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21. Introduction and Motivation

Sen’s conjecture (for bosonic open string field theory)

open string (D25-brane)

CSFT(cubic string field theory) Witten

SCSFT = − 1

g2
o

(
1

2
〈Φ, QBΦ〉 +

1

3
〈Φ,Φ ∗ Φ〉

)
Sen’s conjecture says there is a solution of CSFT Φc : QBΦc + Φc ∗ Φc = 0
and −SCSFT|Φc/V26 = T25.



3VSFT(vacuum string field theory) Rastelli-Sen-Zwiebach

SVSFT = −κ0

(
1

2
〈Φ,QΦ〉 +

1

3
〈Φ,Φ ∗ Φ〉

)
This describes the physics around nonperturbative vacuum (no D25-brane).
Q should satisfy the following conditions to define a gauge theory

Q2 = 0,Q(A ∗B) = QA ∗B + (−1)|A|A ∗ QB, 〈QA,B〉 = −(−1)|A|〈A,QB〉
and have vanishing cohomology and universality (no matter information).
This requirement is satisfied by

Q = Σnfn(cn + (−1)nc−n),

where fn is some coefficient. Later canonical choice is given by GRSZ:

Q =
1

2i
(c(i) − c(−i)) = c0 − (c2 + c−2) + (c4 + c−4) + · · ·

To realize this scenario, it is necessary to have an analytic solution of CSFT
or VSFT which relates them. We investigate Witten’s ∗ product for this
purpose.



4Witten’s ∗ product represents string interac-
tion. This is represented by operator formal-
ism using oscillators or CFT technique.

In the context of VSFT, some techniques us-
ing oscillator representation have been de-
veloped in matter part especially to construct
projection which satisfies reduced equation of
motion of VSFT (ΦM �M ΦM = ΦM).

We extend them to ghost part and solve full
equation of motion of VSFT(QΦ+Φ�Φ = 0).

In the context of purely CSFT, Horowitz
et.al. discussed (formal) solutions.

We reexamine them to construct a solution
of CSFT which derives conjectured VSFT ac-
tion.



52. Algebraic Approach

For two string fields A,B, which are represented by some oscillators on a
particular Fock vacuum, we define the Witten’s � product as

|A � B〉1 := 2〈A|3〈B|1, 2, 3〉 = 〈2, 4|A〉4〈3, 5|B〉5|1, 2, 3〉,
where 3-string vertex |1, 2, 3〉 and reflector 〈1, 2| are represented by

|V3〉 = |1, 2, 3〉 = µ̃3

∫
ddp(1)ddp(2)ddp(3)(2π)dδd(p(1) + p(2) + p(3))eE3|0, p〉,

E3 = −1

2

3∑
r,s=1

∑
n.m≥1

a(r)†
n V rs

nma
(s)†
m −

3∑
r,s=1

∑
n≥1

p(r)V rs
0na

(r)†
n − 1

2

3∑
r,s=1

p(r)V rs
00 p

(s) −
3∑

r,s=1

∑
n≥1,m≥0

c
(r)
−nX

rs
nmb

(s)
−m,

|0, p〉 = |0, p(1)〉|0, p(2)〉|0, p(3)〉, b(i)n |0, p(i)〉 = 0, n ≥ 1, c(i)m |0, p(i)〉 = 0, m ≥ 0,

〈V2| = 〈1, 2| =

∫
ddp(1)ddp(2)〈0, p|eE2δd(p(1) + p(2))δ(c

(1)
0 + c

(2)
0 )

E2 = −
∑
n,m≥1

a(1)
n Cnma

(2)
m −

∑
n,m≥1

(c(1)
n Cnmb

(2)
m + c(2)

n Cnmb
(1)
m ), 〈0, p| = 1〈0, p(1)|2〈0, p(2)|, Cnm := (−1)nδn,m.

We can prove the useful relations among Neumann coefficients V rs
nm,X

rs
nm:

M0 := CV rr, M± := CV rr±1, M̃0 := −CXrr, M̃± := −CXrr±1 where these indices run from 1 to ∞,

CM0 = M0C, CM+ = M−C, CM̃0 = M̃0C, CM̃+ = M̃−C,
[M0,M±] = [M+,M−] = 0, [M̃0, M̃±] = [M̃+, M̃−] = 0,

M0 +M+ +M− = 1, M̃0 + M̃+ + M̃− = 1,

M+M− = M 2
0 −M0, M̃+M̃− = M̃ 2

0 − M̃0, M 2
0 +M 2

+ +M 2
− = 1, M̃ 2

0 + M̃ 2
+ + M̃ 2

− = 1, · · ·

V 21
0 =

3M+ − 2

1 + 3M0
V 11

0, V 31
0 =

3M− − 2

1 + 3M0
V 11

0, X21
0 = − M̃+

1 − M̃0
X11

0, X31
0 = − M̃−

1 − M̃0
X11

0, · · ·



6

Note Neumann coefficient matrices of ghost nonzero mode part satisfy the
same relation as matter part.

We define reduced product (denoted as �r):

|A �r B〉 := 2〈Ar|3〈Br|V r
3 〉123, 〈Ar| := 〈V r

2 |A〉,
where we restrict string fields |A〉, |B〉 such that they have no b0, c0 modes on
the Fock vacuum |+〉. (c0|+〉 = 0, b0|+〉 �= 0) Here we introduced reduced reflector 〈V r

2 | and reduced
3-string vertex |V r

3 〉 which contain no b0, c0 modes on the vacuum G〈+̃|, |+〉G, i.e. they are related with usual

reflector and 3-string vertex by

12〈V2| = 12〈V r
2 |(c(1)

0 + c
(2)
0 ), |V3〉123 = exp

(
−

3∑
r,s=1

c†(r)Xrs
0b

(s)
0

)
|V r

3 〉123.

Under the �r product in ghost part, one can obtain similar formulas to those
of matter part.

Using �r product, we have � product formula between string fields in the
Siegel gauge as

|Φ �Ψ〉 = |φ �r ψ〉 + b0

(
2〈φr|3〈ψr|

3∑
s=1

c(s)†Xs1
0|V r

3 〉123

)
= (1 + b0c

†X11
0)|φ �r ψ〉 + b0

∑
s=2,3

2〈φr|3〈ψr|c(s)†Xs1
0|V r

3 〉123,

|Φ〉 = b0|φ〉, |Ψ〉 = b0|ψ〉.



7We have obtained � product formula between squeezed states in ghost part
in the Siegel gauge:

|(b0nξ,η) � (b0mξ′,η′)〉
=

(
1 + b0

(
c†X11

0 +

(
ξC +

∂

∂η
T̃n

)
X21

0 +

(
ξ′C +

∂

∂η′ T̃m

)
X31

0

))
|nξ,η �r mξ′,η′〉

=

(
1 + b0c

†1 − T̃nT̃m

T̃n,m
X11

0 − b0(ξρ̃1(n,m) + ξ′ρ̃2(n,m))
1

1 − M̃0

X11
0

)
|nξ,η �r mξ′,η′〉,

where

|nξ,η〉 := eξb
†+ηc†|n〉G = µ̃n exp

(
ξb† + ηc† + c†CT̃nb†

)
|+〉G,

|n〉G = (|2〉G)n−1
�r , |2〉G = exp

(
c†CT̃2b

†
)

|+〉G.
|nξ,η �r mξ′,η′〉 = exp

(
−Cnξ,η,mξ′,η′

)
|(n+m− 1)ξρ̃1(n,m)+ξ

′ρ̃2(n,m),ηρ̃
T
1(n,m)+η

′ρ̃T2(n,m)
〉,

T̃� =
T̃ (1 − T̃2T̃ )��1 + (T̃2 − T̃ )��1

(1 − T̃2T̃ )��1 + T̃ (T̃2 − T̃ )��1
, µ̃� = µ̃2

(
µ̃2µ̃

�

3 det

(
1 − T̃

1 − T̃ + T̃ 2

))��2

det

(
(1 − T̃2T̃ )��1 + T̃ (T̃2 − T̃ )��1

1 − T̃ 2

)
,

M̃0 =
T̃

1 − T̃ + T̃ 2
, C�����������

= (ξ, ξ�)
C

T̃���

(
M̃0(1 − T̃�) M̃�

M̃+ M̃0(1 − T̃�)

)(
η�

η

��

)
= C�������� �������

,

ρ̃1(���) =
M̃� + M̃+T̃�

T̃���

, ρ̃2(���) =
M̃+ + M̃�T̃�

T̃���

, Cρ̃1(���) = ρ̃2(���)C,

T̃��� =
(1 + T̃ )(1 − T̃ )2

1 − T̃ + T̃ 2

(1 − T̃2T̃ )�+��2 + T̃ (T̃2 − T̃ )�+��2

((1 − T̃2T̃ )��1 + T̃ (T̃2 − T̃ )��1)((1 − T̃2T̃ )��1 + T̃ (T̃2 − T̃ )��1)
= 1 + M̃0(T̃�T̃� − T̃� − T̃�) = T̃���.



8Later, Okuyama further investigated and rearranged these algebra in the
Siegel gauge elegantly. Especially, our �r corresponds to his �b0: |Φ �b0 Ψ〉 =
b0|φ �r ψ〉.

Application:

Equation of motion of VSFT:

Q|Ψ〉 + |Ψ �Ψ〉 = 0, Q = c0 +
∞∑
n=1

fn(cn + (−1)nc†
n) = c0 + f · (c+ Cc†).

To solve it we put the ansatz

|Ψ〉 = b0|P 〉M
( ∞∑
n=1

gn|n〉G
)
, |P �M P 〉M = |P 〉M.

Then matter part is factorized and we have obtained some solutions by using
previous formula in ghost part:

1. identity-like solution

Q = c0, |Ψ〉 = −b0|P 〉M|Ir〉G.



92. sliver-like solution

Q = c0 − (c+ c†)
1

1 − M̃0

X11
0, |Ψ〉 = −b0|P 〉M|Ξr〉G.

This was constructed in Hata-Kawano (HK). (This formula is simpler than HK’s.)

3. another solution

Q = c0 − (c+ c†)
1

1 − M̃0

X11
0, |Ψ〉 = −b0|P 〉M(|Ir〉G − |Ξr〉G).

where

|n = 1〉G =: |Ir〉G, |n = ∞〉G =: |Ξr〉G,
which are analogies of identity and sliver states with respect to �r.

Later, Gaiotto, Rastelli, Sen and Zwiebach (GRSZ) proposed their canonical
choice of kinetic term Q = 1

2i
(c(i) − c(−i)) for VSFT, and observed that

this coincides with that of HK solution numerically, and Okuyama proved
1
2i

(c(i) − c(−i)) = c0 − (c+ c†) 1

1−M̃0
X11

0 analytically.

GRSZ also observed |Ξr〉G would coincide with their sliver state with respect
to ∗′ product on twisted bc-ghost system.



103. CFT Approach

Witten’s ∗ product in CFT language which was developed by LeClair-Peskin-
Preitschopf (LPP):

〈A,B ∗ C〉 =
〈
f

(3)
1 ◦A(0) f

(3)
2 ◦B(0) f

(3)
3 ◦ C(0)

〉
UHP

,

where conformal maps are given by

f
(3)
1 (z) = h−1

(
e−2

3
πih(z)

2
3

)
, f

(3)
2 (z) = h−1

(
h(z)

2
3

)
, f

(3)
3 (z) = h−1

(
e

2
3
πih(z)

2
3

)
, h(z) =

1 + iz

1 − iz
.



11For wedge state |m〉 which is defined by

〈m,ϕ〉 =
〈
f (m) ◦ ϕ(0)

〉
UHP

, f (m)(z) = h−1
(
h(z)

2
m

)
,

we have the ∗ product between them [David]

〈ϕ,m ∗ n〉 = 〈ϕ,m+ n− 1〉, ∀ϕ.

For the proof of this algebra, we followed only the definition of wedge state
and generalized gluing and resmoothing theorem (GGRT)[Schwarz-Sen]:∑

r

〈f1 ◦ Φr1(0) . . . fn ◦ Φrn
(0) f ◦ Φr(0)〉D1

〈
g1 ◦ Φs1(0) . . . gm ◦ Φsm

(0) g ◦ Φc
r(0)

〉
D2

=
〈
F1 ◦ f1 ◦ Φr1(0) . . . F1 ◦ fn ◦ Φrn

(0) F̂2 ◦ g1 ◦ Φs1(0) . . . F̂2 ◦ gm ◦ Φsm
(0)
〉

D
, F1 ◦ f = F̂2 ◦ g ◦ I,

and constructed resmoothing maps F1, F̂2 concretely.

Using this technique, we proved some algebras about the identity state |I〉 :=
|m = 1〉:

〈ϕ, I ∗ ψ〉 = 〈ϕ,ψ ∗ I〉 = 〈ϕ,ψ〉, 〈ϕ, I ∗ OI〉 = 〈ϕ,OI ∗ I〉 = 〈ϕ,OI〉
In this sense, we found I behaves like the identity with respect to the ∗
product in this framework.



12In the same way, we have checked ‘partial integration formula’

〈ϕ, (QRA) ∗B〉 = −(−1)|A|〈ϕ,A ∗ (QLB)〉,
even on the wedge state: |A〉 = OA|m〉 or |B〉 = OB|m〉.

Using these results we have verified that

|Φ0〉 := −QL|I〉 +
a

2
Qε|I〉,

QL :=

∫
CL

dz

2πi
jB(z), Qε :=

1

2i

(
e−iεc(ieiε) − eiεc(−ie−iε)

)
satisfies equation of motion of CSFT :

〈ϕ,QBΦ0 + Φ0 ∗ Φ0〉 = 0, ∀ϕ.
By expanding CSFT action around our solution Φ0, we have derived GRSZ’s
VSFT action which is regularized by ε in the kinetic term:

Qε =
1

4i

(
e−iεc(ieiε) + eiεc(ie−iε) − e−iεc(−ie−iε) − eiεc(−ie−iε)

)
.

Naively one might think the value of the CSFT action at Φ0 would be zero,
but it may be possible to give a nonzero value for D25-brane tension.



13In fact we have

〈QεĨδ, QBQεĨδ〉 = −δ2 sin2 ε

[
1

2

{(
tan

ε

2

)2
δ

+

(
tan

ε

2

)−2
δ

}
+ 3

]
V26,

where Ĩδ is regularized identity state which is necessary to apply GGRT. (At
δ = 0 this quantity would vanish if one uses equation of motion naively.)

δ

identity
regularized
   identity

δ

identity
regularized
   identity

Solution of the form

Ψ = −QLI + CL(f)I,
CL(f) =

∫
CL

dσf(σ)(c(σ) + c(−σ)),

f(π − σ) = f(σ), f

(
π

2

)
= 0

was considered earlier by Horowitz et.al. in
the context of purely cubic SFT, but they
treated identity state rather formally.

Recently Takahashi-Tanimoto constructed a
solution of CSFT of the form −QL(f)I + CL(g)I, f �= 1.



144. Summary and Discussion

We examined Witten’s ∗ product both in oscillator and in CFT language.

We constructed solutions of VSFT in oscillator representation and a solution
of CSFT in CFT language. The latter one derives GRSZ’s VSFT action from
Witten’s CSFT, but to confirm Sen’s conjecture we should obtain D25-brane
tension from potential height.

The identity state I is rather complicated in ghost part in oscillator repre-
sentation, and naive computation (using relations among Neumann coefficient
matrices formally) gives some unexpected results: for example I�I = 0. This
subtlety may come from treating ∞ × ∞ matirices as usual number and we
should treat them more carefully using Neumann coefficient matrices spec-
troscopy [RSZ].

On the other hand, we proved some relations expected of the identity state
using GGRT in CFT language. But the evaluation of the action including I
is still rather subtle.
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