Some Properties of Classical Solutions in CSFT

Isao Kishimoto
 (Univ. of Tokyo, Hongo)

I.K.-K.Ohmori, hep-th/0112169 accepted in JHEP I.K.-T.Takahashi, hep-th/0205nnn

Introduction

- Sen's conjecture

There is a tachyon vacuum in bosonic open string theory. D25-brane vanishes on it and there is no open string excitation.

- Cubic String Field Theory (CSFT) [Witten(1986)] Here we consider CSFT to investigate Sen's conjecture.

$$
S=-\frac{1}{g^{2}}\left[\frac{1}{2}\left\langle\Psi, Q_{B} \Psi\right\rangle+\frac{1}{3}\langle\Psi, \Psi * \Psi\rangle\right]
$$

Brief review of CSFT

- ket representation of string field:

$$
|\Psi\rangle=\left(\varphi(x)+A_{\mu}(x) \alpha_{-1}^{\mu}+\cdots+B(x) b_{-1} c_{0}+\cdots\right) c_{1}|0\rangle .
$$

Classically, these are ghost number 1 states.

- The $*$ product is defined as

$$
|A * B\rangle_{1}:={ }_{2}\left\langle\left. A\right|_{3}\left\langle B \| V_{3}\right\rangle_{123}, \quad{ }_{1}\langle A|:={ }_{12}\langle R \| A\rangle_{2} .\right.
$$

- There are some relations:

$$
\begin{aligned}
& \langle A \mid B * C\rangle=\langle A, B * C\rangle=\langle B, C * A\rangle=\langle C, A * B\rangle, \\
& (A * B) * C=A *(B * C)=A * B * C, \\
& Q_{B}{ }^{2}=0, \quad\left\langle Q_{B} A, B\right\rangle=-(-1)^{|A|}\left\langle A, Q_{B} B\right\rangle, \\
& Q_{B}(A * B)=\left(Q_{B} A\right) * B+(-1)^{|A|} A *\left(Q_{B} B\right) .
\end{aligned}
$$

- Equation of motion: $Q_{B}|\Psi\rangle+|\Psi * \Psi\rangle=0$.
- Gauge invariance of CSFT

Under the gauge transformation

$$
\delta_{\Lambda}|\Psi\rangle=Q_{B}|\Lambda\rangle+|\Psi * \Lambda\rangle-|\Lambda * \Psi\rangle,
$$

we can show the action is invariant: $\quad \delta_{\Lambda} S=0$ by using previous relations.

In the context of first quantization, physical states are

$$
\left.\left.\left.Q_{B} \mid \text { phys }\right\rangle=0, \quad \mid \text { phys }\right\rangle \equiv \mid \text { phys }\right\rangle+Q_{B}|\Lambda\rangle .
$$

Sen's conjecture can be rephrased in CSFT :

- There is a solution Ψ_{0} of equation of motion:

$$
Q_{B} \Psi+\Psi * \Psi=0
$$

- The potential height equals to D25-brane tension:

$$
-\left.S\right|_{\Psi_{0}} / V_{26}=T_{25}
$$

- The cohomology of new BRST Q_{B}^{\prime} operator around it is trivial: $\quad Q_{B}{ }_{B} \psi=0 \Rightarrow \psi=Q^{\prime}{ }_{B} \phi, \quad \exists \phi$.

There are some numerical evidences, but an exact solution is necessary to prove them.

- Another approach:

Vacuum String Field Theory (VSFT) [(G)RSZ(2001)]

(Gaiotto-)Rastelli-Sen-Zwiebach proposed SFT around tachyon vacuum:

$$
\begin{aligned}
& S_{V}=-\kappa\left[\frac{1}{2}\left\langle\Psi, Q_{\mathrm{GRSZ}} \Psi\right\rangle+\frac{1}{3}\langle\Psi, \Psi * \Psi\rangle\right], \\
& Q_{\mathrm{GRSZ}}=\frac{1}{2 i}(c(i)-c(-i))=c_{0}+\sum_{n \geq 1}(-1)^{n}\left(c_{2 n}+c_{-2 n}\right) .
\end{aligned}
$$

This $Q_{\text {GRSZ }}$ has trivial cohomology.
There are some solutions of equation of motion which are constructed by projectors with respect to $*$.

Can VSFT reconstruct CSFT?
Recently, Okawa proved D25-brane tension can be reproduced.

Contents

- Introduction
 - Some Solutions in CSFT
 - Potential Height
 - Cohomology of new BRST operator
 - Summary and Discussion

Some Solutions in CSFT

Horowitz et al.(1988) discussed rather formal solutions in the context of purely CSFT.

$$
\left|\Psi_{0}\right\rangle=-Q_{L}|I\rangle+C_{L}(f)|I\rangle, \quad f(\pi-\sigma)=f(\sigma), f(\pi / 2)=0 .
$$

In particular it can be used to derive VSFT action from CSFT:

$$
f_{\mathrm{GRSZ}}(\sigma)=\lim _{\epsilon \rightarrow 0}(\delta(\sigma-(\pi / 2-\varepsilon))+\delta((\pi / 2+\varepsilon)-\sigma)) .
$$

The corresponding solution is singular:
$\left|\Psi_{0}^{\mathrm{VSFT}}\right\rangle=-Q_{L}|I\rangle+\lim _{\varepsilon \rightarrow 0} \frac{\left(g^{2} \kappa\right)^{1 / 3}}{4 i}\left(e^{-i \varepsilon} c\left(i e^{i \varepsilon}\right)-e^{i \varepsilon} c\left(-i e^{-i \varepsilon}\right)\right)|I\rangle$
$=\frac{2}{\pi} \sum_{m \geq 0} \frac{(-1)^{m}}{2 m+1} Q_{-(2 m+1)}|I\rangle+\frac{\left(g^{2} \kappa\right)^{1 / 3}}{2} \lim _{\varepsilon \rightarrow 0}\left(\left(1+2 \sum_{k \geq 1} \cos 2 k \varepsilon\right) c_{0}-\left(\sum_{k \geq 0} \sin (2 k+1) \varepsilon\right)\left(c_{1}-c_{-1}\right)\right)|I\rangle$

- There are some subtleties about identity string field, but here we treat $|I\rangle$ as the identity with respect to $*$:

$$
A * I=I * A=A, \quad Q_{R} I * A=-I * Q_{L} A=-Q_{L} A, \ldots
$$

Notation:

$C(f)=\oint \frac{d w}{2 \pi i} f(w) c(w), \quad C_{L}(f)=\int_{C_{L}} \frac{d w}{2 \pi i} f(w) c(w)$,
$Q(f)=\oint \frac{d w}{2 \pi i} f(w) j_{\mathrm{BRST}}(w), \quad Q_{L}(f)=\int_{C_{L}} \frac{d w}{2 \pi i} f(w) j_{\mathrm{BRST}}(w)$,
$q(f)=\oint \frac{d w}{2 \pi i} f(w) j_{\mathrm{gh}}(w), \quad q_{L}(f)=\int_{C_{L}} \frac{d w}{2 \pi i} f(w) j_{\mathrm{gh}}(w), \ldots$
$j_{\mathrm{BRST}}(w)=c T^{X}+: b c \partial c:+\frac{3}{2} \partial^{2} c=\sum_{n} Q_{n} w^{-n-1}, \quad j_{\mathrm{gh}}(w)=-: b c:=\sum_{n} q_{n} w^{-n-1}, \ldots$

- Takahashi and Tanimoto proposed a new regular solution of CSFT which might represent tachyon vacuum.(2002)
First, they found solutions of CSFT:

$$
\left|\Psi_{0}\right\rangle=Q_{L}\left(e^{h}-1\right)|I\rangle-C_{L}\left((\partial h)^{2} e^{h}\right)|I\rangle,
$$

where $h(w)$ is some function such that

$$
h(w)=\sum h_{n}\left(w^{n}+\left(-w^{-1}\right)^{n}\right), \quad h(\pm i)=0, \partial h(\pm i)=0 .
$$

But these solutions can be rewritten as pure gauge ones at least formally. $\quad \Psi_{0}=e^{q_{L}(h) I} * Q_{B} e^{-q_{L}(h) I}$

In fact, new BRST operator $Q_{B}^{\prime}=Q\left(e^{h}\right)-C\left((\partial h)^{2} e^{h}\right)$ is formally rewritten as

$$
Q_{B}^{\prime}=e^{q(h)} Q_{B} e^{-q(h)} .
$$

However they might become nontrivial solutions at some limits.

Example

$$
h_{a}(w)=\log \left(1+\frac{a}{2}\left(w+w^{-1}\right)^{2}\right)
$$

Noting

$$
q\left(h_{a}\right)=-q_{0} \log (1-Z(a))^{2}+q^{(+)}\left(h_{a}\right)+q^{\ni}\left(h_{a}\right), \quad Z(a)=\frac{1+a-\sqrt{1+2 a}}{a}
$$

and

$$
\left[q^{(+)}\left(h_{a}\right), q^{(-)}\left(h_{a}\right)\right]=-2 \log \left(1-Z(a)^{2}\right),
$$

$$
\exp \left(\pm q\left(h_{a}\right)\right)=\left(1-Z(a)^{2}\right)^{-1} \exp \left(\mp q_{0} \log (1-Z(a))^{2}\right) e^{ \pm q^{(-)}\left(h_{a}\right)} e^{\left. \pm q^{(+)}\right)\left(h_{a}\right)}
$$

is well-defined for $\quad a>-1 / 2$.

Because $Z(a=-1 / 2)=-1, \quad a=-1 / 2 \quad$ case:

$$
h_{a-1 / 2}(w)=\log \left(-\frac{1}{4}\left(w-w^{-1}\right)^{2}\right) \quad \text { might be nontrivial. }
$$

More Examples
 $$
h_{a}\left(w^{2 k-1}\right), \quad h_{a}\left(w^{2 k}\right)-\log (2 a)
$$

Noting $\quad Z(a=-1 / 2)=-1, \quad Z(a=\infty)=1$, in the same sense, we have nontrivial limit at $a=-1 / 2, \quad a=\infty$. respectively:

$$
h^{(l)}(w)=\log \left(\frac{(-1)^{l}}{4}\left(w^{l}+(-w)^{-l}\right)^{2}\right) .
$$

There is well-defined oscillator representation:

$$
\begin{aligned}
\left|\Psi_{0}^{(l)}\right\rangle= & Q_{L}\left(-\frac{1}{2}+\frac{(-1)^{l}}{4}\left(w^{2 l}+w^{-2 l}\right)\right)|I\rangle+C_{L}\left(l^{2} w^{-2}\left(2-(-1)^{l}\left(w^{2 l}+w^{-2 l}\right)\right)\right)|I\rangle \\
= & \frac{1}{\pi} \sum_{m \geq 0} \frac{-(-1)^{m} 4 l^{2}}{(2 m+1)(2 m+1-2 l)(2 m+1+2 l)}\left(-Q_{-(2 m+1)}+4 l^{2} c_{-(2 m+1)}\right)|I\rangle \\
& +\frac{l^{2}}{\pi}\left(\gamma+2 \log 2+\frac{1}{2} \psi\left(\frac{1}{2}-l\right)+\frac{1}{2} \psi\left(\frac{1}{2}+l\right)\right)\left(c_{1}-c_{-1}\right)|I\rangle
\end{aligned}
$$

Potential Height

When we naively compute the value of the action at the solutions constructed on identity string field:

$$
|I\rangle=\frac{1}{4 i} b\left(\frac{\pi}{2}\right) b\left(-\frac{\pi}{2}\right) \exp \left(\sum_{n \geq 1}\left(\frac{-(-1)^{n}}{2 n} \alpha_{-n} \cdot \alpha_{-n}+(-1)^{n} c_{-n} b_{-n}\right)\right) c_{0} c_{1}|0\rangle,
$$

we encounter following divergence:

$$
\langle I|(\cdots)|I\rangle \sim\left(\operatorname{det}_{n, m \geq 1}\left(\delta_{n, m}-\delta_{n, m}\right)\right)^{-26 / 2+1}=\infty .
$$

It is necessary to regularize $\quad|I\rangle$ appropriately.

On the other hand, potential height is zero if we use e.o.m. naively in the action:
$Q_{\mathrm{B}} \Psi_{0}+\Psi_{0} * \Psi_{0}=0$,
$Q_{\mathrm{L}} I * Q_{\mathrm{L}} I=0, \quad C_{L}(f) I * C_{L}(f) I=0$,
$\left.\Rightarrow S\right|_{\Psi_{0}^{\mathrm{VFFT}}}=-\frac{1}{6 g^{2}}\left\langle\Psi_{0}, Q_{B} \Psi_{0}\right\rangle=\frac{1}{6 g^{2}}\left\langle\Psi_{0}, \Psi_{0} * \Psi_{0}\right\rangle=0$.
Takahashi-Tanimoto solutions give also zero naively, because they are pure gauge formally.

There is a possibility of $\quad \infty \times 0=$ finite (!?)

- Pacman regularization

It is technically easy to use pacman regularization in the computation using LPP+GGRT. [I.K.-K.Ohmori]

But we could not get the definite value at $\delta=0$, for example,

$$
\begin{aligned}
& \left\langle\frac{1}{2 i}\left(e^{-i \varepsilon} c\left(i e^{i \varepsilon}\right)-e^{i \varepsilon} c\left(-i e^{-i \varepsilon}\right)\right) I_{\delta}, Q_{B} \frac{1}{2 i}\left(e^{-i \varepsilon} c\left(i e^{i \varepsilon}\right)-e^{i \varepsilon} c\left(-i e^{-i \varepsilon}\right)\right) I_{\delta}\right\rangle \\
& =-\delta^{2} \sin ^{2} \varepsilon\left[\frac{1}{2}\left\{\left(\tan \frac{\varepsilon}{2}\right)^{\frac{2}{\delta}}+\left(\tan \frac{\varepsilon}{2}\right)^{-\frac{2}{\delta}}\right\}+3\right] V_{26}
\end{aligned}
$$

- Regularization in oscillator language

If we multiply damping factor $\exp \left(-\pi t L_{0}\right)$ on $|I\rangle$,
we get a formula for oscillator modes:

$$
\begin{aligned}
& q:=e^{-\pi t}, \quad f\left(q^{2}\right)=\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)=(2 \pi)^{-1 / 3} q^{-1 / 2} q_{1}^{\prime}(0, i t)^{1 / 3} .
\end{aligned}
$$

Using some relations

$$
Q_{B}|I\rangle=0, \quad\left\{Q_{B}, Q_{n}\right\}=0, \quad\left\{Q_{B}, c_{n}\right\}=-\sum_{j=-\infty}^{\infty}\left(j+\frac{n}{2}\right) c_{-j} c_{n+j}, \ldots,
$$

we have the following expression:
$\left.S\right|_{\Psi_{0}^{(1)}} / V_{26}=\lim _{t \rightarrow 0+} \frac{-1}{6 g^{2} V_{26}}\langle I| q^{L_{0}} C_{L}\left(w^{-2}\left(w+w^{-1}\right)^{2}\right) Q_{B} C_{L}\left(w^{-2}\left(w+w^{-1}\right)^{2}\right) q^{L_{0}}|I\rangle$
$=\lim _{t \rightarrow 0+} \frac{-1}{6 g^{2}} \int_{-\pi / 2}^{\pi / 2} d x \int_{-\pi / 2}^{\pi / 2} d y \cos ^{2} x \cos ^{2} y \frac{i \pi^{2}}{\left(\vartheta_{1}^{\prime}(0,2 i t)\right)^{4}}$
$\cdot \operatorname{det}\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ \frac{\vartheta_{4}{ }^{\prime}(x / 2+\pi / 2-i \pi t / 4,2 i t)}{\vartheta_{4}(x / 2+\pi / 2-i \pi t / 4,2 i t)} & \frac{\vartheta_{3}{ }^{\prime}}{\vartheta_{3}}(\cdots) & \frac{\vartheta_{2}{ }^{\prime}}{\vartheta_{2}}(\cdots) & \frac{\vartheta_{1}{ }^{\prime}}{\vartheta_{1}}(\cdots) \\ \frac{\vartheta_{4}{ }^{\prime}(y / 2+\pi / 2-i \pi t / 4,2 i t)}{\vartheta_{4}(y / 2+\pi / 2-i \pi t / 4,2 i t)} & \frac{\vartheta_{3}{ }^{\prime}}{\vartheta_{3}}(\cdots) & \frac{\vartheta_{2}{ }^{\prime}}{\vartheta_{2}}(\cdots) & \frac{\vartheta_{1}{ }^{\prime}}{\vartheta_{1}}(\cdots) \\ \partial_{y}\left(\frac{\vartheta_{4}{ }^{\prime}(y / 2+\pi / 2-i \pi t / 4,2 i t)}{\vartheta_{4}(y / 2+\pi / 2-i \pi t / 4,2 i t)}\right) & \partial_{y}\left(\frac{\vartheta_{3}{ }^{\prime}}{\vartheta_{3}}\right)(\cdots) & \partial_{y}\left(\frac{\vartheta_{2}{ }^{\prime}}{\vartheta_{2}}\right)(\cdots) & \partial_{y}\left(\frac{\vartheta_{1}{ }^{\prime}}{\vartheta_{1}}\right)(\cdots)\end{array}\right)$.

We do not have definite (or exact) value of the potential height for our solutions yet. Numerically, it tends to be divergent.(?)

Cohomology of new BRST operator

- Kinetic term around a solution

$$
\begin{aligned}
\left.S\right|_{\Psi_{0}+\psi} & =-\frac{1}{g}\left[\frac{1}{2}\left\langle\psi, Q^{\prime}{ }_{B} \psi\right\rangle+\frac{1}{3}\langle\psi, \psi * \psi\rangle\right]+\left.S\right|_{\Psi_{0}}, \\
Q_{B}^{\prime} \psi & =Q_{B} \psi+\Psi_{0} * \psi-(-1)^{|\mu|} \psi * \Psi_{0} .
\end{aligned}
$$

The new BRST operator around our solution $\Psi_{0}^{(1)}$ is

$$
\begin{gathered}
Q_{B}^{\prime}=\frac{1}{2} Q_{0}-\frac{1}{4} Q_{-2}-\frac{1}{4} Q_{2}+2 c_{0}+c_{-2}+c_{2}=R_{2}+R_{0}+R_{-2} . \\
R_{ \pm 2}:=-\frac{1}{4} Q_{ \pm 2}+c_{ \pm 2}, \quad R_{0}:=\frac{1}{2} Q_{0}+2 c_{0} \quad \text { satisfy following relations: } \\
R_{ \pm 2}^{2}=0, \quad R_{ \pm 2} R_{0}+R_{0} R_{ \pm 2}=0, \quad R_{0}^{2}+R_{2} R_{-2}+R_{-2} R_{2}=0
\end{gathered}
$$

$Q^{\prime}{ }_{B}$ cohomology is trivial in ghost number 1 states.

Proof We consider the equation

$$
Q^{\prime}{ }_{B} \psi=0
$$

for the ghost number 1 state

$$
\psi=\sum_{N \geq h} \psi_{-N} .
$$

In other words, we solve the following equations:

$$
\begin{aligned}
& R_{2} \psi_{-h-k}=0, \\
& R_{2} \psi_{-h-k-2}=-R_{0} \psi_{-h-k}, \\
& R_{2} \psi_{-h-k-2 l}=-R_{0} \psi_{-h-k-2(l-1)}-R_{-2} \psi_{-h-k-2(l-2)}, \quad l \geq 2 .,
\end{aligned}
$$

$R_{2} \quad$ is rewritten as $\quad R_{2}=-\frac{1}{4} Q_{2}+c_{2}=-\frac{1}{4} \widetilde{Q_{0}}$.
$\widetilde{Q_{0}}$ is given by replacing $c_{n,} b_{n}$ with $\widetilde{c_{n}}:=c_{n+2}, \widetilde{b}_{n}:=b_{n-2}$ in $Q_{0}=Q_{B}$.

Solutions of
$Q_{B} \psi=0$ are
[Kato-Ogawa,M.Henneaux,...]

$$
|\psi\rangle=A_{\mathrm{DDF}}\left|0, p_{0}\right\rangle+B_{\mathrm{DDF}} c_{0}\left|0, p_{0}\right\rangle+Q_{B}|\phi\rangle
$$

where

$$
\begin{aligned}
& \left|0, p_{0}\right\rangle=e^{i p_{0} x}|\Omega\rangle, \quad \quad p_{0}^{ \pm}= \pm \frac{1}{\sqrt{2 \alpha^{\prime}}}, \quad p_{0}^{i}=0, \\
& |\Omega\rangle:=c_{1}|0\rangle, \quad c_{n}|\Omega\rangle=0, n \geq 1, \quad b_{n}|\Omega\rangle=0, n \geq 0,
\end{aligned}
$$

and $A_{\mathrm{DDF}}, B_{\mathrm{DDF}}$ are generated by DDF operators A_{n}^{i} :

$$
\left[A_{m}^{i}, A_{n}^{j}\right]=m \delta_{m+n, 0} \delta^{i j}, \quad\left[L_{m,}^{x} A_{n}^{i}\right]=0 .
$$

Similarly, solutions of $\quad \widetilde{Q_{0}} \psi=0 \quad$ are given by

$$
\begin{gathered}
|\psi\rangle=A_{\mathrm{DDF}}\left|\tilde{0}, p_{0}\right\rangle+B_{\mathrm{DDF}} \widetilde{c}_{0}\left|\tilde{0}, p_{0}\right\rangle+\widetilde{Q_{0}}|\phi\rangle \\
\left|\tilde{0}, p_{0}\right\rangle:=b_{-2} b_{-1}\left|0, p_{0}\right\rangle, \quad \widetilde{c_{n}}\left|\tilde{0}, p_{0}\right\rangle=0, n \geq 1, \quad \widetilde{b_{n}}\left|\tilde{0}, p_{0}\right\rangle=0, n \geq 0 .
\end{gathered}
$$

Here $\left|\psi_{-n-k}\right\rangle$ is ghost number 1,

$$
R_{2}\left|\psi_{-h-k}\right\rangle=0 \quad \Rightarrow \quad\left|\psi_{-h-k}\right\rangle=R_{2}\left|\phi_{-h-k-2}\right\rangle, \quad \exists\left|\phi_{-n-k-2}\right\rangle .
$$

Then

$$
\begin{aligned}
& R_{2}\left|\psi_{-n-k-2}\right\rangle=-R_{0}\left|\psi_{-h-k}\right\rangle=-R_{0} R_{2}\left|\phi_{-n-k-2}\right\rangle=R_{2} R_{0}\left|\phi_{-h-k-2}\right\rangle, \\
& \quad \Rightarrow \quad\left|\psi_{-h-k-2}\right\rangle=R_{0}\left|\phi_{-h-k-2}\right\rangle+R_{2}\left|\phi_{-h-k-4}\right\rangle, \quad \exists\left|\phi_{-h-k-4}\right\rangle .
\end{aligned}
$$

Suppose, $\left|\psi_{-h-k-2 l}\right\rangle=R_{-2}\left|\phi_{-h-k-2(l-1)}\right\rangle+R_{0}\left|\phi_{-h-k-2 l}\right\rangle+R_{2}\left|\phi_{-h-k-2(l+1)}\right\rangle, \quad l=m, m-1$ then

$$
\begin{aligned}
R_{2}\left|\psi_{-h-k-2(m+1)}\right\rangle= & -R_{0}\left|\psi_{-h-k-2 m}\right\rangle-R_{-2}\left|\psi_{-h-k-2(m-1)}\right\rangle \\
= & -R_{0}\left(R_{-2}\left|\phi_{-h-k-2(m-1)}\right\rangle+R_{0}\left|\phi_{-h-k-2 m}\right\rangle+R_{2}\left|\phi_{-h-k-2(m+1)}\right\rangle\right) \\
& -R_{-2}\left(R_{-2}\left|\phi_{-h-k-2(m-2)}\right\rangle+R_{0}\left|\phi_{-h-k-2(m-1)}\right\rangle+R_{2}\left|\phi_{-h-k-2 m}\right\rangle\right) \\
= & R_{2}\left(R_{-2}\left|\phi_{-h-k-2 m}\right\rangle+R_{0}\left|\phi_{-h-k-2(m+1)}\right\rangle\right),
\end{aligned}
$$

$$
\left|\psi_{-h-k-2(m+1)}\right\rangle=R_{-2}\left|\phi_{-h-k-2 m}\right\rangle+R_{0}\left|\phi_{-h-k-2(m+1)}\right\rangle+R_{2}\left|\phi_{-h-k-2(m+2)}\right\rangle, \quad \exists\left|\phi_{-h-k-2(m+2)}\right\rangle
$$

By induction, we conclude

$$
\left|\psi_{-h-k-2 l}\right\rangle=R_{-2}\left|\phi_{-h-k-2(l-1)}\right\rangle+R_{0}\left|\phi_{-h-k-2 l}\right\rangle+R_{2}\left|\phi_{-h-k-2(l+1)}\right\rangle, \quad l \geq 0,
$$

namely,

$$
|\psi\rangle=Q_{B}^{\prime}|\phi\rangle, \quad \exists|\phi\rangle=\sum_{k=0,1, l \geq 1}\left|\phi_{-h-k-2 l}\right\rangle .
$$

- We have similar arguments for other solution $\Psi_{0}^{(l)}$ by using $R_{2 l}$ instead of R_{2}.
New BRST charge around it is

$$
Q_{B}^{(l)}=\frac{1}{2} Q_{0}+2 l^{2} c_{0}-(-1)^{l}\left(R_{2 l}+R_{-2 l}\right)
$$

where $\quad R_{ \pm 2 l}=-\frac{1}{4} Q_{ \pm 2 l}+c_{ \pm 2 l}=-\frac{1}{4} \widetilde{Q}_{0}^{(\pm l)}$.
$\widetilde{Q}_{0}^{(l)}$ is given by replacing c_{n}, b_{n} with $\widetilde{c}_{n}:=c_{n+2 l}, \widetilde{b}_{n}:=b_{n-2 l}$ in Q_{B}.

We can prove
$Q_{B}^{(l)}$ cohomology is trivial in ghost number 1 states.

- There are nontrivial solutions for $Q_{B}^{(i)}\left|\mu^{(i)}\right\rangle=0$ of the form:

$$
\left|\psi^{(l)}\right\rangle=\exp \left(-q\left(f^{(l)}\right)\right)
$$

$$
\cdot\left(A_{\mathrm{DDF}} b_{-21} b_{-2 l+1} \cdots b_{-2} b_{-1}\left|0, p_{0}\right\rangle+B_{\mathrm{DDF}} b_{-2 l+1} \cdots b_{-2} b_{-1}\left|0, p_{0}\right\rangle\right),
$$

where $\quad q\left(f^{(t)}\right)=2 \sum_{n=1}^{\left(\frac{(-1)^{n(t+1)}}{n}\right.} q_{-2 n n}$ in other ghost number sector.
This follows from the identity:

$$
\exp \left(q\left(f^{(l)}\right)\right) Q_{B}^{(l)} \exp \left(-q\left(f^{(l)}\right)\right)=-(-1)^{l} R_{2 l}
$$

Summary and Discussion

- We have investigated whether some solutions of CSFT using identity string field can be tachyon vacuum or not.
- Evaluation of potential height at the solutions expressed by identity string field is rather difficult by our two regularization methods. It is divergent at least naively.
- The new BRST charge cohomology around TakahashiTanimoto limit solutions is trivial in ghost number 1 states. This suggests they are nontrivial solutions of CSFT although we do not know yet that they are the tachyon vacuum in Sen's conjecture.
- In the context of Takahashi-Tanimoto solutions, the solution which plugs CSFT into VSFT directly is very singular limit (?):

$$
\begin{aligned}
\left|\Psi_{0}\right\rangle= & Q_{L}\left(e^{h}-1\right)|I\rangle-C_{L}\left((\partial h)^{2} e^{h}\right)|I\rangle \\
& h(w) \rightarrow-\infty \quad\left|\Psi_{0}\right\rangle=-Q_{L}|I\rangle+C_{L}(f)|I\rangle .
\end{aligned}
$$

There is subtlety about $Q_{L} I$:
By CFT calculation, we have $\quad\left\langle\phi, Q_{L} I * Q_{L} I\right\rangle=\left\langle\phi, Q_{L}^{2} I\right\rangle=0$, but by oscillator calculation, we have

$$
\begin{equation*}
Q_{L}^{2}|I\rangle=-\frac{2 \zeta(0)}{\pi^{2}}(1+2 \zeta(0)) Q_{B} c_{0}|I\rangle=0 . \tag{?}
\end{equation*}
$$

- Is the identity string field well-defined?

Mystery on $c_{0} I \quad$ [Rastelli-Zwiebach(2000)]

$$
\begin{gathered}
c_{0} A=c_{0}(I * A)=\left(c_{0} I\right) * A+I *\left(c_{0} A\right)=\left(c_{0} I\right) * A+c_{0} A, \\
\therefore\left(c_{0} I\right) * A=0, \forall A .
\end{gathered}
$$

If we take $\quad A=I, \quad 0 \neq c_{0} I=\left(c_{0} I\right) * I=0 \quad$ (??)

- Is there another exact solution which do not use identity string field in CSFT?

Solutions in CSFT

CSFT

VSFT

$Q_{\text {GRSZ }}$
pure gauge
$\Psi_{0}^{(l)}$
singular
Ψ_{0}^{VSFT}
Where is the tachyon vacuum solution?

numerical solution in the Siegel gauge

