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21. Introduction

Sen’s conjecture (for bosonic open string field theory)

�³
�³

perturbative 
vacuum (CSFT)

nonperturbative
vacuum (VSFT)

open string (D25-brane)

CSFT(cubic string field theory) Witten

SCSFT = −
1

g2
o

(
1

2
〈Φ, QBΦ〉 +

1

3
〈Φ, Φ ∗ Φ〉

)
Sen’s conjecture says there is a solution of CSFT Φc :
QBΦc + Φc ∗ Φc = 0 and −SCSFT|Φc/V26 = T25.



3VSFT(vacuum string field theory) Rastelli-Sen-Zwiebach (RSZ)

SVSFT = −κ0

(
1

2
〈Φ, QΦ〉 +

1

3
〈Φ, Φ ∗ Φ〉

)
This describes the physics around nonperturbative vacuum (no D25-brane).
Q should satisfy the following conditions to define a gauge theory

Q2 = 0, Q(A ∗ B) = QA ∗ B + (−1)|A|A ∗ QB, 〈QA, B〉 = −(−1)|A|〈A, QB〉

and have vanishing cohomology and universality (no matter information).

These requirements are satisfied by

Q = Σnfn(cn + (−1)nc−n),

where fn is some coefficient. Later, its canonical choice was given by Gaiotto-
Rastelli-Sen-Zwiebach (GRSZ):

Q =
1

2i
(c(i) − c(−i)) = c0 − (c2 + c−2) + (c4 + c−4) + · · ·

To realize this scenario, it is necessary to have an analytic solution of CSFT or
VSFT which relates them. We investigate Witten’s ∗ product for this purpose.
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A

B

A��B

The Witten’s ∗ product represents string interac-
tion. This is represented by operator formalism us-
ing oscillators or CFT technique.

In the context of VSFT, some techniques using os-
cillator representation have been developed in mat-
ter part especially to construct projectors which sat-
isfy reduced equation of motion of VSFT :
ΦM ? ΦM = ΦM .

We extend them to ghost part and solve full equation
of motion of VSFT : QΦ + Φ ? Φ = 0.

Because Q is linear in c-ghost, one can take the ansatz |Φc〉 = |ΦM〉|ΦG〉 and the e.o.m is reduced

to ΦM ? ΦM = ΦM in matter part by assuming the existence of a solution ΦG in ghost part which

satisfies QΦG+ΦG ?ΦG = 0. Many authors discussed D-brane solutions of VSFT with this strategy

before.

In the context of purely CSFT, Horowitz et.al. discussed (formal) solutions.

Using CFT technique, we reexamine them to construct a solution of CSFT which
derives GRSZ’s proposed VSFT action.
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62. Oscillator Approach

For two string fields A, B, which are represented by some oscillators on a particular
Fock vacuum, we define the Witten’s ? product as

|A ? B〉1 := 2〈A|3〈B|1, 2, 3〉 = 〈2, 4|A〉4〈3, 5|B〉5|1, 2, 3〉,

where 3-string vertex |1, 2, 3〉 and reflector 〈1, 2| are represented by

|V3〉 = |1, 2, 3〉 = µ̃3

∫
ddp(1)ddp(2)ddp(3)(2π)dδd(p(1) + p(2) + p(3))eE3|0, p〉,

E3 = −
1

2

3∑
r,s=1

∑
n.m≥1

a(r)†
n V rs

nma(s)†
m −

3∑
r,s=1

∑
n≥1

p(r)V rs
0n a(r)†

n −
1

2

3∑
r,s=1

p(r)V rs
00 p(s) −

3∑
r,s=1

∑
n≥1,m≥0

c
(r)
−nXrs

nmb
(s)
−m,

|0, p〉 = |0, p(1)〉|0, p(2)〉|0, p(3)〉, b(i)
n |0, p(i)〉 = 0, n ≥ 1, c(i)

m |0, p(i)〉 = 0, m ≥ 0,

〈V2| = 〈1, 2| =

∫
ddp(1)ddp(2)〈0, p|eE2δd(p(1) + p(2))δ(c

(1)
0 + c

(2)
0 )

E2 = −
∑

n,m≥1

a(1)
n Cnma(2)

m −
∑

n,m≥1

(c(1)
n Cnmb(2)

m + c(2)
n Cnmb(1)

m ), 〈0, p| = 1〈0, p(1)|2〈0, p(2)|, Cnm := (−1)nδn,m.

This 3-string vertex is a solution of the connection condition:(
X(r)(σ) − X(r−1)(π − σ)

)
|V3〉 = 0,

(
P (r)(σ) + P (r−1)(π − σ)

)
|V3〉 = 0, 0 ≤ σ ≤

π

2
,(

c±(r)(σ) + c±(r−1)(π − σ)
)
|V3〉 = 0,

(
b±(r)(σ) − b±(r−1)(π − σ)

)
|V3〉 = 0, r = 1, 2, 3.



7We can prove useful relations among Neumann coefficients V rs
nm, Xrs

nm :

For the matrices [Gross-Jevicki,Kosteleckey-Potting,RSZ]

M0 := CV rr, M± := CV rr±1, M̃0 := −CXrr, M̃± := −CXrr±1

whose indices run from 1 to ∞, there are some relations

CM0 = M0C, CM+ = M−C, CM̃0 = M̃0C, CM̃+ = M̃−C,

[M0, M±] = [M+, M−] = 0, [M̃0, M̃±] = [M̃+, M̃−] = 0,

M0 + M+ + M− = 1, M̃0 + M̃+ + M̃− = 1,

M+M− = M2
0 − M0, M̃+M̃− = M̃2

0 − M̃0,

M2
0 + M2

+ + M2
− = 1, M̃2

0 + M̃2
+ + M̃2

− = 1.

Neumann coefficient matrices of ghost nonzero mode part satisfy the same relations
as matter part.

For Neumann coefficients which have zero mode indices, using vector notation, we have found

CV rs
0 = V sr

0,
3∑

t=1

V ts
0 =

3∑
t=1

V rt
0 = 0, CXrs

0 = Xsr
0,

3∑
t=1

Xts
0 =

3∑
t=1

Xrt
0 = 0,

V 21
0 =

3M+ − 2

1 + 3M0

V 11
0, V 31

0 =
3M− − 2

1 + 3M0

V 11
0, X21

0 = −
M̃+

1 − M̃0

X11
0, X31

0 = −
M̃−

1 − M̃0

X11
0.



8Matter part

We consider particular squeezed states : ‘wedge-like’ state [Furuuchi-Okuyama]

|nβ〉 := eβa†|n〉 = µn exp

(
βa† −

1

2
a†CTna†

)
|0〉

where |n〉 is given by the state which is obtained by taking ? product n − 1 times with a particular squeezed states |2〉:

|n〉 := (|2〉)n−1
? , |2〉 = µ2e

−1
2
a†CT2a†|0〉, CT2 = T2C, T T

2 = T2, [M0, T2] = 0, T2 6= 1.

Here Tn, µn are given by

Tn =
T (1 − T2T )n−1 + (T2 − T )n−1

(1 − T2T )n−1 + T (T2 − T )n−1
, M0T

2 − (M0 + 1)T + M0 = 0,

µn = µ2

(
µ2µ

M
3 det −d

2

(
1 − T

1 − T + T 2

))n−2

det
d
2

(
1 − T 2

(1 − T2T )n−1 + T (T2 − T )n−1

)
.

We have ? product formula between them [RSZ]:

|nβ1 ? mβ2〉 = exp
(
−Cnβ1,mβ2

) ∣∣∣(n + m − 1)β1ρ1(n,m)+β2ρ2(n,m)

〉
,

where

Cnβ1
,mβ2

=
1

2
(β1, β2)

C

Tn,m

(
M0(1 − Tm) M−

M+ M0(1 − Tn)

) (
βT

1
βT

2

)
= Cmβ2C ,nβ1C

,

ρ1(n,m) =
M− + M+Tm

Tn,m

, ρ2(n,m) =
M+ + M−Tn

Tn,m

, Cρ1(n,m) = ρ2(m,n)C, Tn,m = 1 + M0(TnTm − Tn − Tm).

One can calculate ? product between states of the form a†
k · · · a†

l |n〉 by differentiating it with

parameter β and setting β = 0 appropriately.



9Ghost part

Noting similarity of relations among Neumann coefficients matrices for matter and
ghost nonzero modes, we define reduced product (denoted as ?r):

|A ?r B〉 := 2〈Ar|3〈Br|V r
3 〉123, 〈Ar| := 〈V r

2 |A〉,

where we restrict string fields |A〉, |B〉 such that they have no b0, c0 modes on the
Fock vacuum |+〉G. (c0|+〉G = 0, b0|+〉G 6= 0)

Here we introduced reduced reflector 〈V r
2 | and reduced 3-string vertex |V r

3 〉 which
contain no b0, c0 modes on the vacuum G〈+̃|, |+〉G, i.e. they are related with usual
reflector and 3-string vertex by

12〈V2| = 12〈V r
2 |(c(1)

0 + c
(2)
0 ), |V3〉123 = e−

∑3
r,s=1 c†(r)Xrs

0b
(s)
0 |V r

3 〉123.

Under this ?r product in ghost part, one can obtain similar formulas to those of
matter part as follows.
We define ghost squeezed state |nξ,η〉 with Grassmann odd parameters ξ, η which
corresponds to |nβ〉 in matter part :

|nξ,η〉 := eξb†+ηc†|n〉G = µ̃n exp
(
ξb† + ηc† + c†CT̃nb†

)
|+〉G.



10Here we defined |n〉G as the state which is obtained by taking the ?r product
n − 1 times with a particular ghost squeezed state |2〉G :

|n〉G = (|2〉G)n−1
?r , |2〉G = exp

(
c†CT̃2b

†
)

|+〉G, CT̃2 = T̃2C, [M̃0, T̃2] = 0, T̃2 6= 1,

and then we have obtained formulas for T̃n, µ̃n,

T̃n =
T̃ (1 − T̃2T̃ )n−1 + (T̃2 − T̃ )n−1

(1 − T̃2T̃ )n−1 + T̃ (T̃2 − T̃ )n−1
, M̃0T̃

2 − (M̃0 + 1)T̃ + M̃0 = 0,

µ̃n = µ̃2

(
µ̃2µ̃

r
3 det

(
1 − T̃

1 − T̃ + T̃ 2

))n−2

det

(
(1 − T̃2T̃ )n−1 + T̃ (T̃2 − T̃ )n−1

1 − T̃ 2

)
,

by solving the same recurrence equation as that in matter part.

For these ghost squeezed states, we have the ?r product formula:

|nξ,η ?r mξ′,η′〉 = exp
(
−Cnξ,η,mξ′,η′

) ∣∣∣(n + m − 1)ξρ̃1(n,m)+ξ′ρ̃2(n,m),ηρ̃T
1(n,m)

+η′ρ̃T
2(n,m)

〉
,

where

Cnξ,η,mξ′,η′ = (ξ, ξ′)
C

T̃n,m

(
M̃0(1 − T̃m) M̃−

M̃+ M̃0(1 − T̃n)

) (
ηT

η
′T

)
= Cmξ′C,η′C ,nξC,ηC

,

ρ̃1(n,m) =
M̃− + M̃+T̃m

T̃n,m

, ρ̃2(n,m) =
M̃+ + M̃−T̃n

T̃n,m

, Cρ̃1(n,m) = ρ̃2(m,n)C, T̃n,m = 1 + M̃0(T̃nT̃m − T̃n − T̃m).



11Using the ?r product, we get the ? product formula between string fields
|Φ〉 = b0|φ〉, |Ψ〉 = b0|ψ〉 in the Siegel gauge:

|Φ ? Ψ〉 = |φ ?r ψ〉 + b0

(
2〈φr|3〈ψr|

3∑
s=1

c(s)†Xs1
0|V

r
3 〉123

)
= (1 + b0c

†X11
0)|φ ?r ψ〉 + b0

∑
s=2,3

2〈φr|3〈ψr|c(s)†Xs1
0|V

r
3 〉123.

Especially, we have obtained ? product formula between squeezed states in ghost
part in the Siegel gauge:

|(b0nξ,η) ? (b0mξ′,η′)〉

=

(
1 + b0

(
c†X11

0 +

(
ξC +

∂

∂η
T̃n

)
X21

0 +

(
ξ′C +

∂

∂η′ T̃m

)
X31

0

))
|nξ,η ?r mξ′,η′〉

=

(
1 + b0c

†1 − T̃nT̃m

T̃n,m

X11
0 − b0(ξρ̃1(n,m) + ξ′ρ̃2(n,m))

1

1 − M̃0

X11
0

)
|nξ,η ?r mξ′,η′〉.

We can obtain ? product between the states of the form b0b
†
k · · · c†

l |n〉G by differentiating it with

respect to parameters ξ, η and setting them zero appropriately.

Later, Okuyama further investigated and rearranged these algebra in the Siegel gauge elegantly.

Especially, our ?r corresponds to his ?b0: |Φ ?b0 Ψ〉 = b0|φ ?r ψ〉.



12Application to VSFT

Equation of motion of VSFT:

Q|Ψ〉 + |Ψ ? Ψ〉 = 0, Q = c0 +
∞∑

n=1

fn(cn + (−1)nc†
n) = c0 + f · (c + Cc†).

To solve it we set the ansatz in the Siegel gauge :

|Ψ〉 = b0|P 〉M

( ∞∑
n=1

gn|n〉G

)
, |P ? P 〉M = |P 〉M .

As usual, the matter part is factorized and solved by a projector |P 〉M which was well investigated
earlier.[Gross-Taylor,RSZ,Kawano-Okuyama]

We have obtained some solutions by using previous formulas in ghost part:

1. identity-like solution

Q = c0, |Ψ〉 = −b0|P 〉M |Ir〉G.

2. sliver-like solution

Q = c0 − (c + c†)
1

1 − M̃0

X11
0, |Ψ〉 = −b0|P 〉M |Ξr〉G.

This solution was constructed by Hata-Kawano (HK). (Our formula is simpler than HK’s.)

3. another solution

Q = c0 − (c + c†)
1

1 − M̃0

X11
0, |Ψ〉 = −b0|P 〉M(|Ir〉G − |Ξr〉G).



13Here we denoted as

|n = 1〉G =: |Ir〉G, |n = ∞〉G =: |Ξr〉G,

which are analogies of identity and sliver states with respect to the ?r product:

|Ir ?r A〉 = |A ?r Ir〉 = |A〉, |Ξr ?r Ξr〉 = |Ξr〉.

These |Ir〉G, |Ξr〉G are not the ghost part of identity or sliver state which are
defined as surface states.

Later, GRSZ proposed their canonical choice of the kinetic term of VSFT :
Q = 1

2i
(c(i) − c(−i)), and observed that it would coincide with that of HK solution

numerically, and then Okuyama proved

1
2i

(c(i) − c(−i)) = c0 − (c + c†) 1

1−M̃0
X11

0

analytically.

GRSZ also observed numerically |Ξr〉G would coincide with their sliver state |Ξ′〉G

with respect to the ∗′ product on twisted bc-ghost system, and then Okuda proved
|Ξr〉G = |Ξ′〉G analytically.



14Subtlety of the identity state

0
�Î/2

�Î

The identity state |I〉 is defined by

(X(σ) − X(π − σ))|I〉 = 0, 0 ≤ σ ≤ π/2,

in matter part and corresponding connection condition in bc-ghost, but there is
subtlety which comes from midpoint singularity especially in ghost part.
The identity state |I〉 is expected to be the identity with respect to the ? product
at least naively.

The identity state |I〉 in oscillator representation is given as [LPP]

〈I| = µ1M〈0|G〈Ω|c−1c0c1

·
∫

ζ1ζ0ζ−1

exp

(
1

2

∑
n,m≥1

αnNnmαm +
∑

n≥2,m≥−1

cnÑnmbm −
∑

i=±1,0,m≥1

ζiMimbm

)
,

Nnm =
1

nm

∮
dz

2πi
z−nf ′(z)

∮
dw

2πi
w−mf ′(w)

1

(f(z) − f(w))2
,

Ñnm =

∮
dz

2πi
z−n+1(f ′(z))2

∮
dw

2πi
w−m−2(f ′(w))−1 −1

f(z) − f(w)
,

Mim =

∮
dz

2πi
z−m−2(f ′(z))−1(f(z))i+1

where the map f(z) is defined by f(z) = 2z
1−z2 .



15This formula gives the oscillator representation of the identity state |I〉
which is the same as that in Gross-Jevicki(II):

|I〉 =
1

4i
b+

(
π

2

)
b−

(
π

2

)
|I〉M |Ir〉G = [b†]O

(
b0 + 2[b†]E

)
|I〉M |Ir〉G,

[ ]E :=
∞∑

n=1

(−1)n[ ]2n, [ ]O :=
∞∑

n=0

(−1)n[ ]2n+1.

By pure oscillator calculation, we can show the following equations :(
an − (−1)na†

n

)
|I〉 = 0,

(
bn − (−1)nb†

n

)
|I〉 = 0,(

c2k + c†
2k

)
|I〉 = (−1)k2c0|I〉,

(
c2k+1 − c†

2k+1

)
|I〉 = (−1)k(c1 − c−1)|I〉,

QB|I〉 = −
d − 26

2

∞∑
l=1

lc†
2l|I〉 + (1 − a0)c0|I〉 = 0. (d = 26, a0 = 1)

Note |I〉 is BRST invariant, but (ck + (−1)kc†
k)|I〉 6= 0, i.e., there is anomaly for

c-ghost in oscillator representation.



16If we use the relations among Neumann coefficients formally, we have

3〈I|1, 2, 3〉 = µ1µ3 (det(1 − M0))
−d

2 det(1 − M̃0)|1, 2〉M |1, 2〉′
G (6= |1, 2〉),

|1, 2〉M = exp

−
∑

n,m≥0

a†(1)
n Cnma†(2)

m

 |0〉M12,

|1, 2〉′
G = (1 − 2[(1 − M̃0)

−1X11
0]E) ·

·
(
[(1 − M̃0)

−1X21
0]O(b

(1)
0 − b

(2)
0 ) − [(1 − M̃0)

−1(M̃+b†(1) + M̃−b†(2))]O

)
·

· exp

 ∑
n,m≥1

(c
(1)
−nCnmb

(2)
−m + c

(2)
−nCnmb

(1)
−m)

 e∆E|+〉G12,

∆E = −(c†(1) − c†(2))
1

1 − M̃0

X11
0(b

(1)
0 − b

(2)
0 ),

and this shows the identity state in oscillator representation is not the identity
with respect to the ? product because 3〈I|1, 2, 3〉 = |1, 2〉 should be satisfied if
I ? A = A ? I = A, ∀A.

This would be caused by c-ghost anomaly in oscillator representation. But the above calculation

might be subtle because we treated ∞ × ∞ matrices as usual number here.



173. CFT Approach

The Witten’s ∗ product in CFT language which was developed by LeClair-Peskin-
Preitschopf (LPP) is defined as:

〈A, B ∗ C〉 =
〈
f

(3)
1 ◦ A(0) f

(3)
2 ◦ B(0) f

(3)
3 ◦ C(0)

〉
UHP

,

where conformal maps are given by

f
(3)
1 (z) = h−1

(
e−2

3
πih(z)

2
3

)
, f

(3)
2 (z) = h−1

(
h(z)

2
3

)
, f

(3)
3 (z) = h−1

(
e

2
3
πih(z)

2
3

)
, h(z) =

1 + iz

1 − iz
.

h f

h f

h f

(3)
1

2

3

o

o

o

(3)

(3) (m)h fo

For wedge state |m〉 which is defined by

〈m, ϕ〉 =
〈
f (m) ◦ ϕ(0)

〉
UHP

, f (m)(z) = h−1
(
h(z)

2
m

)
,

we have the ∗ product between them [David]

〈ϕ, m ∗ n〉 = 〈ϕ, m + n − 1〉, ∀ϕ.



18To prove this algebra we followed only the definition of wedge state
and generalized gluing and resmoothing theorem (GGRT)[Schwarz-Sen]:∑

r

〈f1 ◦ Φr1
(0) . . . fn ◦ Φrn

(0) f ◦ Φr(0)〉D1

〈
g1 ◦ Φs1

(0) . . . gm ◦ Φsm
(0) g ◦ Φc

r(0)
〉

D2

=
〈
F1 ◦ f1 ◦ Φr1

(0) . . . F1 ◦ fn ◦ Φrn
(0) F̂2 ◦ g1 ◦ Φs1

(0) . . . F̂2 ◦ gm ◦ Φsm
(0)

〉
D

, F1 ◦ f = F̂2 ◦ g ◦ I.

and constructed resmoothing maps F1, F̂2 concretely.

u

v

gf

f g

R R DD

n

m1

1

2 21 1

sew

D

w

F  f

F  g

1

2 1

n
o

o

F F1 2

Our strategy for computation of the ∗ product
including a wedge state |m〉 is as follows.
First insert complete set

∑
r |Φr〉〈Φc

r|, and then ap-
ply GGRT:

〈ϕ, A ∗ (OBm)〉 =
∑

r

〈ϕ, A ∗ Φr〉〈Φc
r, OBm〉

=
∑

r

〈
f

(3)
1 ◦ ϕ f

(3)
2 ◦ A f

(3)
3 ◦ Φr

〉 〈
f (m) ◦ I ◦ OB f (m) ◦ Φc

r

〉
=

〈
F1 ◦ f

(3)
1 ◦ ϕ F1 ◦ f

(3)
2 ◦ A F̂2 ◦ f (m) ◦ I ◦ OB

〉
.

In this case, F1, F̂2 are given by

F1(z) = h−1
(
e

m+2
m+1

πih(z)
3

m+1

)
, F̂2(z) = h−1

(
e

m+2
m+1

πih(z)
m

m+1

)
, F1 ◦ f

(3)
3 = F̂2 ◦ f (m) ◦ I.



19Using this technique, we proved some algebras about the identity state
|I〉 = |m = 1〉 :

〈ϕ, I ∗ ψ〉 = 〈ϕ, ψ ∗ I〉 = 〈ϕ, ψ〉, 〈ϕ, I ∗ OI〉 = 〈ϕ, OI ∗ I〉 = 〈ϕ, OI〉

In this sense, we found the identity state I behaves like the identity with respect
to the ∗ product in CFT language.

C

C
(    
)
R


L


z

In the same way, we have checked ‘partial integration formula’

〈ϕ, (QRA) ∗ B〉 = −(−1)|A|〈ϕ, A ∗ (QLB)〉,

even on the wedge state: |A〉 = OA|m〉 or |B〉 = OB|m〉.
Here we defined QL(R) using the primary BRST current jB as

QL(R) :=
∫

CL(R)

dz
2πi

jB(z).

From these results we have verified that

|Φ0〉 = −QL|I〉 +
a

2
Qε|I〉,

(
Qε :=

1

2i

(
e−iεc(ieiε) − eiεc(−ie−iε)

))
satisfies equation of motion of CSFT :

〈ϕ, QBΦ0 + Φ0 ∗ Φ0〉 = 0, ∀ϕ.



20By expanding CSFT action around our solution Φ0 :

SCSFT|Φ0+Ψ = −
1

g2
o

(
a

2
〈Ψ, QεΨ〉 +

1

3
〈Ψ, Ψ ∗ Ψ〉

)
+ SCSFT|Φ0,

we have derived GRSZ’s VSFT action which is regularized by ε in the kinetic term:

Qε =
1

4i

(
e−iεc(ieiε) + eiεc(ie−iε) − e−iεc(−ie−iε) − eiεc(−ie−iε)

) ε→0−→
1

2i
(c(i) − c(−i)).

Naively one might think the value of the CSFT action at Φ0 would be zero, but it
may be possible to give a nonzero value for D25-brane tension.

δ


identity

regularized

   identity


δ


identity

regularized

   identity


In fact we have

〈QεĨδ, QBQεĨδ〉

= −δ2 sin2 ε

[
1

2

{(
tan

ε

2

)2
δ

+

(
tan

ε

2

)−2
δ

}
+ 3

]
V26,

where Ĩδ is regularized identity state which is neces-
sary to apply GGRT. (At δ = 0 this quantity would
vanish if one uses equation of motion naively.)



21Remark

The solution of the CSFT such as

Ψc = −QLI + CL(f)I, CL(f) =

∫
CL

dσf(σ)(c(σ) + c(−σ)), f(π − σ) = f(σ), f

(
π

2

)
= 0

was considered earlier by Horowitz et.al. in the context of purely cubic SFT, but
they treated identity state rather formally (i.e., they treated I as a formal object
which behaves like the identity).

If one uses the equations which were proved formally

QBΨc + Ψc ? Ψc = 0, QLI ? QLI = CL(f)I ? CL(f)I = 0,

the value of the action at this solution vanishes :

S|Ψc ∝ 〈Ψc, Ψc ? Ψc〉 = 0.

Recently Takahashi-Tanimoto constructed a solution of CSFT of the form
−QL(f)I + CL(g)I, f 6= 1.



224. Summary and Discussion

We examined Witten’s ∗ product both in oscillator and in CFT language.

We constructed solutions of VSFT in oscillator representation and a solution of
CSFT in CFT language. The latter one derives GRSZ’s VSFT action from Witten’s
CSFT, but to confirm Sen’s conjecture we should obtain D25-brane tension from
potential height.

The identity state I is rather complicated in ghost part in oscillator representa-
tion, and naive computation (using relations among Neumann coefficient matrices
formally) gives some unexpected results: for example I ? I = 0.
This subtlety would be caused not only by c-ghost anomaly but also by regarding
∞ × ∞ matrices as usual number. We might have to treat them more carefully
using Neumann coefficient matrices spectroscopy [RSZ].

On the other hand, we proved some relations expected of the identity state using
GGRT in CFT language. But the evaluation of the action including I is still rather
subtle because an appropriate regularization is required.



23Appendix

Gaussian integral formula:

matter part (momentum zero sector)

exp

(
1

2
aMa + λa

)
exp

(
1

2
a†Na† + µa†

)
|0〉

=
1√

det(1 − MN)
exp

(
1

2
λN(1 − MN)−1λ +

1

2
µM(1 − NM)−1µ + λ(1 − NM)−1µ

)
· exp

(
(λN + µ)(1 − MN)−1a† +

1

2
a†N(1 − MN)−1a†

)
|0〉, [am, a†

n] = δmn, an|0〉 = 0, n ≥ 1.

ghost part

exp(cAb + c0αb + cµ + νb + c0γ) exp(c†Bb† + c†βb0 + c†ρ + σb† + δb0)|+〉 = det(1 + BA) det ∆ · eE1+E0|+〉,
∆ = 1 + α(1 + BA)−1β,

E1 = c†(1 + BA)−1Bb† + c†(1 + BA)−1(ρ − Bµ) + (νB + σ)(1 + AB)−1b†

+ν(1 + BA)−1(ρ − Bµ) − σ(1 + AB)−1(Aρ + µ),

E0 = −c†(1 + BA)−1β∆−1(α(1 + BA)−1Bb† − b0) − c†(1 + BA)−1β∆−1(α(1 + BA)−1(ρ − Bµ) + γ)

−((ν − σA)(1 + BA)−1β + δ)∆−1(α(1 + BA)−1Bb† − b0)

−((ν − σA)(1 + BA)−1β + δ)∆−1(α(1 + BA)−1(ρ − Bµ) + γ),

{cn, bm} = δn+m,0, cn|+〉 = 0, n ≥ 0, bn|+〉 = 0, n ≥ 1, c†
n := c−n, b†

n := b−n, n ≥ 1.



24More on Identity State

Oscillator language

•

|I ? I〉 = 0 6= |I〉 (?)

by naive computation in ghost part

•

Qε|I〉 =

(
1 + 2

∞∑
n=1

cos 2nε

)
c0|I〉 6= 0

for ε 6= 0

•
1

2i
(c(i) − c(−i)) |I〉 = (1 + 2ζ(0))c0|I〉 = 0

CFT language (LPP+GGRT)

•

〈ϕ, I ∗ I〉 = 〈ϕ, I〉, ∀ϕ.

•

〈ϕ, QεI〉 = 0,

for ε 6= 0.

• [GRSZ]〈
ϕ,

1

2i
(c(i) − c(−i)) I

〉
=

〈
ϕ, lim

ε→0
QεI

〉
:= lim

ε→0
〈ϕ, QεI〉 = 0.
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©
ªMystery on c0I [Rastelli-Zwiebach]

Formally,

c0A = c0(I ∗ A) = (c0I) ∗ A + I ∗ (c0A) = (c0I) ∗ A + c0A,

∴ (c0I) ∗ A = 0, ∀A.

If we take A = I, 0 6= c0I = (c0I) ∗ I = 0. (??) ← inconsistent!

• Oscillator language (resolved ?)

3〈I|c(3)
0 |V3〉123 = 0 ⇒ |(c0I) ? A〉 = 0, ∀|A〉 ∴ |(c0I) ? I〉 = 0.

But, in this case

|(c0I) ? I〉 6= |c0I〉(6= 0) ∵ 3〈I|V3〉123 6= |1, 2〉.

No inconsistency!

• CFT language (unresolved)

c0 might not be derivation on I(?) or c0I would be ill-defined.


