Idempotency Equation and Boundary States in Closed String Field Theory

Isao Kishimoto
 (Univ. of Tokyo)

[KMW1] I.K., Y. Matsuo, E. Watanabe, PRD68 (2003) 126006
[KMW2] I.K., Y. Matsuo, E. Watanabe, PTP111 (2004) 433
[KM] I.K., Y. Matsuo, PLB590(2004)303
(+ I.K., Y. Matsuo, H. Isono, E. Watanabe, work in progress)

Introduction

- Sen's conjecture:

Witten's open SFT
\exists tachyon vacuum

- Vacuum String Field Theory (VSFT)
[Rastelli-Sen-Zwiebach(2000)]
D-brane
~ Projector with respect to Witten's * product. (Sliver, Butterfly,...)

D-brane \sim Boundary state \leftarrow closed string

Closed SFT description is more natural (!?)

$$
\begin{gathered}
S=\frac{1}{2} \Psi \cdot Q \Psi+\frac{1}{3} \Psi \cdot \Psi * \Psi \\
|\Xi\rangle *|\Xi\rangle=|\Xi\rangle \\
S=\frac{1}{2} \Phi \cdot Q \Phi+\frac{1}{3} \Phi \cdot \Phi * \Phi(+\cdots)
\end{gathered}
$$

HIKKO cubic CSFT (Nonpolynomial CSFT)

$$
|B\rangle *|B\rangle=|B\rangle \text { (?) }
$$

Contents

- Introduction
- Star product in closed SFT
- Star product of boundary states [kmwi]
- Idempotency equation [kNw1,kwwz]
- Fluctuations [kwwi,kwwe]
- Cardy states and idempotents ${ }_{[k \times]}$
- $\mathrm{T}^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}} / \mathrm{Z}_{2}$ compactification
- Summary and discussion

Star product in closed SFT

* product is defined by 3 -string vertex:
$\left|\Phi_{1} * \Phi_{2}\right\rangle_{3}={ }_{1}\left\langle\left.\Phi_{1}\right|_{2}\left\langle\Phi_{2} \mid V(1,2,3)\right\rangle\right.$
- HIKKO (Hata-Itoh-Kugo-Kunitomo-Ogawa) type
$\left(X^{(3)}-\Theta_{1} X^{(1)}-\Theta_{2} X^{(2)}\right)\left|V_{0}(1,2,3)\right\rangle=0$
and ghost sector (to be compatible with BRST invariance) with projection:
$|V(1,2,3)\rangle=\wp_{1} \wp_{2} \wp_{3}\left|V_{0}(1,2,3)\right\rangle, \quad \wp_{r}:=\oint \frac{d \theta}{2 \pi} e^{i \theta\left(L_{0}^{(r)}-\tilde{L}_{0}^{(r)}\right)}$

Overlapping condition for 3 closed strings

Interaction point

- Explicit representation of the 3-string vertex: solution to overlapping condition [HIKKO]

$$
\begin{aligned}
|V(1,2,3)\rangle= & \int \delta(1,2,3)[\mu(1,2,3)]^{2} \wp_{1} \wp_{2} \wp_{3} \frac{\alpha_{1} \alpha_{2}}{\alpha_{3}} \Pi_{c} \delta\left(\sum_{r=1}^{3} \alpha_{r}^{-1} \pi_{c}^{0(r)}\right) \\
& \left.\times \Pi_{r=1}^{3}\left[1+2^{-\frac{1}{2}} w_{I}^{(r)}\right)_{0}^{(r)}\right] e^{F(1,2,3)}\left|p_{1}, \alpha_{1}\right\rangle_{1}\left|p_{2}, \alpha_{2}\right\rangle_{2}\left|p_{3}, \alpha_{3}\right\rangle_{3} \\
F(1,2,3)= & \sum_{r, s=1}^{3} \sum_{m, n \geq 1} \tilde{N}_{m n}^{r s}\left[\frac{1}{2} a_{m}^{(r) \dagger} a_{n}^{(s) \dagger}+\sqrt{m} \alpha_{r} c_{-m}^{(r)}\left(\sqrt{n} \alpha_{s}\right)^{-1} b_{-n}^{(s)}\right. \\
& \left.+\frac{1}{2} \tilde{a}_{m}^{(r) n} \tilde{a}_{n}^{(s) \dagger}+\sqrt{m} \alpha_{r} \tilde{c}_{-m}^{(r)}\left(\sqrt{n} \alpha_{s}\right)^{-1} \tilde{b}_{-n}^{(s)}\right] \\
& +\frac{1}{2} \sum_{r=1}^{3} \sum_{n \geq 1} \tilde{N}_{n}^{r}\left(a_{n}^{(r) \dagger}+\tilde{a}_{n}^{(r) \dagger}\right) \mathrm{P}-\frac{\tau_{0}}{4 \alpha_{1} \alpha_{2} \alpha_{3}} \mathrm{P}^{2} \\
& \text { (Gaussian !) }
\end{aligned}
$$

$\tilde{\tilde{N}_{m n}^{r s}}, \tilde{N_{n}} \boldsymbol{r}$: Neumann coefficients of light-cone type

$$
\tilde{N}_{m n}^{r s}=\frac{m n \alpha_{1} \alpha_{2} \alpha_{3}}{\alpha_{r} n+\alpha_{s} m} \tilde{N}_{m}^{r} \tilde{N}_{n}^{s}
$$

$$
\tilde{N}_{m}^{r}=\frac{\sqrt{m}}{\alpha_{r} m!\Gamma\left(1+m \alpha_{r-1} / \alpha_{r}\right)} e^{\frac{m \tau_{0}}{\alpha_{r}}}, \quad \tau_{0}=\sum_{r=1}^{3} \alpha_{r} \log \left|\alpha_{r}\right|
$$

We can prove various relations. [Mandelstam, Green-Schwarz,...]

$$
\begin{aligned}
& \sum_{t=1}^{3} \sum_{p=1}^{\infty} \tilde{N}_{m p}^{r t} \tilde{N}_{p n}^{t s}=\delta_{r, s} \delta_{m, n}, \quad \sum_{t=1}^{3} \sum_{p=1}^{\infty} \tilde{N}_{m p}^{r t} \tilde{N}_{p}^{t}=-\tilde{N}_{m}^{r} \\
& \sum_{t=1}^{3} \sum_{p=1}^{\infty} \tilde{N}_{p}^{t} \tilde{N}_{p}^{t}=\frac{2 \tau_{0}}{\alpha_{1} \alpha_{2} \alpha_{3}}, \cdots
\end{aligned}
$$

Star product of boundary state

The boundary state for Dp-brane with constant flux:

$$
\begin{array}{rlrl}
\left|B\left(x^{\perp}\right)\right\rangle= & \exp \left(-\sum_{n=1}^{\infty} \frac{1}{n} \alpha_{-n} \mathcal{O} \tilde{\alpha}_{-n}+\sum_{n=1}^{\infty}\left(c_{-n} \tilde{b}_{-n}+\tilde{c}_{-n} b_{-n}\right)\right) \\
& \times c_{0}^{+} c_{1} \tilde{c}_{1}\left|p^{\|}=0, x^{\perp}\right\rangle \otimes|0\rangle_{g h}, \\
\mathcal{O}^{\mu}{ }_{\nu}= & {\left[(1+F)^{-1}(1-F)\right]_{\nu}^{\mu}, \quad \mu, \nu=0,1, \cdots, p,} \\
\mathcal{O}^{i}{ }_{j}= & -\delta_{j}^{i}, & i, j=p+1, \cdots, d-1 .
\end{array}
$$

We define the string field $\Phi_{B}\left(\boldsymbol{x}^{\perp}, \boldsymbol{\alpha}\right)$:

$$
\left|\Phi_{B}\left(x^{\perp}, \alpha\right)\right\rangle=c_{0}^{-} b_{0}^{+}\left|B\left(x^{\perp}\right)\right\rangle \otimes|\alpha\rangle
$$

$\left|\Phi_{B}\left(x^{\perp}, \alpha\right)\right\rangle$ and $|V(1,2,3)\rangle$ are "Gaussian." \mathcal{O} is orthogonal. Using Yoneya formula for Neumann matrices, we have obtained
$\left|\Phi_{B}\left(x^{\perp}, \alpha_{1}\right)\right\rangle *\left|\Phi_{B}\left(y^{\perp}, \alpha_{2}\right)\right\rangle=\delta\left(x^{\perp}-y^{\perp}\right) \mathcal{C} c_{0}^{+}\left|\Phi_{B}\left(x^{\perp}, \alpha_{1}+\alpha_{2}\right)\right\rangle$
"idempotency equation"
\mathcal{C} is given by

$$
\begin{aligned}
& \mathcal{C}=[\mu(1,2,3)]^{2}\left[\operatorname{det}\left(1-\left(\tilde{N}^{33}\right)^{2}\right)\right]^{-\frac{d-2}{2}} \\
& \text { where } \mu(1,2,3)=e^{-\tau_{0} \sum_{r=1}^{3} \alpha_{r}^{-1}}
\end{aligned}
$$

\mathcal{C} is divergent because $\tilde{N}_{\boldsymbol{m} \boldsymbol{n}}^{33}$ is $\infty \times \infty$ matrix.
However, by regularizing with parameter \boldsymbol{T} :
$\tilde{N}_{m n}^{33} \rightarrow \tilde{N}_{m n}^{33} e^{-(m+n) \frac{T}{\left|\alpha_{3}\right|}}$
\mathcal{C} can be simplified drastically for $d=26$.

We use Cremmer-Gervais identity to evaluate the regularized \mathcal{C}.

The result is $\quad \mathcal{C}=2^{5} T^{-3}\left|\alpha_{1} \alpha_{2} \alpha_{3}\right| \quad$ for $T \rightarrow+0$.

On the other hand, we have computed \mathcal{C} numerically by truncating the size of $\tilde{N}_{m n}^{33}$ to L. We have observed $\mathcal{C} \sim L^{3}\left|\left(\alpha_{1} / \alpha_{3}\right)\left(\alpha_{2} / \alpha_{3}\right)\right|$, therefore, $T \sim\left|\alpha_{3}\right| / L$.

Idempotency equation

$$
\begin{aligned}
& \left|\Phi\left(\alpha_{1}\right)\right\rangle *\left|\Phi\left(\alpha_{2}\right)\right\rangle=K^{3} \hat{\alpha}^{2} c_{0}^{+}\left|\Phi\left(\alpha_{1}+\alpha_{2}\right)\right\rangle \\
& \text { where } c_{0}^{+}=\frac{1}{2}\left(c_{0}+\tilde{c}_{0}\right), \\
& K\left(\sim T^{-1} \rightarrow \infty\right): \text { constant and } \alpha_{1} \alpha_{2}>0
\end{aligned}
$$

$\hat{\boldsymbol{\alpha}}^{2} c_{0}^{+}$is a "pure ghost" BRST operator which is nilpotent, partial integrable and derivation with respect to * product.

The boundary state which corresponds to Dp-brane is a solution to this equation in the following sense.

- Boundary state as an "idempotent" :
$\left|\Phi_{f}(\alpha)\right\rangle=\int d^{d-p-1} x^{\perp} f\left(x^{\perp}\right)\left|\Phi_{B}\left(x^{\perp}, \alpha\right)\right\rangle / \alpha$
$f\left(x^{\perp}\right)$ is a solution to $f\left(x^{\perp}\right)^{2}=f\left(x^{\perp}\right)$.
Namely, "commutative soliton" $f\left(x^{\perp}\right)=\left\{\begin{array}{cc}1 & \left(x^{\perp} \in \Sigma\right) \\ 0 & \text { (otherwise) }\end{array}\right.$ for some subset Σ of R^{d-p-1}.

$$
\left|\Phi_{f}\left(\alpha_{1}\right)\right\rangle *\left|\Phi_{f}\left(\alpha_{2}\right)\right\rangle=K^{3} \hat{\alpha}^{2} c_{0}^{+}\left|\Phi_{f}\left(\alpha_{1}+\alpha_{2}\right)\right\rangle
$$

Fluctuations

Infinitesimal deformation of "idempotency equation" around $\Phi_{B}\left(x^{\perp}, \alpha\right)$:

$$
\begin{gathered}
\qquad \Phi_{B}\left(x^{\perp}, \alpha_{1}\right) * \Phi_{B}\left(y^{\perp}, \alpha_{2}\right)+\Phi_{B}\left(x^{\perp}, \alpha_{1}\right) * \delta \Phi_{B}\left(y^{\perp}, \alpha_{2}\right) \\
=\delta^{d-p-1}\left(x^{\perp}-y^{\perp}\right) \mathcal{C} c_{0}^{+} \delta \Phi_{B}\left(x^{\perp}, \alpha_{1}+\alpha_{2}\right) \\
\text { Ansatz: } \delta \Phi_{B}\left(x^{\perp}, \alpha\right)=\oint \frac{d \sigma}{2 \pi} V(\sigma) \Phi_{B}\left(x^{\perp}, \alpha\right)
\end{gathered}
$$

By straightforward computation in oscillator language, we found scalar and vector type "solutions":

$$
\begin{aligned}
& V_{S}(\sigma)=: e^{i k_{\mu} X^{\mu}(\sigma)}:, \quad k_{\mu} G^{\mu \nu} k_{\nu}=\alpha^{\prime-1} \\
& V_{V}(\sigma)=: \zeta_{\nu} \partial_{\sigma} X^{\nu} e^{i k_{\mu} X^{\nu}(\sigma)}:, \quad k_{\mu} G^{\mu \nu} k_{\nu}=0, \\
& \left(G^{\mu \nu}=\left[(1+F)^{-1} \eta(1-F)^{-1}\right]^{\mu \nu}: \text { open string metric }\right) .
\end{aligned}
$$

In computation of tachyon mass using Neumann coefficients, we enconunter

$$
k_{\mu} G^{\mu \nu} k_{\nu}\left(\sum_{n=1}^{\infty} \frac{1}{n}-\sum_{m=1}^{\infty} \frac{1}{m}\right)
$$

at least naively. \rightarrow regularization

By truncating the level of string \boldsymbol{r} as is proportional to $\left|\boldsymbol{\alpha}_{\boldsymbol{r}}\right|$, we obtain on-shell condition uniquely:

where $\beta=\alpha_{1} / \alpha_{3}$
$\rightarrow \quad$ open string tachyon: $\boldsymbol{k}_{\boldsymbol{\mu}} G^{\mu \nu} \boldsymbol{k}_{\boldsymbol{\nu}}=\alpha^{\prime-1}$.

For vector type fluctuation $\delta_{V} \Phi_{B}$, we compute

$$
\begin{aligned}
& \left|\delta_{V} \Phi_{B}\left(\alpha_{1}\right)\right\rangle *\left|\Phi_{B}\left(\alpha_{2}\right)\right\rangle+\left|\Phi_{B}\left(\alpha_{1}\right)\right\rangle *\left|\delta_{V} \Phi_{B}\left(\alpha_{2}\right)\right\rangle \\
= & \left((-\beta)^{\alpha^{\prime} k_{\mu} G^{\mu \nu} k_{\nu}+1}+(1+\beta)^{\alpha^{\prime} k_{\mu} G^{\mu \nu} k_{\nu}+1}\right) \mathcal{C} c_{0}^{+}\left|\delta_{V} \Phi_{B}\left(\alpha_{1}+\alpha_{2}\right)\right\rangle \\
& +\left((-\beta)^{\left.\alpha^{\prime} k_{\mu} G^{\mu \nu} k_{\nu}-(1+\beta)^{\alpha^{\prime} k_{\mu} G^{\mu \nu} k_{\nu}}\right)}\right. \\
& \times\left[-i \zeta_{\mu} G^{\mu \nu} k_{\nu} \sum_{p=1}^{\infty} \frac{\sin ^{2} p \pi \beta}{\pi p} \mathcal{C} c_{0}^{+}\left|\delta_{S} \Phi_{B}\left(\alpha_{1}+\alpha_{2}\right)\right\rangle+\cdots\right] .
\end{aligned}
$$

We obtain massless condition $\boldsymbol{k}_{\boldsymbol{\mu}} \boldsymbol{G}^{\boldsymbol{\mu}} \boldsymbol{k}_{\nu}=\mathbf{0}$.
However, the transversality condition is subtle because
$\left((-\beta)^{0}-(1+\beta)^{0}\right) \sum_{p=1}^{\infty} \frac{\sin ^{2} \pi p \beta}{\pi p} \sim 0 \times \infty$.

On the other hand, using LPP formulation for the HIKKO closed SFT, the equation for the fluctuation is reduced to
$\wp\left(\oint \frac{d \sigma_{1}}{2 \pi} \Sigma_{1}\left[V\left(\sigma_{1}\right)\right]+\oint \frac{d \sigma_{2}}{2 \pi} \Sigma_{2}\left[V\left(\sigma_{2}\right)\right]+\oint \frac{d \sigma_{3}}{2 \pi} V\left(\sigma_{3}\right)\right)\left|B\left(x^{\perp}\right)\right\rangle=0$.

A sufficient condition for this solution : primary with weight 1

$$
\begin{aligned}
& \Sigma_{r}\left[V\left(\sigma_{r}\right)\right]\left|B\left(x^{\perp}\right)\right\rangle=\frac{d}{d \sigma_{r}} \Sigma_{r}\left(\sigma_{r}\right) V\left(\Sigma_{r}\left(\sigma_{r}\right)\right)\left|B\left(x^{\perp}\right)\right\rangle . \\
& \quad \rightarrow \text { open string spectrum! }
\end{aligned}
$$

However, $\boldsymbol{\Sigma}_{\boldsymbol{r}}$ is a particular mapping. Is this a necessary condition?

By modifying the vector type fluctuation [Murakami-Nakatsu(2002)]:

$$
\begin{aligned}
& V_{S}(\sigma)=: e^{i k_{\mu} X^{\mu}(\sigma)}:, \quad V_{V}(\sigma)=: \zeta_{\mu} \partial_{\sigma} X^{\mu}(\sigma) e^{i k_{\nu} X^{\nu}(\sigma)}:, \\
& \hat{V}_{V}(\sigma) \equiv V_{V}(\sigma)-\left(\zeta_{\mu} \theta^{\mu \nu} k_{\nu} / 4 \pi\right) V_{S}(\sigma)
\end{aligned}
$$

$$
\text { where } \theta \equiv \pi\left(\mathcal{O}-\mathcal{O}^{T}\right) / 2=-2 \pi(1+F)^{-1} F(1-F)^{-1}
$$

we obtain the finite transformation

$$
\begin{aligned}
(d \sigma)^{\Delta} V_{S}(\sigma)\left|B\left(x^{\perp}\right)\right\rangle & =(d \lambda)^{\Delta} V_{S}(\lambda)\left|B\left(x^{\perp}\right)\right\rangle \\
(d \sigma)^{\Delta+1} \hat{V}_{V}(\sigma)\left|B\left(x^{\perp}\right)\right\rangle & =(d \lambda)^{\Delta+1}\left[\hat{V}_{V}(\lambda)\left|B\left(x^{\perp}\right)\right\rangle-\Xi \frac{\partial_{\lambda}^{2} \sigma}{\partial_{\lambda} \sigma} V_{S}(\lambda)\left|B\left(x^{\perp}\right)\right\rangle\right]
\end{aligned}
$$

where

$$
\Delta \equiv \alpha^{\prime} k_{\mu} G^{\mu \nu} k_{\nu}, \quad \Xi \equiv-i \zeta_{\mu} G^{\mu \nu} k_{\nu} / 2
$$

Σ_{1}, Σ_{2} are linear mappings
$\rightarrow \Delta=1$ for V_{S} and $\Delta=0$ for $\hat{V}_{\boldsymbol{V}}$.
We should note the singularity at the interaction point for \hat{V}_{V}.

Around the interaction point for $\Delta=\mathbf{0}$

$$
\begin{aligned}
& d \sigma \hat{V}_{V}(\sigma)\left|B\left(x^{\perp}\right)\right\rangle \\
& =d z\left[\hat{V}_{V}(z)\left|B\left(x^{\perp}\right)\right\rangle-\Xi\left(\left(z-z_{0}\right)^{-1}+\mathcal{O}\left(\left(z-z_{0}\right)^{0}\right)\right) V_{S}(z)\left|B\left(x^{\perp}\right)\right\rangle\right]
\end{aligned}
$$

\longrightarrow
$\wp\left(\oint \frac{d \sigma_{1}}{2 \pi} \Sigma_{1}\left[V\left(\sigma_{1}\right)\right]+\oint \frac{d \sigma_{2}}{2 \pi} \Sigma_{2}\left[V\left(\sigma_{2}\right)\right]+\oint \frac{d \sigma_{3}}{2 \pi} V\left(\sigma_{3}\right)\right)\left|B\left(x^{\perp}\right)\right\rangle$
$=i \wp \Xi V_{S}\left(z_{0}\right)\left|B\left(x^{\perp}\right)\right\rangle=i \Xi \oint \frac{d \sigma}{2 \pi} V_{S}(\sigma)\left|B\left(x^{\perp}\right)\right\rangle$
\rightarrow the transversality condition $2 i \Xi=\zeta_{\mu} G^{\mu \nu} k_{\nu}=0$ is imposed.
Correct open string spectrum!

Cardy states and idempotents

- On the flat (R^{d}) background, we have $*$ product formula for Ishibashi states:

$$
\left.\left.\left.\left|p_{1}^{\perp}\right\rangle\right\rangle_{\alpha_{1}} *\left|p_{2}^{\perp}\right\rangle\right\rangle_{\alpha_{2}}=\mathcal{C} c_{0}^{+}\left|p_{1}^{\perp}+p_{2}^{\perp}\right\rangle\right\rangle_{\alpha_{1}+\alpha_{2}}
$$

$\left.\left|p^{\perp}\right\rangle\right\rangle$ satisfies $\left.\left(L_{n}-\tilde{L}_{-n}\right)\left|p^{\perp}\right\rangle\right\rangle=0$, but is not an idempotent. Its Fourier transform $\left|\boldsymbol{B}\left(\boldsymbol{x}^{\perp}\right)\right\rangle$ which is a Cardy state gives an idempotent.

Conjecture

Cardy states \sim idempotents in closed SFT
even on nontrivial backgrounds.

Cardy states $|\boldsymbol{B}\rangle$:

1. $\left(L_{n}-\tilde{L}_{-n}\right)|B\rangle=0$.
2. $\langle\boldsymbol{B}| \tilde{q}^{\frac{1}{2}\left(L_{0}+\tilde{L}_{0}-\frac{c}{12}\right)}\left|B^{\prime}\right\rangle=\sum_{i} N_{B B^{\prime}}^{i} \chi_{i}(q)$,
$N_{B B^{\prime}}^{i}$:nonnegative integer.

Closed SFT:

$$
\begin{aligned}
& \text { 1. }\left(L_{n}-\tilde{L}_{-n}\right)|B\rangle=0, \quad\left(L_{n}-\tilde{L}_{-n}\right)\left|B^{\prime}\right\rangle=0, \\
& \quad \rightarrow \quad\left(L_{n}-\tilde{L}_{-n}\right)|B\rangle *\left|B^{\prime}\right\rangle=0 .
\end{aligned}
$$

2. idempotency: $|\boldsymbol{B}\rangle *\left|B^{\prime}\right\rangle=\delta_{B, B^{\prime}} \mathcal{C}|B\rangle$.

- Orbifold (M / Γ)
twisted sector: $\boldsymbol{X}(\sigma+2 \pi)=g X(\sigma) \quad(g \in \Gamma)$
$(\boldsymbol{g}$-twisted $) *\left(\boldsymbol{g}^{\prime}\right.$-twisted $) \sim\left(\boldsymbol{g} \boldsymbol{g}^{\prime}\right.$-twisted $)$
$\rightarrow \quad *$ product of Ishibashi states should be $\left.\left.|g\rangle\rangle_{\alpha_{1}} *\left|g^{\prime}\right\rangle\right\rangle_{\alpha_{2}} \sim\left|g g^{\prime}\right\rangle\right\rangle_{\alpha_{1}+\alpha_{2}}$

Group ring $\mathrm{C}^{[\Gamma]}: \sum_{g \in \Gamma} \boldsymbol{\lambda}_{\boldsymbol{g}} e_{g} \in \mathrm{C}^{[\Gamma]}, \lambda_{g} \in \mathrm{C}$

$$
e_{g} \star e_{g^{\prime}}=e_{g g^{\prime}}
$$

Γ :nonabelian $\quad e_{g} \rightarrow e_{i}=\sum_{g \in \mathcal{C}_{i}} e_{g} \quad\left(\mathcal{C}_{i}:\right.$ conjugacy class $)$.
Formula: $\quad e_{i} \star e_{j}=\mathcal{N}_{i j}{ }^{k} e_{k}$

$$
\mathcal{N}_{i j}^{k}=\frac{1}{|\Gamma|} \sum_{\alpha: \text { irreps. }} \frac{\left|\mathcal{C}_{i}\right|\left|\mathcal{C}_{j}\right| \zeta_{i}^{(\alpha)} \zeta_{j}^{(\alpha)} \zeta_{k}^{(\alpha) *}}{\zeta_{1}^{(\alpha)}} \cdot\left(\zeta_{i}^{(\alpha)}: \text { character }\right)
$$

idempotents: $P^{(\alpha)}=\frac{\zeta_{1}^{(\alpha)}}{|\Gamma|} \sum_{i: \text { class }} \zeta_{i}^{(\alpha)} e_{i}, \quad P^{(\alpha)} \star P^{(\beta)}=\delta_{\alpha, \beta} P^{(\beta)}$.

Cardy states: $\left.\left.\left.|\alpha\rangle=\frac{1}{\sqrt{|\Gamma|}} \sum_{i: \text { class }} \zeta_{i}^{(\alpha)} \sqrt{\sigma_{i}}|i\rangle\right\rangle, \quad|i\rangle\right\rangle:=\sum_{\boldsymbol{g} \in \mathcal{C}_{i}}|\boldsymbol{g}\rangle\right\rangle$,

$$
\begin{aligned}
\sigma_{i}= & \sigma(e, g), g \in \mathcal{C}_{i}, \quad \chi_{h}^{g}(q)=\operatorname{Tr}_{\mathcal{H}_{h}}\left(g q^{L_{0}-\frac{c}{24}}\right)=\sigma(h, g) \chi_{g}^{h^{-1}}(\tilde{q}) \\
& \rightarrow|\alpha\rangle: \text { idempotents in closed SFT }(?)
\end{aligned}
$$

- Fusion ring of RCFT

$$
e_{i} \star e_{j}=N_{i j}{ }^{k} e_{k}, \quad N_{i j}{ }^{k}=\sum_{l} \frac{S_{i l} S_{j l} S_{k l}^{*}}{S_{1 l}}
$$

idempotents: $P^{(\alpha)}=S_{1 \alpha}^{*} \sum_{i: \text { primary }} S_{i \alpha} e_{i}, \quad P^{(\alpha)}{ }_{\star} P^{(\beta)}=\delta_{\alpha, \beta} P^{(\beta)}$.
[T.Kawai (1989)]

$$
千
$$

Cardy states: $\left.|\alpha\rangle=\sum_{i: \text { primary }} \frac{S_{\alpha i}}{\sqrt{S_{1 i}}}|i\rangle\right\rangle$
Suppose $\left.\left.\quad|i\rangle\rangle_{\alpha_{1}} *|j\rangle\right\rangle_{\alpha_{2}} \sim N_{i j}{ }^{k}|k\rangle\right\rangle_{\alpha_{1}+\alpha_{2}}$, then Cardy states $|\boldsymbol{\alpha}\rangle \sim$ idempotents in closed SFT

$T^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}} / \mathrm{Z}_{2}$ compactification

Explicit formulation of closed SFT on $T^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}} / \mathrm{Z}_{2}$
is known. [HIKKO(1987), Itoh-Kunitomo(1988)]
3-string vertex is modified:

$$
\begin{aligned}
& (-1)^{p_{2} w_{2}-p_{1} w_{3}}\left|V_{0}\left(1_{u}, 2_{u}, 3_{u}\right)\right\rangle, \\
& (-1)^{p_{1} n_{3}^{f}} \delta\left(\left[n_{3}^{f}-n_{2}^{f}+w_{1}\right]\right)\left|V_{0}\left(1_{u}, 2_{t}, 3_{t}\right)\right\rangle
\end{aligned}
$$

- cocycle factor \leftarrow Jacobi identity,
- matter zero mode part.
- untwisted-twisted-twisted : different Neumann coefficients $\tilde{T}_{n_{r} n_{s}}^{r s}$,
- Z_{2} projection

We can compute * product of Ishibashi states directly.

Ishibashi states:

$$
\begin{aligned}
& |\iota(\mathcal{O}, p, w)\rangle\rangle_{u}=e^{-\sum_{n=1}^{\infty} \frac{1}{n} \alpha_{-n}^{i} G_{i j} \mathcal{O}_{k}^{j} \tilde{\alpha}^{k}}{ }_{-n}|p, w\rangle, \\
& \left.\left|\iota\left(\mathcal{O}, n^{f}\right)\right\rangle\right\rangle_{t}=e^{-\sum_{r=1 / 2}^{\infty} \frac{1}{r} \alpha_{-r}^{i} G_{i j} \mathcal{O}^{j}{ }_{k} \tilde{\alpha}_{-r}^{k}}\left|n^{f}\right\rangle,
\end{aligned}
$$

$\mathcal{O}^{\boldsymbol{T}} \boldsymbol{G \mathcal { O }}=\boldsymbol{G} ; \boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{w}^{j}$:integers such as $\boldsymbol{p}_{\boldsymbol{i}}=-\boldsymbol{F}_{\boldsymbol{i j}} \boldsymbol{w}^{\boldsymbol{j}}$,
$F=-(G+B-(G-B) \mathcal{O})(1+\mathcal{O})^{-1} ;\left(n^{f}\right)^{i}=0,1$: fixed point.

* products of these states are not diagonal. \rightarrow We consider following linear combinations:

Dirichlet type $(\mathcal{O}=-1)$

$$
\begin{aligned}
\left|n^{f}\right\rangle_{u} & \left.:=\left(\operatorname{det}\left(2 G_{i j}\right)\right)^{-\frac{1}{4}} \sum_{p_{i}}(-1)^{p n^{f}}|\iota(-1, p, 0)\rangle\right\rangle_{u} \\
\left|n^{f}\right\rangle_{t} & \left.:=\left|\iota\left(-1, n^{f}\right)\right\rangle\right\rangle_{t}
\end{aligned}
$$

Neumann type $(\mathcal{O} \neq-\mathbf{1})$

$$
\begin{aligned}
&\left|m^{f}, F\right\rangle_{u}\left.:=\left(\operatorname{det}\left(2 G_{O}^{-1}\right)\right)^{-\frac{1}{4}} \sum_{w}(-1)^{w m^{f}+w F_{u} w}|\iota(\mathcal{O},-\boldsymbol{F} w, w)\rangle\right\rangle_{u}, \\
&\left|m^{f}, F\right\rangle_{t}\left.:=2^{-\frac{D}{2}} \sum_{n^{f} \in\{0,1\}^{D}}(-1)^{m^{f} n^{f}+n^{f} F_{u} n^{f}}\left|\iota\left(\mathcal{O}, n^{f}\right)\right\rangle\right\rangle_{t}, \\
& \text { where }\left(m^{f}\right)^{i}=1,0, G_{O}^{-1}=(G+B+\boldsymbol{F})^{-1} G(G-B-\boldsymbol{F})^{-1} .
\end{aligned}
$$

* product (Dirichlet type)

$$
\begin{aligned}
& \left|n_{1}^{f}, x^{\perp}, \alpha_{1}\right\rangle_{u} *\left|n_{2}^{f}, y^{\perp}, \alpha_{2}\right\rangle_{u} \\
& =\left(\operatorname{det}\left(2 G_{i j}\right)\right)^{-\frac{1}{4}}(2 \pi)^{D} \delta^{D}(0) \delta_{n_{1}, n_{2}}^{D} \delta^{d-p-1}\left(x^{\perp}-y^{\perp}\right) \\
& \quad \times \mu_{u}^{2} \operatorname{det}^{-\frac{d+D-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right) c_{0}^{+}\left|n_{2}^{f}, y^{\perp}, \alpha_{1}+\alpha_{2}\right\rangle_{u} \\
& \left|n_{1}^{f}, x^{\perp}, \alpha_{1}\right\rangle_{u} *\left|n_{2}^{f}, y^{\perp}, \alpha_{2}\right\rangle_{t} \\
& =\left(\operatorname{det}\left(2 G_{i j}\right)\right)^{-\frac{1}{4}}(2 \pi)^{D} \delta^{D}(0) \delta_{n_{1}, n_{2}}^{D} \delta^{d-p-1}\left(x^{\perp}-y^{\perp}\right) \\
& \quad \times \mu_{t}^{2} \operatorname{det}^{-\frac{D}{2}}\left(1-\left(\tilde{T}^{3} t^{3}\right)^{2}\right) \operatorname{det}^{-\frac{d-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right) c_{0}^{+}\left|n_{2}^{f}, y^{\perp}, \alpha_{1}+\alpha_{2}\right\rangle_{t} \\
& \left|n_{1}^{f}, x^{\perp}, \alpha_{1}\right\rangle_{t} *\left|n_{2}^{f}, y^{\perp}, \alpha_{2}\right\rangle_{t} \\
& =\left(\operatorname{det}\left(2 G_{i j}\right)\right)^{\frac{1}{4}} \delta_{n_{1}, n_{2}}^{D} \delta^{d-p-1}\left(x^{\perp}-y^{\perp}\right) \\
& \quad \times \mu_{t}^{2} \operatorname{det}^{-\frac{D}{2}}\left(1-\left(\tilde{T}^{3} 3_{u}\right)^{2}\right) \operatorname{det}^{-\frac{d-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right) c_{0}^{+}\left|n_{2}^{f}, y^{\perp}, \alpha_{1}+\alpha_{2}\right\rangle_{u} \\
& \\
& \\
& \mathcal{C}:=\mu_{u}^{2} \operatorname{det}^{-\frac{d+D-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right) \quad\left(\sim\left|\alpha_{1} \alpha_{2} \alpha_{3}\right| T^{-3}\right) \\
& \quad=\mu_{t}^{2} \operatorname{det}^{-\frac{D}{2}}\left(1-\left(\tilde{T}^{3} 3_{t}\right)^{2}\right) \operatorname{det}^{-\frac{d-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right)
\end{aligned}
$$

follows from Cremmer-Gervais identity for $D+d=26$.
$\mathcal{C}^{\prime}:=\mu_{t}^{2} \operatorname{det}^{-\frac{D}{2}}\left(1-\left(\tilde{T}^{3_{u} 3_{u}}\right)^{2}\right) \operatorname{det}^{-\frac{d-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right)$
cannot be evaluated similarly \rightarrow other method
$\left|n^{f}, x^{\perp}, \alpha\right\rangle_{ \pm}=\frac{1}{2}(2 \pi \delta(0))^{-D}\left(\left(\operatorname{det}\left(2 G_{i j}\right)\right)^{\frac{1}{4}}\left|n^{f}, x^{\perp}, \alpha\right\rangle_{u} \pm c_{t}(2 \pi \delta(0))^{\frac{D}{2}}\left|n^{f}, x^{\perp}, \alpha\right\rangle_{t}\right)$ are idempotents:
$\left|n_{1}^{f}, x^{\perp}, \alpha_{1}\right\rangle_{ \pm} *\left|n_{2}^{f}, y^{\perp}, \alpha_{2}\right\rangle_{ \pm}=\delta_{n_{1}^{f}, n_{2}^{f}} \delta^{d-p-1}\left(x^{\perp}-y^{\perp}\right) \mathcal{C} c_{0}^{+}\left|n_{2}^{f}, y^{\perp}, \alpha_{1}+\alpha_{2}\right\rangle_{ \pm}$, $\left|n_{1}^{f}, x^{\perp}, \alpha_{1}\right\rangle_{ \pm} *\left|n_{2}^{f}, y^{\perp}, \alpha_{2}\right\rangle_{\mp}=0$.
c_{t} is given by
which is evaluated by 1-loop amplitude as

$$
c_{t}=2^{\frac{D}{4}}(2 \pi)^{-\frac{D}{2}}=\sqrt{\sigma(e, g)}(2 \pi)^{-\frac{D}{2}} .
$$

$\rightarrow\left|\boldsymbol{n}^{f}, x^{\perp}, \alpha\right\rangle_{ \pm}$: Cardy state for fractional D-brane.

T/2

Modulus of torus $\tilde{\boldsymbol{\tau}}: \quad \leftarrow$ Mandelstam mapping using $\boldsymbol{\vartheta}$-function [Asakawa-Kugo-Takahashi(1999)]
$e^{-\frac{\pi}{|\tilde{\tau}|}} \sim \frac{T}{8\left|\alpha_{3} \sin \left(\pi \alpha_{2} / \alpha_{3}\right)\right|} \quad$ for $T \rightarrow 0$
\rightarrow Including ghost contribution, we reproduce $\mathcal{C} \sim\left|\alpha_{1} \alpha_{2} \alpha_{3}\right| T^{-3}$.

$$
\begin{aligned}
&\left(\frac{\eta(\tilde{\tau})}{\vartheta_{0}(\tilde{\tau})}\right)^{\frac{D}{2}}\left((2 \pi)^{-D}\left((-i \tilde{\tau})^{\frac{1}{2}} \eta(\tilde{\tau})^{-D}\right)^{-1}\right. \rightarrow 2^{-\frac{D}{2}}(2 \pi)^{D}=\frac{\mathcal{C}^{\prime}}{\mathcal{C}} \\
& \tilde{\tau} \rightarrow+i 0
\end{aligned}
$$

Similarly, we obtain Neumann type idempotents:

$$
\begin{aligned}
& \left|m^{f}, F, \alpha\right\rangle_{ \pm}=\frac{1}{2}(2 \pi \delta(0))^{-D}\left[\left(\operatorname{det}\left(2 G_{O}^{-1}\right)\right)^{\frac{1}{4}}\left|m^{f}, F, x^{\perp}, \alpha\right\rangle_{u} \pm c_{t}(2 \pi \delta(0))^{\frac{D}{2}}\left|m^{f}, F, x^{\perp}, \alpha\right\rangle_{t}\right] \\
& \quad\left|m_{1}^{f}, F, \alpha_{1}\right\rangle_{ \pm} *\left|m_{2}^{f}, F, \alpha_{2}\right\rangle_{ \pm}=\delta_{m_{1}^{f}, m_{2}^{f}}^{D} \mathcal{C} c_{0}^{+}\left|m_{2}^{f}, F, \alpha_{1}+\alpha_{2}\right\rangle_{ \pm} \\
& \quad\left|m_{1}^{f}, F, \alpha_{1}\right\rangle_{ \pm *}\left|m_{2}^{f}, F, \alpha_{2}\right\rangle_{\mp}=0 .
\end{aligned}
$$

(※) Neumann type idempotents are obtained from Dirichlet type by T-duality :

$$
\mathcal{U}_{g}^{\dagger}\left|n^{f}, \alpha\right\rangle_{ \pm, E}=\left|m^{f}=n^{f}, F, \alpha\right\rangle_{ \pm, g(E)}
$$

In fact, we can prove

$$
\mathcal{U}_{g}^{\dagger}|A * B\rangle_{E}=\left|\left(\mathcal{U}_{g}^{\dagger} A\right) *\left(\mathcal{U}_{g}^{\dagger} B\right)\right\rangle_{g(E)}, \quad g=\left(\begin{array}{cc}
-F & 1 \\
1 & 0
\end{array}\right) \in O(D, D ; \mathrm{Z})
$$

for both $u u u$ and $u t t 3$-string vertices. $(\boldsymbol{E}=\boldsymbol{G}+\boldsymbol{B})$
\mathcal{U}_{g} is given by Kugo-Zwiebach's transformation for the untwisted sector and

$$
\begin{aligned}
& \mathcal{U}_{g}^{\dagger} \alpha_{r}(E) \mathcal{U}_{g}=-E^{T-1} \alpha_{r}(g(E)), \quad \mathcal{U}_{g}^{\dagger} \tilde{\alpha}_{r}(E) \mathcal{U}_{g}=E^{-1} \tilde{\alpha}_{r}(g(E)), \\
& \mathcal{U}_{g}^{\dagger}\left|n^{f}\right\rangle_{E}=2^{-\frac{D}{2}} \sum_{m^{f} \in\{0,1\}^{D}}(-1)^{n^{f} m^{f}+m^{f} F_{u} m^{f}\left|n^{f}\right\rangle_{g(E)},}
\end{aligned}
$$

for the twisted sector. $\left(\boldsymbol{F}_{u}\right)_{i j}:=\boldsymbol{F}_{i j}(\boldsymbol{i}<\boldsymbol{j}), \mathbf{0}$ (otherwise).

Summary and discussion

- Cardy states satisfy idempotency equation in closed SFT (on $R^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}} / \mathrm{Z}_{2}$).
- Variation around idempotents gives open string spectrum.
- Idempotents \sim Cardy states
: detailed correspondence?
- Closed version of VSFT? (Veneziano amplitude,...)
- More nontrivial background? (other orbifolds,...)
- Supersymmetric extension? (HIKKO's NSR vertex,...)
- 3-string vertex in Nonpolynomial CSFT

\leftarrow closed string version of Witten's $*$ product

We can also prove idempotency straightforwardly:

$$
\left|\Phi_{B}\left(x^{\perp}\right)\right\rangle *\left|\Phi_{B}\left(y^{\perp}\right)\right\rangle=\delta\left(x^{\perp}-y^{\perp}\right) \mathcal{C}_{W} c_{0}^{+} b_{0}^{-}\left|\Phi_{B}\left(x^{\perp}\right)\right\rangle
$$

(Computation is simplified by closed sting version of MSFT. [Bars-Kishimoto-Matsuo])

- n -string vertices $(\mathrm{n} \geqq 4)$ in nonpolynomial CSFT?

