$$
\mathcal{Q}=\Sigma_{n} f_{n}\left(c_{n}+(-1)^{n} c_{-n}\right)
$$

where f_{n} is some coefficient. Later canonical choice is given by GRSZ:

$$
\mathcal{Q}=\frac{1}{2 i}(c(i)-c(-i))=c_{0}-\left(c_{2}+c_{-2}\right)+\left(c_{4}+c_{-4}\right)+\cdots
$$

To realize this scenario, it is necessary to have an analytic solution of CSFT or VSFT which relates them. We investigate Witten's * product for this purpose.

Witten's * product represents string interaction. This is represented by operator formalism using oscillators or CFT technique.

In the context of VSFT, some techniques using oscillator representation have been developed in matter part especially to construct projection which satisfies reduced equation of motion of VSFT $\left(\Phi_{M} \star_{M} \Phi_{M}=\Phi_{M}\right)$.
We extend them to ghost part and solve full equation of motion of $\operatorname{VSFT}(\mathcal{Q} \Phi+\Phi \star \Phi=0)$.

In the context of purely CSFT, Horowitz et.al. discussed (formal) solutions.
We reexamine them to construct a solution of CSFT which derives conjectured VSFT action.

For two string fields A, B, which are represented by some oscillators on a particular Fock vacuum, we define the Witten's \star product as

$$
|A \star B\rangle_{1}:={ }_{2}\left\langle\left. A\right|_{3}\langle B \mid 1,2,3\rangle=\langle 2,4 \mid A\rangle_{4}\langle 3,5 \mid B\rangle_{5} \mid 1,2,3\right\rangle,
$$

where 3 -string vertex $|1,2,3\rangle$ and reflector $\langle 1,2|$ are represented by

$$
\begin{aligned}
\left|V_{3}\right\rangle & =|1,2,3\rangle=\tilde{\mu}_{3} \int d^{d} p^{(1)} d^{d} p^{(2)} d^{d} p^{(3)}(2 \pi)^{d} \delta^{d}\left(p^{(1)}+p^{(2)}+p^{(3)}\right) e^{E_{3}}|0, p\rangle, \\
E_{3} & =-\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n, m \geq 1} a_{n}^{(r) \dagger} V_{n m}^{r s} a_{m}^{(s) \dagger}-\sum_{r, s=1}^{3} \sum_{n \geq 1} p^{(r)} V_{0 n}^{r s} a_{n}^{(r) \dagger}-\frac{1}{2} \sum_{r, s=1}^{3} p^{(r)} V_{00}^{r s} p^{(s)}-\sum_{r, s=1}^{3} \sum_{n \geq 1, m \geq 0} c_{-n}^{(r)} X_{n m}^{r s} b_{-m}^{(s)}, \\
|0, p\rangle & =\left|0, p^{(1)}\right\rangle\left|0, p^{(2)}\right\rangle\left|0, p^{(3)}\right\rangle, \quad b_{n}^{(i)}\left|0, p^{(i)}\right\rangle=0, \quad n \geq 1, \quad c_{m}^{(i)}\left|0, p^{(i)}\right\rangle=0, \quad m \geq 0, \\
\left\langle V_{2}\right| & =\langle 1,2|=\int d^{d} p^{(1)} d^{d} p^{(2)}\langle 0, p| e^{E_{2}} \delta^{d}\left(p^{(1)}+p^{(2)}\right) \delta\left(c_{0}^{(1)}+c_{0}^{(2)}\right) \\
E_{2} & =-\sum_{n, m \geq 1} a_{n}^{(1)} C_{n m} a_{m}^{(2)}-\sum_{n, m \geq 1}\left(c_{n}^{(1)} C_{n m} b_{m}^{(2)}+c_{n}^{(2)} C_{n m} b_{m}^{(1)}\right), \quad\langle 0, p|={ }_{1}\left\langle 0,\left.p^{(1)}\right|_{2}\left\langle 0, p^{(2)}\right|, \quad C_{n m}:=(-1)^{n} \delta_{n, m} .\right.
\end{aligned}
$$

We can prove the useful relations among Neumann coefficients $V_{n m}^{r s}, \boldsymbol{X}_{n m}^{r s}$:
$M_{0}:=C V^{r r}, \quad M_{ \pm}:=C V^{r r \pm 1}, \quad \tilde{M}_{0}:=-C X^{r r}, \quad \tilde{M}_{ \pm}:=-C X^{r \pm 11}$ where these indices run from 1 to ∞, $C M_{0}=M_{0} C, C M_{+}=M_{-} C, C \tilde{M}_{0}=\tilde{M}_{0} C, C \tilde{M}_{+}=\tilde{M}_{-} C$,
$\left[M_{0}, M_{ \pm}\right]=\left[M_{+}, M_{-}\right]=0, \quad\left[\tilde{M}_{0}, \tilde{M}_{ \pm}\right]=\left[\tilde{M}_{+}, \tilde{M}_{-}\right]=0$,
$M_{0}+M_{+}+M_{-}=1, \tilde{M}_{0}+\tilde{M}_{+}+\tilde{M}_{-}=1$,
$M_{+} M_{-}=M_{0}^{2}-M_{0}, \quad \tilde{M}_{+} \tilde{M}_{-}=\tilde{M}_{0}^{2}-\tilde{M}_{0}, \quad M_{0}^{2}+M_{+}^{2}+M_{-}^{2}=1, \quad \tilde{M}_{0}^{2}+\tilde{M}_{+}^{2}+\tilde{M}_{-}^{2}=1, \cdots$
$V_{0}^{21}=\frac{3 M_{+}-2}{1+3 M_{0}} V_{0}^{11}, \quad V_{0}^{31}=\frac{3 M_{-}-2}{1+3 M_{0}} V_{0}^{11}, \quad X_{0}^{21}=-\frac{\tilde{M}_{+}}{1-\tilde{M}_{0}} X_{0}^{11}, \quad X_{0}^{31}=-\frac{\tilde{M}_{-}}{1-\tilde{M}_{0}} X_{0}^{11}, \cdots$

Note Neumann coefficient matrices of ghost nonzero mode part satisfy the same relation as matter part.
We define reduced product (denoted as \star^{r}):

$$
\left|\boldsymbol{A} \star^{r} \boldsymbol{B}\right\rangle:={ }_{2}\left\langle\left.\boldsymbol{A}^{r}\right|_{3}\left\langle\boldsymbol{B}^{r} \mid \boldsymbol{V}_{3}^{r}\right\rangle_{123}, \quad\left\langle\boldsymbol{A}^{r}\right|:=\left\langle\boldsymbol{V}_{2}^{r} \mid \boldsymbol{A}\right\rangle,\right.
$$

where we restrict string fields $|A\rangle,|B\rangle$ such that they have no b_{0}, c_{0} modes on the Fock vacuum $|+\rangle$. $\left(c_{0}|+\rangle=0, b_{0}|+\rangle \neq 0\right)$ Here we introduced reduced reflector $\left\langle V_{2}^{r}\right|$ and reduced 3 -string vertex $\left|V_{3}^{r}\right\rangle$ which contain no b_{0}, c_{0} modes on the vacuum ${ }_{G}\langle\tilde{+}|,|+\rangle_{G}$, i.e. they are related with usual reflector and 3 -string vertex by

$$
{ }_{12}\left\langle V_{2}\right|={ }_{12}\left\langle V_{2}^{r}\right|\left(c_{0}^{(1)}+c_{0}^{(2)}\right), \quad\left|V_{3}\right\rangle_{123}=\exp \left(-\sum_{r, s=1}^{3} c^{\dagger(r)} X_{0}^{r s} b_{0}^{(s)}\right)\left|V_{3}^{r}\right\rangle_{123} .
$$

Under the \star^{r} product in ghost part, one can obtain similar formulas to those of matter part.
Using \star^{r} product, we have \star product formula between string fields in the Siegel gauge as

$$
\begin{aligned}
|\Phi \star \Psi\rangle= & \left|\phi \star^{r} \psi\right\rangle+b_{0}\left({ }_{2}\left\langle\left.\phi^{r}\right|_{3}\left\langle\psi^{r}\right| \sum_{s=1}^{3} c^{(s) \dagger} X_{0}^{s 1} \mid V_{3}^{r}\right\rangle_{123}\right) \\
= & \left(1+b_{0} c^{\dagger} X_{0}^{11}\right)\left|\phi \star^{r} \psi\right\rangle+b_{0} \sum_{s=2,3}{ }_{2}\left\langle\left.\phi^{r}\right|_{3}\left\langle\psi^{r}\right| c^{(s) \dagger} X_{0}^{s 1} \mid V_{3}^{r}\right\rangle_{123}, \\
& |\Phi\rangle=b_{0}|\phi\rangle, \quad|\Psi\rangle=b_{0}|\psi\rangle .
\end{aligned}
$$

We have obtained \star product formula between squeezed states in ghost part in the Siegel gauge:

$$
\begin{aligned}
& \left|\left(b_{0} n_{\xi, \eta}\right) \star\left(b_{0} m_{\xi^{\prime}, \eta^{\prime}}\right)\right\rangle \\
= & \left(1+b_{0}\left(c^{\dagger} X_{0}^{11}+\left(\xi C+\frac{\partial}{\partial \eta} \tilde{T}_{n}\right) X_{0}^{21}+\left(\xi^{\prime} C+\frac{\partial}{\partial \eta^{\prime}} \tilde{T}_{m}\right) X_{0}^{31}\right)\right)\left|n_{\xi, \eta} \star^{r} m_{\xi^{\prime}, \eta^{\prime}}\right\rangle \\
= & \left(1+b_{0} c^{\dagger} \frac{1-\tilde{T}_{n} \tilde{T}_{m}}{\tilde{T}_{n, m}} X_{0}^{11}-b_{0}\left(\xi \tilde{\rho}_{1(n, m)}+\xi^{\prime} \tilde{\rho}_{2(n, m)}\right) \frac{1}{1-\tilde{M}_{0}} X_{0}^{11}\right)\left|n_{\xi, \eta} \star^{r} m_{\xi^{\prime}, \eta^{\prime}}\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
& \left|n_{\xi, \eta}\right\rangle:=e^{\xi b^{\dagger}+\eta c^{\dagger}}|n\rangle_{G}=\tilde{\mu}_{n} \exp \left(\xi b^{\dagger}+\eta c^{\dagger}+c^{\dagger} C \tilde{T}_{n} b^{\dagger}\right)|+\rangle_{G}, \\
& |n\rangle_{G}=\left(|2\rangle_{G}\right)_{\star^{r}}^{n-1}, \quad|2\rangle_{G}=\exp \left(c^{\dagger} C \tilde{T}_{2} b^{\dagger}\right)|+\rangle_{G} . \\
& \left|n_{\xi, \eta} \star^{r} \boldsymbol{m}_{\xi^{\prime}, \eta^{\prime}}\right\rangle=\exp \left(-\mathcal{C}_{n_{\xi, \eta}, m_{\xi^{\prime}, \eta^{\prime}}}\right)\left|(n+m-1)_{\xi \tilde{\rho}_{1(n, m)}+\xi^{\prime} \tilde{\rho}_{2(n, m)}, \eta \tilde{\rho}_{1(n, m)}^{T}+\eta^{\prime} \tilde{\rho}_{2(n, m)}^{T}}\right\rangle, \\
& \tilde{T}_{n}=\frac{\tilde{T}\left(1-\tilde{T}_{2} \tilde{T}\right)^{n-1}+\left(\tilde{T}_{2}-\tilde{T}\right)^{n-1}}{\left(1-\tilde{T}_{2} \tilde{T}\right)^{n-1}+\tilde{T}\left(\tilde{T}_{2}-\tilde{T}\right)^{n-1}}, \quad \tilde{\mu}_{n}=\tilde{\mu}_{2}\left(\tilde{\mu}_{2} \tilde{\mu}_{3}^{r} \operatorname{det}\left(\frac{1-\tilde{T}}{1-\tilde{T}+\tilde{T}^{2}}\right)\right)^{n-2} \operatorname{det}\left(\frac{\left(1-\tilde{T}_{2} \tilde{T}\right)^{n-1}+\tilde{T}\left(\tilde{T}_{2}-\tilde{T}\right)^{n-1}}{1-\tilde{T}^{2}}\right), \\
& \tilde{M}_{0}=\frac{\tilde{T}}{1-\tilde{T}+\tilde{T}^{2}}, \quad \mathcal{C}_{n_{\xi, \eta}, m_{\xi^{\prime}, \eta^{\prime}}}=\left(\xi, \xi^{\prime}\right) \frac{C}{\tilde{T}_{n, m}}\left(\begin{array}{cc}
\tilde{M}_{0}\left(1-\tilde{T}_{m}\right) & \tilde{M}_{-} \\
\tilde{M}_{+} & \tilde{M}_{0}\left(1-\tilde{T}_{n}\right)
\end{array}\right)\binom{\eta^{T}}{\eta^{\prime T}}=\mathcal{C}_{m_{\xi^{\prime} C, \eta^{\prime} C}, n_{\xi C, \eta C}}, \\
& \tilde{\rho}_{1(n, m)}=\frac{\tilde{M}_{-}+\tilde{M}_{+} \tilde{T}_{m}}{\tilde{T}_{n, m}}, \quad \tilde{\rho}_{2(n, m)}=\frac{\tilde{M}_{+}+\tilde{M}_{-} \tilde{T}_{n}}{\tilde{T}_{n, m}}, \quad C \tilde{\rho}_{1(n, m)}=\tilde{\rho}_{2(m, n)} C, \\
& \tilde{T}_{n, m}=\frac{(1+\tilde{T})(1-\tilde{T})^{2}}{1-\tilde{T}+\tilde{T}^{2}} \frac{\left(1-\tilde{T}_{2} \tilde{T}\right)^{n+m-2}+\tilde{T}\left(\tilde{T}_{2}-\tilde{T}\right)^{n+m-2}}{\left(\left(1-\tilde{T}_{2} \tilde{T}\right)^{n-1}+\tilde{T}\left(\tilde{T}_{2}-\tilde{T}\right)^{n-1}\right)\left(\left(1-\tilde{T}_{2} \tilde{T}\right)^{m-1}+\tilde{T}\left(\tilde{T}_{2}-\tilde{T}\right)^{m-1}\right)}=1+\tilde{M}_{0}\left(\tilde{T}_{n} \tilde{T}_{m}-\tilde{T}_{n}-\tilde{T}_{m}\right)=\tilde{T}_{m, n} .
\end{aligned}
$$

Later, Okuyama further investigated and rearranged these algebra in the Siegel gauge elegantly. Especially, our \star^{r} corresponds to his $\star_{b_{0}}:\left|\Phi \star_{b_{0}} \Psi\right\rangle=$ $b_{0}\left|\phi \star^{r} \psi\right\rangle$.

Application:

Equation of motion of VSFT:

$$
\mathcal{Q}|\Psi\rangle+|\Psi \star \Psi\rangle=0, \quad \mathcal{Q}=c_{0}+\sum_{n=1}^{\infty} f_{n}\left(c_{n}+(-1)^{n} c_{n}^{\dagger}\right)=c_{0}+f \cdot\left(c+C c^{\dagger}\right)
$$

To solve it we put the ansatz

$$
|\Psi\rangle=b_{0}|\boldsymbol{P}\rangle_{M}\left(\sum_{n=1}^{\infty} \boldsymbol{g}_{n}|\boldsymbol{n}\rangle_{G}\right), \quad\left|\boldsymbol{P} \star_{M} \boldsymbol{P}\right\rangle_{M}=|\boldsymbol{P}\rangle_{M}
$$

Then matter part is factorized and we have obtained some solutions by using previous formula in ghost part:

1. identity-like solution

$$
\mathcal{Q}=c_{0}, \quad|\Psi\rangle=-b_{0}|P\rangle_{M}\left|I^{r}\right\rangle_{G}
$$

2. sliver-like solution

$$
\mathcal{Q}=c_{0}-\left(c+c^{\dagger}\right) \frac{1}{1-\tilde{M}_{0}} X_{0}^{11}, \quad|\Psi\rangle=-b_{0}|P\rangle_{M}\left|\Xi^{r}\right\rangle_{G}
$$

This was constructed in Hata-Kawano (HK). (This formula is simpler than HK's.)
3. another solution

$$
\mathcal{Q}=c_{0}-\left(c+c^{\dagger}\right) \frac{1}{1-\tilde{M}_{0}} X_{0}^{11}, \quad|\Psi\rangle=-b_{0}|P\rangle_{M}\left(\left|I^{r}\right\rangle_{G}-\left|\Xi^{r}\right\rangle_{G}\right)
$$

where

$$
|n=1\rangle_{G}=:\left|I^{r}\right\rangle_{G}, \quad|n=\infty\rangle_{G}=:\left|\Xi^{r}\right\rangle_{G}
$$

which are analogies of identity and sliver states with respect to \star^{r}.
Later, Gaiotto, Rastelli, Sen and Zwiebach (GRSZ) proposed their canonical choice of kinetic term $\mathcal{Q}=\frac{1}{2 i}(c(i)-c(-i))$ for VSFT, and observed that this coincides with that of HK solution numerically, and Okuyama proved $\frac{1}{2 i}(c(i)-c(-i))=c_{0}-\left(c+c^{\dagger}\right) \frac{1}{1-\tilde{M}_{0}} X_{0}^{11}$ analytically.
GRSZ also observed $\left|\Xi^{r}\right\rangle_{G}$ would coincide with their sliver state with respect to $*^{\prime}$ product on twisted $b c$-ghost system.

Witten's * product in CFT language which was developed by LeClair-PeskinPreitschopf (LPP):

$$
\langle A, B * C\rangle=\left\langle f_{1}^{(3)} \circ A(0) f_{2}^{(3)} \circ B(0) f_{3}^{(3)} \circ C(0)\right\rangle_{\mathrm{UHP}}
$$

where conformal maps are given by

$$
f_{1}^{(3)}(z)=h^{-1}\left(e^{-\frac{2}{3} \pi i} h(z)^{\frac{2}{3}}\right), \quad f_{2}^{(3)}(z)=h^{-1}\left(h(z)^{\frac{2}{3}}\right), \quad f_{3}^{(3)}(z)=h^{-1}\left(e^{\frac{2}{3} \pi i} h(z)^{\frac{2}{3}}\right), \quad h(z)=\frac{1+i z}{1-i z}
$$

For wedge state $|m\rangle$ which is defined by

$$
\langle m, \varphi\rangle=\left\langle f^{(m)} \circ \varphi(0)\right\rangle_{\mathrm{UHP}}, \quad f^{(m)}(z)=h^{-1}\left(h(z)^{\frac{2}{m}}\right)
$$

we have the $*$ product between them [David]

$$
\langle\varphi, m * n\rangle=\langle\varphi, m+n-1\rangle, \quad \forall \varphi
$$

For the proof of this algebra, we followed only the definition of wedge state and generalized gluing and resmoothing theorem (GGRT) [Schwarz-Sen]:

$$
\begin{aligned}
& \sum_{r}\left\langle f_{1} \circ \Phi_{r_{1}}(0) \ldots f_{n} \circ \Phi_{r_{n}}(0) f \circ \Phi_{r}(0)\right\rangle_{\mathcal{D}_{1}}\left\langle g_{1} \circ \Phi_{s_{1}}(0) \ldots g_{m} \circ \Phi_{s_{m}}(0) g \circ \Phi_{r}^{c}(0)\right\rangle_{\mathcal{D}_{2}} \\
= & \left\langle F_{1} \circ f_{1} \circ \Phi_{r_{1}}(0) \ldots F_{1} \circ f_{n} \circ \Phi_{r_{n}}(0) \widehat{F}_{2} \circ g_{1} \circ \Phi_{s_{1}}(0) \ldots \widehat{F}_{2} \circ g_{m} \circ \Phi_{s_{m}}(0)\right\rangle_{\mathcal{D}}, \quad F_{1} \circ f=\hat{F}_{2} \circ g \circ I,
\end{aligned}
$$

and constructed resmoothing maps F_{1}, \hat{F}_{2} concretely.
Using this technique, we proved some algebras about the identity state $|\mathcal{I}\rangle:=$ $|m=1\rangle$:

$$
\langle\varphi, \mathcal{I} * \psi\rangle=\langle\varphi, \psi * \mathcal{I}\rangle=\langle\varphi, \psi\rangle, \quad\langle\varphi, \mathcal{I} * \mathcal{O} \mathcal{I}\rangle=\langle\varphi, \mathcal{O} \mathcal{I} * \mathcal{I}\rangle=\langle\varphi, \mathcal{O} \mathcal{I}\rangle
$$

In this sense, we found \mathcal{I} behaves like the identity with respect to the $*$ product in this framework.

In the same way, we have checked 'partial integration formula'

$$
\left\langle\varphi,\left(Q_{R} A\right) * B\right\rangle=-(-1)^{|A|}\left\langle\varphi, A *\left(Q_{L} B\right)\right\rangle
$$

even on the wedge state: $|A\rangle=\mathcal{O}_{A}|m\rangle$ or $|B\rangle=\mathcal{O}_{B}|m\rangle$.

Using these results we have verified that

$$
\begin{aligned}
\left|\Phi_{0}\right\rangle & :=-Q_{L}|\mathcal{I}\rangle+\frac{a}{2} \mathcal{Q}^{\epsilon}|\mathcal{I}\rangle \\
Q_{L} & :=\int_{C_{L}} \frac{d z}{2 \pi i} j_{B}(z), \quad \mathcal{Q}^{\epsilon}:=\frac{1}{2 i}\left(e^{-i \epsilon} c\left(i e^{i \epsilon}\right)-e^{i \epsilon} c\left(-i e^{-i \epsilon}\right)\right)
\end{aligned}
$$

satisfies equation of motion of CSFT :

$$
\left\langle\varphi, Q_{B} \Phi_{0}+\Phi_{0} * \Phi_{0}\right\rangle=0, \quad \forall \varphi
$$

By expanding CSFT action around our solution Φ_{0}, we have derived GRSZ's VSFT action which is regularized by ϵ in the kinetic term:

$$
\mathcal{Q}_{\epsilon}=\frac{1}{4 i}\left(e^{-i \epsilon} c\left(i e^{i \epsilon}\right)+e^{i \epsilon} c\left(i e^{-i \epsilon}\right)-e^{-i \epsilon} c\left(-i e^{-i \epsilon}\right)-e^{i \epsilon} c\left(-i e^{-i \epsilon}\right)\right)
$$

Naively one might think the value of the CSFT action at Φ_{0} would be zero, but it may be possible to give a nonzero value for D25-brane tension.

In fact we have

$$
\left\langle\mathcal{Q}^{\epsilon} \widetilde{\mathcal{I}}_{\delta}, Q_{B} \mathcal{Q}^{\epsilon} \widetilde{\mathcal{I}}_{\delta}\right\rangle=-\delta^{2} \sin ^{2} \epsilon\left[\frac{1}{2}\left\{\left(\tan \frac{\epsilon}{2}\right)^{\frac{2}{\delta}}+\left(\tan \frac{\epsilon}{2}\right)^{-\frac{2}{\delta}}\right\}+3\right] V_{26}
$$

where $\widetilde{\mathcal{I}}_{\delta}$ is regularized identity state which is necessary to apply GGRT. (At $\delta=0$ this quantity would vanish if one uses equation of motion naively.)

Solution of the form

$$
\begin{aligned}
& \Psi=-Q_{L} \mathcal{I}+C_{L}(f) \mathcal{I} \\
& C_{L}(f)=\int_{C_{L}} d \sigma f(\sigma)(c(\sigma)+c(-\sigma)), \\
& f(\pi-\sigma)=f(\sigma), \quad f\left(\frac{\pi}{2}\right)=0
\end{aligned}
$$

was considered earlier by Horowitz et.al. in the context of purely cubic SFT, but they treated identity state rather formally.
Recently Takahashi-Tanimoto constructed a solution of CSFT of the form $-Q_{L}(f) \mathcal{I}+C_{L}(g) \mathcal{I}, \quad f \neq 1$.

We examined Witten's * product both in oscillator and in CFT language.

We constructed solutions of VSFT in oscillator representation and a solution of CSFT in CFT language. The latter one derives GRSZ's VSFT action from Witten's CSFT, but to confirm Sen's conjecture we should obtain D25-brane tension from potential height.

The identity state \mathcal{I} is rather complicated in ghost part in oscillator representation, and naive computation (using relations among Neumann coefficient matrices formally) gives some unexpected results: for example $\mathcal{I} \star \mathcal{I}=0$. This subtlety may come from treating $\infty \times \infty$ matirices as usual number and we should treat them more carefully using Neumann coefficient matrices spectroscopy [RSZ].
On the other hand, we proved some relations expected of the identity state using GGRT in CFT language. But the evaluation of the action including \mathcal{I} is still rather subtle.

