Some Properties of String Field Algebra

岸本 功

（京大•基研）

based on

I．K．，JHEP12（2001）007［hep－th／0110124］
I．K．，K．Ohmori，hep－th／0112169

Sen's conjecture (for bosonic open string field theory)

CSFT(cubic string field theory) Witten

$$
S_{\mathrm{CSFT}}=-\frac{1}{g_{o}^{2}}\left(\frac{1}{2}\left\langle\Phi, Q_{B} \Phi\right\rangle+\frac{1}{3}\langle\Phi, \Phi * \Phi\rangle\right)
$$

Sen's conjecture says there is a solution of CSFT Φ_{c} : $Q_{B} \Phi_{c}+\Phi_{c} * \Phi_{c}=0$ and $-\left.S_{\mathrm{CSFT}}\right|_{\Phi_{c}} / V_{26}=T_{25}$.

VSFT(vacuum string field theory) Rastelli-Sen-Zwiebach (RSZ)

$$
S_{\mathrm{VSFT}}=-\kappa_{0}\left(\frac{1}{2}\langle\Phi, \mathcal{Q} \Phi\rangle+\frac{1}{3}\langle\Phi, \Phi * \Phi\rangle\right)
$$

This describes the physics around nonperturbative vacuum (no D25-brane). \mathcal{Q} should satisfy the following conditions to define a gauge theory

$$
\mathcal{Q}^{2}=0, \mathcal{Q}(A * B)=\mathcal{Q} A * B+(-1)^{|A|} A * \mathcal{Q} B,\langle\mathcal{Q} A, B\rangle=-(-1)^{|A|}\langle A, \mathcal{Q} B\rangle
$$

and have vanishing cohomology and universality (no matter information).
These requirements are satisfied by

$$
\mathcal{Q}=\Sigma_{n} f_{n}\left(c_{n}+(-1)^{n} c_{-n}\right)
$$

where f_{n} is some coefficient. Later, its canonical choice was given by Gaiotto-Rastelli-Sen-Zwiebach (GRSZ):

$$
\mathcal{Q}=\frac{1}{2 i}(c(i)-c(-i))=c_{0}-\left(c_{2}+c_{-2}\right)+\left(c_{4}+c_{-4}\right)+\cdots
$$

To realize this scenario, it is necessary to have an analytic solution of CSFT or VSFT which relates them. We investigate Witten's * product for this purpose.

The Witten's * product represents string interaction. This is represented by operator formalism using oscillators or CFT technique.

In the context of VSFT, some techniques using oscillator representation have been developed in matter part especially to construct projectors which satisfy reduced equation of motion of VSFT :
$\Phi_{M} \star \Phi_{M}=\Phi_{M}$.
We extend them to ghost part and solve full equation
 of motion of VSFT : $\mathcal{Q} \Phi+\Phi \star \Phi=0$.

Because \mathcal{Q} is linear in c-ghost, one can take the ansatz $\left|\Phi_{c}\right\rangle=\left|\Phi_{M}\right\rangle\left|\Phi_{G}\right\rangle$ and the e.o.m is reduced to $\Phi_{M} \star \Phi_{M}=\Phi_{M}$ in matter part by assuming the existence of a solution Φ_{G} in ghost part which satisfies $\mathcal{Q} \Phi_{G}+\Phi_{G} \star \Phi_{G}=0$. Many authors discussed D-brane solutions of VSFT with this strategy before.

In the context of purely CSFT, Horowitz et.al. discussed (formal) solutions. Using CFT technique, we reexamine them to construct a solution of CSFT which derives GRSZ's proposed VSFT action.

Plan of the talk

§1. Introduction
§2. Oscillator Approach
Neumann coefficient matrices, reduced star product, some formulas for wedge-like states, application to VSFT, subtlety of the identity state
§3. CFT Approach
Generalized Gluing and Resmoothing Theorem (GGRT), some formulas for wedge states, a derivation of VSFT from CSFT
$\S 4$. Summary and Discussion

For two string fields A, B, which are represented by some oscillators on a particular Fock vacuum, we define the Witten's \star product as

$$
|A \star B\rangle_{1}:={ }_{2}\left\langle\left. A\right|_{3}\langle B \mid 1,2,3\rangle=\langle 2,4 \mid A\rangle_{4}\langle 3,5 \mid B\rangle_{5} \mid 1,2,3\right\rangle,
$$

where 3-string vertex $|1,2,3\rangle$ and reflector $\langle 1,2|$ are represented by

$$
\begin{aligned}
\left|V_{3}\right\rangle & =|1,2,3\rangle=\tilde{\mu}_{3} \int d^{d} p^{(1)} d^{d} p^{(2)} d^{d} p^{(3)}(2 \pi)^{d} \delta^{d}\left(p^{(1)}+p^{(2)}+p^{(3)}\right) e^{E_{s}}|0, p\rangle, \\
E_{3} & =-\frac{1}{2} \sum_{r, s=1}^{3} \sum_{n . m \geq 1} a_{n}^{(r) \dagger} V_{n m}^{r s} a_{m}^{(s) \dagger}-\sum_{r, s=1}^{3} \sum_{n \geq 1} p^{(r)} V_{0 n}^{r s} a_{n}^{(r) \dagger}-\frac{1}{2} \sum_{r, s=1}^{3} p^{(r)} V_{00}^{r s} p^{(s)}-\sum_{r, s=1}^{3} \sum_{n \geq 1, m \geq 0} c_{-n}^{(r)} X_{n m}^{r s} b_{-m}^{(s)}, \\
|0, p\rangle & \left.=\left|0, p^{(1)}\right\rangle 0, p^{(2)}\right\rangle\left|0, p^{(3)}\right\rangle, b_{n}^{(i)}\left|0, p^{(i)}\right\rangle=0, \quad n \geq 1, c_{m}^{(i)}\left|0, p^{(i)}\right\rangle=0, m \geq 0, \\
\left\langle V_{2}\right| & =\langle 1,2|=\int d^{d} p^{(1)} d^{d} p^{(2)}\langle 0, p| e^{E_{2}} \delta^{d}\left(p^{(1)}+p^{(2)}\right) \delta\left(c_{0}^{(1)}+c_{0}^{(2)}\right) \\
E_{2} & =-\sum_{n, m \geq 1} a_{n}^{(1)} C_{n m} a_{m}^{(2)}-\sum_{n, m \geq 1}\left(c_{n}^{(1)} C_{n m} b_{m}^{(2)}+c_{n}^{(2)} C_{n m} b_{m}^{(1)}\right),\langle 0, p|={ }_{1}\left\langle 0,\left.p^{(1)}\right|_{2}\left\langle 0, p^{(2)}\right|, \quad C_{n m}:=(-1)^{n} \delta_{n, m} .\right.
\end{aligned}
$$

This 3-string vertex is a solution of the connection condition:

$$
\begin{gathered}
\left(X^{(r)}(\sigma)-X^{(r-1)}(\pi-\sigma)\right)\left|V_{3}\right\rangle=0, \quad\left(P^{(r)}(\sigma)+P^{(r-1)}(\pi-\sigma)\right)\left|V_{3}\right\rangle=0, \quad 0 \leq \sigma \leq \frac{\pi}{2} \\
\left(c^{ \pm(r)}(\sigma)+c^{ \pm(r-1)}(\pi-\sigma)\right)\left|V_{3}\right\rangle=0, \quad\left(b^{ \pm(r)}(\sigma)-b^{ \pm(r-1)}(\pi-\sigma)\right)\left|V_{3}\right\rangle=0, \quad r=1,2,3 .
\end{gathered}
$$

We can prove useful relations among Neumann coefficients $V_{n m}^{r s}, X_{n m}^{r s}$:

For the matrices [Gross-Jevicki,Kosteleckey-Potting,RSZ]

$$
M_{0}:=C V^{r r}, \quad M_{ \pm}:=C V^{r r \pm 1}, \quad \tilde{M}_{0}:=-C X^{r r}, \quad \tilde{M}_{ \pm}:=-C X^{r r \pm 1}
$$

whose indices run from 1 to ∞, there are some relations

$$
\begin{array}{cc}
C M_{0}=M_{0} C, C M_{+}=M_{-} C, C \tilde{M}_{0}=\tilde{M}_{0} C, C \tilde{M}_{+}=\tilde{M}_{-} C \\
{\left[M_{0}, M_{ \pm}\right]=\left[M_{+}, M_{-}\right]=0,} & {\left[\tilde{M}_{0}, \tilde{M}_{ \pm}\right]=\left[\tilde{M}_{+}, \tilde{M}_{-}\right]=0} \\
M_{0}+M_{+}+M_{-}=1, & \tilde{M}_{0}+\tilde{M}_{+}+\tilde{M}_{-}=1, \\
M_{+} M_{-}=M_{0}^{2}-M_{0}, & \tilde{M}_{+} \tilde{M}_{-}=\tilde{M}_{0}^{2}-\tilde{M}_{0} \\
M_{0}^{2}+M_{+}^{2}+M_{-}^{2}=1, & \tilde{M}_{0}^{2}+\tilde{M}_{+}^{2}+\tilde{M}_{-}^{2}=1
\end{array}
$$

Neumann coefficient matrices of ghost nonzero mode part satisfy the same relations as matter part.

For Neumann coefficients which have zero mode indices, using vector notation, we have found

$$
\begin{gathered}
C V_{0}^{r s}=V_{0}^{s r}, \sum_{t=1}^{3} V_{0}^{t s}=\sum_{t=1}^{3} V_{0}^{r t}=0, \quad C X_{0}^{r s}=X_{0}^{s r}, \sum_{t=1}^{3} X_{0}^{t s}=\sum_{t=1}^{3} X_{0}^{r t}=0 \\
V_{0}^{21}=\frac{3 M_{+}-2}{1+3 M_{0}} V_{0}^{11}, \quad V_{0}^{31}=\frac{3 M_{-}-2}{1+3 M_{0}} V_{0}^{11}, \quad X_{0}^{21}=-\frac{\tilde{M}}{1-\tilde{M}_{0}} X_{0}^{11}, X_{0}^{31}=-\frac{\tilde{M}_{-}}{1-\tilde{M}_{0}} X_{0}^{11} .
\end{gathered}
$$

Matter part

We consider particular squeezed states: 'wedge-like’ state [Furruchi-Okuyama]

$$
\left|n_{\beta}\right\rangle:=e^{\beta a^{\dagger}}|n\rangle=\mu_{n} \exp \left(\beta a^{\dagger}-\frac{1}{2} a^{\dagger} C T_{n} a^{\dagger}\right)|0\rangle
$$

where $|n\rangle$ is given by the state which is obtained by taking \star product $n-1$ times with a particular squeezed states $|2\rangle$:

$$
|n\rangle:=(|2\rangle)_{\star}^{n-1}, \quad|2\rangle=\mu_{2} e^{-\frac{1}{2} a^{\dagger} C T_{2} a^{\dagger}}|0\rangle, \quad C T_{2}=T_{2} C, T_{2}^{T}=T_{2}, \quad\left[M_{0}, T_{2}\right]=0, \quad T_{2} \neq 1 .
$$

Here T_{n}, μ_{n} are given by

$$
\begin{aligned}
& T_{n}=\frac{T\left(1-T_{2} T\right)^{n-1}+\left(T_{2}-T\right)^{n-1}}{\left(1-T_{2} T\right)^{n-1}+T\left(T_{2}-T\right)^{n-1}}, \quad M_{0} T^{2}-\left(M_{0}+1\right) T+M_{0}=0 \\
& \mu_{n}=\mu_{2}\left(\mu_{2} \mu_{3}^{M} \operatorname{det}^{-\frac{d}{2}}\left(\frac{1-T}{1-T+T^{2}}\right)\right)^{n-2} \operatorname{det}^{\frac{d}{2}}\left(\frac{1-T^{2}}{\left(1-T_{2} T\right)^{n-1}+T\left(T_{2}-T\right)^{n-1}}\right) .
\end{aligned}
$$

We have \star product formula between them [RSz]:

$$
\left|n_{\beta_{1}} \star m_{\beta_{2}}\right\rangle=\exp \left(-\mathcal{C}_{n_{\beta_{1}}, m_{\beta_{2}}}\right)\left|(n+m-1)_{\beta_{1} \rho_{1(n, m)}+\beta_{2} \rho_{2(n, m)}}\right\rangle
$$

where

$$
\begin{aligned}
& \mathcal{C}_{n_{\beta_{1}}, m_{\beta_{2}}}=\frac{1}{2}\left(\beta_{1}, \beta_{2}\right) \frac{C}{T_{n, m}}\left(\begin{array}{c}
M_{0}\left(1-T_{m}\right) \\
M_{+} \\
M_{-}\left(1-T_{n}\right)
\end{array}\right)\binom{\boldsymbol{\beta}_{1}^{T}}{\boldsymbol{\beta}_{2}^{T}}=\mathcal{C}_{m_{\beta_{2} C}, n_{\beta_{1} C} C}, \\
& \rho_{1(n, m)}=\frac{M_{-}+M_{+} T_{m}}{T_{n, m}}, \quad \rho_{2(n, m)}=\frac{M_{+}+M_{-} T_{n}}{T_{n, m}}, \quad C \rho_{1(n, m)}=\rho_{2(m, n)} C, \quad T_{n, m}=1+M_{0}\left(T_{n} T_{m}-T_{n}-T_{m}\right) .
\end{aligned}
$$

One can calculate \star product between states of the form $a_{k}^{\dagger} \cdots a_{l}^{\dagger}|n\rangle$ by differentiating it with parameter β and setting $\beta=0$ appropriately.

Noting similarity of relations among Neumann coefficients matrices for matter and ghost nonzero modes, we define reduced product (denoted as \star^{r}):

$$
\left|\boldsymbol{A} \star^{r} \boldsymbol{B}\right\rangle:={ }_{2}\left\langle\left.\boldsymbol{A}^{r}\right|_{3}\left\langle\boldsymbol{B}^{r} \mid \boldsymbol{V}_{3}^{r}\right\rangle_{123}, \quad\left\langle\boldsymbol{A}^{r}\right|:=\left\langle\boldsymbol{V}_{2}^{r} \mid \boldsymbol{A}\right\rangle,\right.
$$

where we restrict string fields $|A\rangle,|B\rangle$ such that they have no b_{0}, c_{0} modes on the Fock vacuum $|+\rangle_{G} .\left(c_{0}|+\rangle_{G}=0, b_{0}|+\rangle_{G} \neq 0\right)$
Here we introduced reduced reflector $\left\langle V_{2}^{r}\right|$ and reduced 3-string vertex $\left|V_{3}^{r}\right\rangle$ which contain no b_{0}, c_{0} modes on the vacuum ${ }_{G}\langle\tilde{+}|,|+\rangle_{G}$, i.e. they are related with usual reflector and 3 -string vertex by

$$
{ }_{12}\left\langle V_{2}\right|={ }_{12}\left\langle V_{2}^{r}\right|\left(c_{0}^{(1)}+c_{0}^{(2)}\right), \quad\left|V_{3}\right\rangle_{123}=e^{-\sum_{r, s=1}^{3} c^{\dagger(r)} X^{r}{ }_{0}^{s} b_{0}^{(s)}}\left|V_{3}^{r}\right\rangle_{123} .
$$

Under this \star^{r} product in ghost part, one can obtain similar formulas to those of matter part as follows.
We define ghost squeezed state $\left|n_{\xi, \eta}\right\rangle$ with Grassmann odd parameters ξ, η which corresponds to $\left|n_{\beta}\right\rangle$ in matter part :

$$
\left|n_{\xi, \eta}\right\rangle:=e^{\xi b^{\dagger}+\eta c^{\dagger}}|n\rangle_{G}=\tilde{\mu}_{n} \exp \left(\xi b^{\dagger}+\eta c^{\dagger}+c^{\dagger} C \tilde{T}_{n} b^{\dagger}\right)|+\rangle_{G}
$$

Here we defined $|n\rangle_{G}$ as the state which is obtained by taking the \star^{r} product $n-1$ times with a particular ghost squeezed state $|2\rangle_{G}$:

$$
|n\rangle_{G}=\left(|2\rangle_{G}\right)_{\star^{r}}^{n-1}, \quad|2\rangle_{G}=\exp \left(c^{\dagger} C \tilde{T}_{2} b^{\dagger}\right)|+\rangle_{G}, \quad C \tilde{T}_{2}=\tilde{T}_{2} C, \quad\left[\tilde{M}_{0}, \tilde{T}_{2}\right]=0, \quad \tilde{T}_{2} \neq 1,
$$

and then we have obtained formulas for $\tilde{T}_{n}, \tilde{\mu}_{n}$,

$$
\begin{aligned}
& \tilde{T}_{n}=\frac{\tilde{T}\left(1-\tilde{T}_{2} \tilde{T}\right)^{n-1}+\left(\tilde{T}_{2}-\tilde{T}\right)^{n-1}}{\left(1-\tilde{T}_{2} \tilde{T}\right)^{n-1}+\tilde{T}\left(\tilde{T}_{2}-\tilde{T}\right)^{n-1}}, \quad \tilde{M}_{0} \tilde{T}^{2}-\left(\tilde{M}_{0}+1\right) \tilde{T}+\tilde{M}_{0}=0 \\
& \tilde{\mu}_{n}=\tilde{\mu}_{2}\left(\tilde{\mu}_{2} \tilde{\mu}_{3}^{r} \operatorname{det}\left(\frac{1-\tilde{T}}{1-\tilde{T}+\tilde{T}^{2}}\right)\right)^{n-2} \operatorname{det}\left(\frac{\left(1-\tilde{T}_{2} \tilde{T}\right)^{n-1}+\tilde{T}\left(\tilde{T}_{2}-\tilde{T}\right)^{n-1}}{1-\tilde{T}^{2}}\right),
\end{aligned}
$$

by solving the same recurrence equation as that in matter part.
For these ghost squeezed states, we have the \star^{r} product formula:

$$
\left|n_{\xi, \eta} \star^{r} m_{\xi^{\prime}, \eta^{\prime}}\right\rangle=\exp \left(-\mathcal{C}_{n_{\xi, \eta}, m_{\xi^{\prime}, \eta^{\prime}}}\right)\left|(n+m-1)_{\xi \tilde{\rho}_{1(n, m)}+\xi^{\prime} \tilde{\rho}_{2(n, m)}, \eta \tilde{\rho}_{1(n, m)}^{T}+\eta^{\prime} \tilde{\rho}_{2(n, m)}^{T}}\right\rangle
$$

where

$$
\begin{aligned}
& \mathcal{C}_{n_{\xi, n}, m_{\xi^{\prime}, \eta^{\prime}}=\left(\xi, \xi^{\prime}\right) \frac{C}{\tilde{T}_{n, m}}\left(\begin{array}{cc}
\tilde{M}_{0}\left(1-\tilde{T}_{m}\right) & \tilde{M}_{-} \\
\tilde{M}_{+} & \tilde{M}_{0}\left(1-\tilde{T}_{n}\right)
\end{array}\right)\binom{\eta^{T}}{\eta^{\prime T}}=\mathcal{C}_{m_{\xi^{\prime}, n^{\prime}} C, n \xi C, n C},}^{\tilde{\rho}_{1(n, m)}=\frac{\tilde{M}_{-}+\tilde{M}_{+} \tilde{T}_{m}}{\tilde{T}_{n, m}}, \quad \tilde{\rho}_{2(n, m)}=\frac{\tilde{M}_{+}+\tilde{M}_{-} \tilde{T}_{n}}{\tilde{T}_{n, m}}, \quad C \tilde{\rho}_{1(n, m)}=\tilde{\rho}_{2(m, n)} C, \quad \tilde{T}_{n, m}=1+\tilde{M}_{0}\left(\tilde{T}_{n} \tilde{T}_{m}-\tilde{T}_{n}-\tilde{T}_{m}\right)} .
\end{aligned}
$$

Using the \star^{r} product, we get the \star product formula between string fields $|\Phi\rangle=b_{0}|\phi\rangle,|\Psi\rangle=b_{0}|\psi\rangle$ in the Siegel gauge:

$$
\begin{aligned}
|\Phi \star \Psi\rangle & =\left|\phi \star^{r} \psi\right\rangle+b_{0}\left({ }_{2}\left\langle\left.\phi^{r}\right|_{3}\left\langle\psi^{r}\right| \sum_{s=1}^{3} c^{(s) \dagger} \boldsymbol{X}_{0}^{s 1} \mid V_{3}^{r}\right\rangle_{123}\right) \\
& =\left(1+b_{0} c^{\dagger} \boldsymbol{X}_{0}^{11}\right)\left|\phi \star^{r} \psi\right\rangle+b_{0} \sum_{s=2,3}{ }_{2}\left\langle\left.\phi^{r}\right|_{3}\left\langle\psi^{r}\right| \boldsymbol{c}^{(s) \dagger} \boldsymbol{X}^{s}{ }_{0}^{s} \mid V_{3}^{r}\right\rangle_{123}
\end{aligned}
$$

Especially, we have obtained \star product formula between squeezed states in ghost part in the Siegel gauge:

$$
\begin{aligned}
& \left|\left(b_{0} n_{\xi, \eta}\right) \star\left(b_{0} m_{\xi^{\prime}, \eta^{\prime}}\right)\right\rangle \\
& =\left(1+b_{0}\left(c^{\dagger} X_{0}^{11}+\left(\xi C+\frac{\partial}{\partial \eta} \tilde{T}_{n}\right) X_{0}^{21}+\left(\xi^{\prime} C+\frac{\partial}{\partial \eta^{\prime}} \tilde{T}_{m}\right) X_{0}^{31}\right)\right)\left|n_{\xi, \eta} \star^{r} m_{\xi^{\prime}, \eta^{\prime}}\right\rangle \\
& =\left(1+b_{0} c^{\dagger} \frac{1-\tilde{T}_{n} \tilde{T}_{m}}{\tilde{T}_{n, m}} X_{0}^{11}-b_{0}\left(\xi \tilde{\rho}_{1(n, m)}+\xi^{\prime} \tilde{\rho}_{2(n, m)}\right) \frac{1}{1-\tilde{M}_{0}} X_{0}^{11}\right)\left|n_{\xi, \eta} \star^{r} \boldsymbol{m}_{\xi^{\prime}, \eta^{\prime}}\right\rangle .
\end{aligned}
$$

We can obtain \star product between the states of the form $b_{0} b_{k}^{\dagger} \cdots c_{l}^{\dagger}|n\rangle_{G}$ by differentiating it with respect to parameters ξ, η and setting them zero appropriately.

Later, Okuyama further investigated and rearranged these algebra in the Siegel gauge elegantly. Especially, our \star^{r} corresponds to his $\star_{b_{0}}:\left|\Phi \star_{b_{0}} \Psi\right\rangle=b_{0}\left|\phi \star^{r} \psi\right\rangle$.

Application to VSFT

Equation of motion of VSFT:

$$
\mathcal{Q}|\Psi\rangle+|\Psi \star \Psi\rangle=0, \quad \mathcal{Q}=c_{0}+\sum_{n=1}^{\infty} f_{n}\left(c_{n}+(-1)^{n} c_{n}^{\dagger}\right)=c_{0}+f \cdot\left(c+C c^{\dagger}\right)
$$

To solve it we set the ansatz in the Siegel gauge :

$$
|\Psi\rangle=b_{0}|P\rangle_{M}\left(\sum_{n=1}^{\infty} g_{n}|n\rangle_{G}\right), \quad|P \star P\rangle_{M}=|P\rangle_{M}
$$

As usual, the matter part is factorized and solved by a projector $|P\rangle_{M}$ which was well investigated earlier.[Gross-Taylor,RSZ,Kawano-Okuyama]
We have obtained some solutions by using previous formulas in ghost part:

1. identity-like solution

$$
\mathcal{Q}=c_{0}, \quad|\Psi\rangle=-b_{0}|P\rangle_{M}\left|I^{r}\right\rangle_{G} .
$$

2. sliver-like solution

$$
\mathcal{Q}=c_{0}-\left(c+c^{\dagger}\right) \frac{1}{1-\tilde{M}_{0}} X_{0}^{11}, \quad|\Psi\rangle=-b_{0}|P\rangle_{M}\left|\Xi^{r}\right\rangle_{G}
$$

This solution was constructed by Hata-Kawano (HK). (Our formula is simpler than HK's.)
3. another solution

$$
\mathcal{Q}=c_{0}-\left(c+c^{\dagger}\right) \frac{1}{1-\tilde{M}_{0}} X_{0}^{11}, \quad|\Psi\rangle=-b_{0}|P\rangle_{M}\left(\left|I^{r}\right\rangle_{G}-\left|\Xi^{r}\right\rangle_{G}\right) .
$$

Here we denoted as

$$
|n=1\rangle_{G}=:\left|I^{r}\right\rangle_{G}, \quad|n=\infty\rangle_{G}=:\left|\Xi^{r}\right\rangle_{G}
$$

which are analogies of identity and sliver states with respect to the \star^{r} product:

$$
\left|I^{r} \star^{r} A\right\rangle=\left|A \star^{r} I^{r}\right\rangle=|A\rangle, \quad\left|\Xi^{r} \star^{r} \Xi^{r}\right\rangle=\left|\Xi^{r}\right\rangle
$$

These $\left|I^{r}\right\rangle_{G},\left|\Xi^{r}\right\rangle_{G}$ are not the ghost part of identity or sliver state which are defined as surface states.

Later, GRSZ proposed their canonical choice of the kinetic term of VSFT :
$\mathcal{Q}=\frac{1}{2 i}(c(i)-c(-i))$, and observed that it would coincide with that of HK solution numerically, and then Okuyama proved

$$
\frac{1}{2 i}(c(i)-c(-i))=c_{0}-\left(c+c^{\dagger}\right) \frac{1}{1-\tilde{M}_{0}} X_{0}^{11}
$$

analytically.
GRSZ also observed numerically $\left|\Xi^{r}\right\rangle_{G}$ would coincide with their sliver state $\left|\Xi^{\prime}\right\rangle_{G}$ with respect to the $*^{\prime}$ product on twisted $b c$-ghost system, and then Okuda proved $\left|\Xi^{r}\right\rangle_{G}=\left|\Xi^{\prime}\right\rangle_{G}$ analytically.

The identity state $|\mathcal{I}\rangle$ is defined by

$$
(X(\sigma)-X(\pi-\sigma))|\mathcal{I}\rangle=0, \quad 0 \leq \sigma \leq \pi / 2
$$

0
\qquad $\pi / 2$
in matter part and corresponding connection condition in bc-ghost, but there is subtlety which comes from midpoint singularity especially in ghost part. The identity state $|\mathcal{I}\rangle$ is expected to be the identity with respect to the \star product at least naively.

The identity state $|\mathcal{I}\rangle$ in oscillator representation is given as [LPP]

$$
\begin{aligned}
\langle\mathcal{I}|= & \mu_{1 M}\left\langle\left. 0\right|_{G}\langle\Omega| c_{-1} c_{0} c_{1}\right. \\
& \cdot \int_{\zeta_{1} \zeta_{0} \zeta_{-1}} \exp \left(\frac{1}{2} \sum_{n, m \geq 1} \alpha_{n} N_{n m} \alpha_{m}+\sum_{n \geq 2, m \geq-1} c_{n} \tilde{N}_{n m} b_{m}-\sum_{i= \pm 1,0, m \geq 1} \zeta_{i} M_{i m} b_{m}\right), \\
N_{n m}= & \frac{1}{n m} \oint \frac{d z}{2 \pi i} z^{-n} f^{\prime}(z) \oint \frac{d w}{2 \pi i} w^{-m} f^{\prime}(w) \frac{1}{(f(z)-f(w))^{2}}, \\
\tilde{N}_{n m}= & \oint \frac{d z}{2 \pi i} z^{-n+1}\left(f^{\prime}(z)\right)^{2} \oint \frac{d w}{2 \pi i} w^{-m-2}\left(f^{\prime}(w)\right)^{-1} \frac{-1}{f(z)-f(w)}, \\
M_{i m}= & \oint \frac{d z}{2 \pi i} z^{-m-2}\left(f^{\prime}(z)\right)^{-1}(f(z))^{i+1}
\end{aligned}
$$

where the map $f(z)$ is defined by $f(z)=\frac{2 z}{1-z^{2}}$.

This formula gives the oscillator representation of the identity state $|\mathcal{I}\rangle$ which is the same as that in Gross-Jevicki(II):

$$
\begin{aligned}
|\mathcal{I}\rangle= & \frac{1}{4 i} b^{+}\left(\frac{\pi}{2}\right) b^{-}\left(\frac{\pi}{2}\right)|I\rangle_{M}\left|I^{r}\right\rangle_{G}=\left[b^{\dagger}\right]_{\mathcal{O}}\left(b_{0}+2\left[b^{\dagger}\right]_{\mathcal{E}}\right)|I\rangle_{M}\left|I^{r}\right\rangle_{G} \\
& {[]_{\mathcal{E}}:=\sum_{n=1}^{\infty}(-1)^{n}[]_{2 n}, \quad[]_{\mathcal{O}}:=\sum_{n=0}^{\infty}(-1)^{n}[]_{2 n+1} }
\end{aligned}
$$

By pure oscillator calculation, we can show the following equations :

$$
\begin{aligned}
& \left(a_{n}-(-1)^{n} a_{n}^{\dagger}\right)|\mathcal{I}\rangle=0, \quad\left(b_{n}-(-1)^{n} b_{n}^{\dagger}\right)|\mathcal{I}\rangle=0 \\
& \left(c_{2 k}+c_{2 k}^{\dagger}\right)|\mathcal{I}\rangle=(-1)^{k} 2 c_{0}|\mathcal{I}\rangle, \quad\left(c_{2 k+1}-c_{2 k+1}^{\dagger}\right)|\mathcal{I}\rangle=(-1)^{k}\left(c_{1}-c_{-1}\right)|\mathcal{I}\rangle \\
& Q_{B}|\mathcal{I}\rangle=-\frac{d-26}{2} \sum_{l=1}^{\infty} l c_{2 l}^{\dagger}|\mathcal{I}\rangle+\left(1-a_{0}\right) c_{0}|\mathcal{I}\rangle=0 . \quad\left(d=26, a_{0}=1\right)
\end{aligned}
$$

Note $|\mathcal{I}\rangle$ is BRST invariant, but $\left(c_{k}+(-1)^{k} c_{k}^{\dagger}\right)|\mathcal{I}\rangle \neq 0$, i.e., there is anomaly for c-ghost in oscillator representation.

If we use the relations among Neumann coefficients formally, we have

$$
\begin{aligned}
{ }_{3}\langle\mathcal{I} \mid 1,2,3\rangle= & \mu_{1} \mu_{3}\left(\operatorname{det}\left(1-M_{0}\right)\right)^{-\frac{d}{2}} \operatorname{det}\left(1-\tilde{M}_{0}\right)|1,2\rangle_{M}|1,2\rangle_{G}^{\prime}(\neq|1,2\rangle), \\
|1,2\rangle_{M}= & \exp \left(-\sum_{n, m \geq 0} a_{n}^{\dagger(1)} C_{n m} a_{m}^{\dagger(2)}\right)|0\rangle_{M 12}, \\
|1,2\rangle_{G}^{\prime}= & \left(1-2\left[\left(1-\tilde{M}_{0}\right)^{-1} X^{11}\right] \mathcal{E}\right) \cdot \\
& \cdot\left(\left[\left(1-\tilde{M}_{0}\right)^{-1} X^{21}{ }_{0}\right]_{\mathcal{O}}\left(b_{0}^{(1)}-b_{0}^{(2)}\right)-\left[\left(1-\tilde{M}_{0}\right)^{-1}\left(\tilde{M}_{+} b^{\dagger(1)}+\tilde{M}_{-} b^{\dagger(2)}\right)\right] \mathcal{O}\right) \cdot \\
& \cdot \exp \left(\sum_{n, m \geq 1}\left(c_{-n}^{(1)} C_{n m} b_{-m}^{(2)}+c_{-n}^{(2)} C_{n m} b_{-m}^{(1)}\right)\right) e^{\Delta E}|+\rangle_{G 12}, \\
\Delta E= & -\left(c^{\dagger(1)}-c^{\dagger(2)}\right) \frac{1}{1-\tilde{M}_{0}} X_{0}^{11}\left(b_{0}^{(1)}-b_{0}^{(2)}\right),
\end{aligned}
$$

and this shows the identity state in oscillator representation is not the identity with respect to the \star product because ${ }_{3}\langle\mathcal{I} \mid 1,2,3\rangle=|1,2\rangle$ should be satisfied if $\mathcal{I} \star A=A \star \mathcal{I}=A, \forall A$.

This would be caused by c-ghost anomaly in oscillator representation. But the above calculation might be subtle because we treated $\infty \times \infty$ matrices as usual number here.

The Witten's * product in CFT language which was developed by LeClair-PeskinPreitschopf (LPP) is defined as:

$$
\langle A, B * C\rangle=\left\langle f_{1}^{(3)} \circ A(0) f_{2}^{(3)} \circ B(0) f_{3}^{(3)} \circ C(0)\right\rangle_{\mathrm{UHP}},
$$

where conformal maps are given by

$$
f_{1}^{(3)}(z)=h^{-1}\left(e^{-\frac{2}{3} \pi i} h(z)^{\frac{2}{3}}\right), f_{2}^{(3)}(z)=h^{-1}\left(h(z)^{\frac{2}{3}}\right), \quad f_{3}^{(3)}(z)=h^{-1}\left(e^{\frac{2}{3} \pi i} h(z)^{\frac{2}{3}}\right), \quad h(z)=\frac{1+i z}{1-i z} .
$$

For wedge state $|m\rangle$ which is defined by

$$
\langle m, \varphi\rangle=\left\langle f^{(m)} \circ \varphi(0)\right\rangle_{\mathrm{UHP}}, \quad f^{(m)}(z)=h^{-1}\left(h(z)^{\frac{2}{m}}\right),
$$

we have the $*$ product between them [David]

$$
\langle\varphi, m * n\rangle=\langle\varphi, m+n-1\rangle, \quad \forall \varphi .
$$

To prove this algebra we followed only the definition of wedge state and generalized gluing and resmoothing theorem (GGRT) [schwarz-Sen]:

$$
\begin{aligned}
& \sum_{r}\left\langle f_{1} \circ \Phi_{r_{1}}(0) \ldots f_{n} \circ \Phi_{r_{n}}(0) f \circ \Phi_{r}(0)\right\rangle_{\mathcal{D}_{1}}\left\langle g_{1} \circ \Phi_{s_{1}}(0) \ldots g_{m} \circ \Phi_{s_{m}}(0) g \circ \Phi_{r}^{c}(0)\right\rangle_{\mathcal{D}_{2}} \\
= & \left\langle F_{1} \circ f_{1} \circ \Phi_{r_{1}}(0) \ldots F_{1} \circ f_{n} \circ \Phi_{r_{n}}(0) \widehat{F}_{2} \circ g_{1} \circ \Phi_{s_{1}}(0) \ldots \widehat{F}_{2} \circ g_{m} \circ \Phi_{s_{m}}(0)\right\rangle_{\mathcal{D}}, \quad F_{1} \circ f=\hat{F}_{2} \circ g \circ I .
\end{aligned}
$$

and constructed resmoothing maps F_{1}, \hat{F}_{2} concretely.
Our strategy for computation of the $*$ product including a wedge state $|m\rangle$ is as follows. First insert complete set $\sum_{r}\left|\Phi_{r}\right\rangle\left\langle\Phi_{r}^{c}\right|$, and then apply GGRT:

$$
\begin{aligned}
& \left\langle\varphi, A *\left(\mathcal{O}_{B} m\right)\right\rangle=\sum_{r}\left\langle\varphi, A * \Phi_{r}\right\rangle\left\langle\Phi_{r}^{c}, \mathcal{O}_{B} m\right\rangle \\
& =\sum_{r}\left\langle f_{1}^{(3)} \circ \varphi f_{2}^{(3)} \circ A f_{3}^{(3)} \circ \Phi_{r}\right\rangle\left\langle f^{(m)} \circ I \circ \mathcal{O}_{B} f^{(m)} \circ \Phi_{r}^{c}\right\rangle \\
& =\left\langle F_{1} \circ f_{1}^{(3)} \circ \varphi F_{1} \circ f_{2}^{(3)} \circ A \hat{F}_{2} \circ f^{(m)} \circ I \circ \mathcal{O}_{B}\right\rangle .
\end{aligned}
$$

In this case, $\boldsymbol{F}_{1}, \hat{\boldsymbol{F}}_{2}$ are given by
 $F_{1}(z)=h^{-1}\left(e^{\frac{m+2}{m+1} \pi i} h(z)^{\frac{3}{m+1}}\right), \hat{\boldsymbol{F}}_{2}(z)=h^{-1}\left(e^{\frac{m+2}{m+1} \pi i} h(z)^{\frac{m}{m+1}}\right), \quad F_{1} \circ f_{3}^{(3)}=\hat{\boldsymbol{F}}_{2} \circ f^{(m)} \circ I$.

Using this technique, we proved some algebras about the identity state $|\mathcal{I}\rangle=|m=1\rangle:$

$$
\langle\varphi, \mathcal{I} * \psi\rangle=\langle\varphi, \psi * \mathcal{I}\rangle=\langle\varphi, \psi\rangle, \quad\langle\varphi, \mathcal{I} * \mathcal{O} \mathcal{I}\rangle=\langle\varphi, \mathcal{O} \mathcal{I} * \mathcal{I}\rangle=\langle\varphi, \mathcal{O} \mathcal{I}\rangle
$$

In this sense, we found the identity state \mathcal{I} behaves like the identity with respect to the $*$ product in CFT language.

In the same way, we have checked 'partial integration formula'

$$
\left\langle\varphi,\left(Q_{R} A\right) * B\right\rangle=-(-1)^{|A|}\left\langle\varphi, A *\left(Q_{L} B\right)\right\rangle
$$

even on the wedge state: $|A\rangle=\mathcal{O}_{A}|m\rangle$ or $|B\rangle=\mathcal{O}_{B}|m\rangle$. Here we defined $Q_{L(R)}$ using the primary BRST current j_{B} as $Q_{L(R)}:=\int_{C_{L(R)}} \frac{d z}{2 \pi i} j_{B}(z)$.

From these results we have verified that

$$
\left|\Phi_{0}\right\rangle=-Q_{L}|\mathcal{I}\rangle+\frac{a}{2} \mathcal{Q}^{\epsilon}|\mathcal{I}\rangle, \quad\left(\mathcal{Q}^{\epsilon}:=\frac{1}{2 i}\left(e^{-i \epsilon} c\left(i e^{i \epsilon}\right)-e^{i \epsilon} c\left(-i e^{-i \epsilon}\right)\right)\right)
$$

satisfies equation of motion of CSFT :

$$
\left\langle\varphi, Q_{B} \Phi_{0}+\Phi_{0} * \Phi_{0}\right\rangle=0, \quad \forall \varphi
$$

By expanding CSFT action around our solution Φ_{0} :

$$
\left.S_{\mathrm{CSFT}}\right|_{\Phi_{0}+\Psi}=-\frac{1}{g_{o}^{2}}\left(\frac{a}{2}\left\langle\Psi, \mathcal{Q}_{\epsilon} \Psi\right\rangle+\frac{1}{3}\langle\Psi, \Psi * \Psi\rangle\right)+\left.S_{\mathrm{CSFT}}\right|_{\Phi_{0}}
$$

we have derived GRSZ's VSFT action which is regularized by ϵ in the kinetic term:

$$
\mathcal{Q}_{\epsilon}=\frac{1}{4 i}\left(e^{-i \epsilon} c\left(i e^{i \epsilon}\right)+e^{i \epsilon} c\left(i e^{-i \epsilon}\right)-e^{-i \epsilon} c\left(-i e^{-i \epsilon}\right)-e^{i \epsilon} c\left(-i e^{-i \epsilon}\right)\right) \xrightarrow{\epsilon \rightarrow 0} \frac{1}{2 i}(c(i)-c(-i)) .
$$

Naively one might think the value of the CSFT action at Φ_{0} would be zero, but it may be possible to give a nonzero value for D25-brane tension.
 In fact we have

$$
\begin{aligned}
& \left\langle\mathcal{Q}^{\epsilon} \tilde{\mathcal{I}}_{\delta}, Q_{B} \mathcal{Q}^{\epsilon} \tilde{\mathcal{I}}_{\delta}\right\rangle \\
& =-\delta^{2} \sin ^{2} \epsilon\left[\frac{1}{2}\left\{\left(\tan \frac{\epsilon}{2}\right)^{\frac{2}{\delta}}+\left(\tan \frac{\epsilon}{2}\right)^{-\frac{2}{\delta}}\right\}+3\right] V_{26},
\end{aligned}
$$

where $\widetilde{\mathcal{I}}_{\delta}$ is regularized identity state which is necessary to apply GGRT. (At $\delta=0$ this quantity would vanish if one uses equation of motion naively.)

The solution of the CSFT such as

$$
\Psi_{c}=-Q_{L} \mathcal{I}+C_{L}(f) \mathcal{I}, \quad C_{L}(f)=\int_{C_{L}} d \sigma f(\sigma)(c(\sigma)+c(-\sigma)), \quad f(\pi-\sigma)=f(\sigma), f\left(\frac{\pi}{2}\right)=0
$$

was considered earlier by Horowitz et.al. in the context of purely cubic SFT, but they treated identity state rather formally (i.e., they treated \mathcal{I} as a formal object which behaves like the identity).
If one uses the equations which were proved formally

$$
Q_{B} \Psi_{c}+\Psi_{c} \star \Psi_{c}=0, \quad Q_{L} \mathcal{I} \star Q_{L} \mathcal{I}=C_{L}(f) \mathcal{I} \star C_{L}(f) \mathcal{I}=0
$$

the value of the action at this solution vanishes :

$$
\left.S\right|_{\Psi_{c}} \propto\left\langle\Psi_{c}, \Psi_{c} \star \Psi_{c}\right\rangle=0
$$

Recently Takahashi-Tanimoto constructed a solution of CSFT of the form $-Q_{L}(f) \mathcal{I}+C_{L}(g) \mathcal{I}, \quad f \neq 1$.

We examined Witten's * product both in oscillator and in CFT language.
We constructed solutions of VSFT in oscillator representation and a solution of CSFT in CFT language. The latter one derives GRSZ's VSFT action from Witten's CSFT, but to confirm Sen's conjecture we should obtain D25-brane tension from potential height.

The identity state \mathcal{I} is rather complicated in ghost part in oscillator representation, and naive computation (using relations among Neumann coefficient matrices formally) gives some unexpected results: for example $\mathcal{I} \star \mathcal{I}=0$.
This subtlety would be caused not only by c-ghost anomaly but also by regarding $\infty \times \infty$ matrices as usual number. We might have to treat them more carefully using Neumann coefficient matrices spectroscopy [RSz].
On the other hand, we proved some relations expected of the identity state using GGRT in CFT language. But the evaluation of the action including \mathcal{I} is still rather subtle because an appropriate regularization is required.

Appendix

Gaussian integral formula:

matter part (momentum zero sector)

$$
\begin{aligned}
& \exp \left(\frac{1}{2} a M a+\lambda a\right) \exp \left(\frac{1}{2} a^{\dagger} N a^{\dagger}+\mu a^{\dagger}\right)|0\rangle \\
& =\frac{1}{\sqrt{\operatorname{det}(1-M N)}} \exp \left(\frac{1}{2} \lambda N(1-M N)^{-1} \lambda+\frac{1}{2} \mu M(1-N M)^{-1} \mu+\lambda(1-N M)^{-1} \mu\right) \\
& \cdot \exp \left((\lambda N+\mu)(1-M N)^{-1} a^{\dagger}+\frac{1}{2} a^{\dagger} N(1-M N)^{-1} a^{\dagger}\right)|0\rangle, \quad\left[a_{m}, a_{n}^{\dagger}\right]=\delta_{m n}, a_{n}|0\rangle=0, n \geq 1
\end{aligned}
$$

ghost part

$$
\begin{aligned}
& \exp \left(c A b+c_{0} \alpha b+c \mu+\nu b+c_{0} \gamma\right) \exp \left(c^{\dagger} B b^{\dagger}+c^{\dagger} \beta b_{0}+c^{\dagger} \rho+\sigma b^{\dagger}+\delta b_{0}\right)|+\rangle=\operatorname{det}(1+B A) \operatorname{det} \Delta \cdot e^{E_{1}+E_{0}}|+\rangle, \\
& \Delta=1+\alpha(1+B A)^{-1} \beta \\
& E_{1}=c^{\dagger}(1+B A)^{-1} B b^{\dagger}+c^{\dagger}(1+B A)^{-1}(\rho-B \mu)+(\nu B+\sigma)(1+A B)^{-1} b^{\dagger} \\
& +\nu(1+B A)^{-1}(\rho-B \mu)-\sigma(1+A B)^{-1}(A \rho+\mu) \\
& E_{0}=-c^{\dagger}(1+B A)^{-1} \beta \Delta^{-1}\left(\alpha(1+B A)^{-1} B b^{\dagger}-b_{0}\right)-c^{\dagger}(1+B A)^{-1} \beta \Delta^{-1}\left(\alpha(1+B A)^{-1}(\rho-B \mu)+\gamma\right) \\
& -\left((\nu-\sigma A)(1+B A)^{-1} \beta+\delta\right) \Delta^{-1}\left(\alpha(1+B A)^{-1} B b^{\dagger}-b_{0}\right) \\
& -\left((\nu-\sigma A)(1+B A)^{-1} \beta+\delta\right) \Delta^{-1}\left(\alpha(1+B A)^{-1}(\rho-B \mu)+\gamma\right), \\
& \left\{c_{n}, b_{m}\right\}=\delta_{n+m, 0}, c_{n}|+\rangle=0, n \geq 0, b_{n}|+\rangle=0, n \geq 1, \quad c_{n}^{\dagger}:=c_{-n}, b_{n}^{\dagger}:=b_{-n}, n \geq 1 .
\end{aligned}
$$

Oscillator language

$$
\begin{equation*}
|\mathcal{I} \star \mathcal{I}\rangle=0 \neq|\mathcal{I}\rangle \tag{?}
\end{equation*}
$$

by naive computation in ghost part

$$
\mathcal{Q}_{\epsilon}|\mathcal{I}\rangle=\left(1+2 \sum_{n=1}^{\infty} \cos 2 n \epsilon\right) c_{0}|\mathcal{I}\rangle \neq 0
$$

for $\epsilon \neq 0$

$$
\frac{1}{2 i}(c(i)-c(-i))|\mathcal{I}\rangle=(1+2 \zeta(0)) c_{0}|\mathcal{I}\rangle=0
$$

CFT language (LPP+GGRT)

$$
\langle\varphi, \mathcal{I} * \mathcal{I}\rangle=\langle\varphi, \mathcal{I}\rangle, \forall \varphi
$$

$$
\left\langle\varphi, \mathcal{Q}_{\epsilon} \mathcal{I}\right\rangle=0
$$

for $\epsilon \neq 0$.

- [GRSZ]

$$
\begin{aligned}
\left\langle\varphi, \frac{1}{2 i}(c(i)-c(-i)) \mathcal{I}\right\rangle & =\left\langle\varphi, \lim _{\epsilon \rightarrow 0} \mathcal{Q}_{\epsilon} \mathcal{I}\right\rangle \\
& :=\lim _{\epsilon \rightarrow 0}\left\langle\varphi, \mathcal{Q}_{\epsilon} \mathcal{I}\right\rangle=0
\end{aligned}
$$

Formally,

$$
\begin{aligned}
& c_{0} A=c_{0}(\mathcal{I} * A)=\left(c_{0} \mathcal{I}\right) * A+\mathcal{I} *\left(c_{0} A\right)=\left(c_{0} \mathcal{I}\right) * A+c_{0} A, \\
& \therefore\left(c_{0} \mathcal{I}\right) * A=0, \quad \forall A .
\end{aligned}
$$

If we take $A=\mathcal{I}, \quad 0 \neq c_{0} \mathcal{I}=\left(c_{0} \mathcal{I}\right) * \mathcal{I}=0$. (??) \leftarrow inconsistent!

- Oscillator language (resolved ?)

$$
{ }_{3}\langle\mathcal{I}| c_{0}^{(3)}\left|V_{3}\right\rangle_{123}=0 \Rightarrow\left|\left(c_{0} \mathcal{I}\right) \star A\right\rangle=0, \forall|A\rangle \quad \therefore\left|\left(c_{0} \mathcal{I}\right) \star \mathcal{I}\right\rangle=0
$$

But, in this case

$$
\left|\left(c_{0} \mathcal{I}\right) \star \mathcal{I}\right\rangle \neq\left|c_{0} \mathcal{I}\right\rangle(\neq 0) \quad \because_{3}\left\langle\mathcal{I} \mid V_{3}\right\rangle_{123} \neq|1,2\rangle
$$

No inconsistency!

- CFT language (unresolved)
c_{0} might not be derivation on $\mathcal{I}(?)$ or $c_{0} \mathcal{I}$ would be ill-defined.

