Idempotency Equation and Boundary States in Closed String Field Theory

Isao Kishimoto
(Univ. of Tokyo \rightarrow KEK)

Collaboration with Y. Matsuo, E. Watanabe (Univ. of Tokyo) KMW1: Phys.Rev.D68 (2003) 126006[hep-th/0306189], KMW2: Prog.Theor.Phys. 111 (2004) 433[hep-th/0312122], KM1: Phys.Lett. B590 (2004) 303 [hep-th/0402107], KM2: hep-th/0409069.

Introduction and motivation

- Sen's conjecture :

Witten's open SFT
$S=\frac{1}{2} \Psi \cdot Q_{B} \Psi+\frac{1}{3} \Psi \cdot \Psi * \Psi$
\exists tachyon vacuum Ψ_{0}

- Vacuum String Field Theory (VSFT)
[(Gaiotto)-Rastelli-Sen-Zwiebach(2000/2001)]

$$
S=\frac{1}{2} \Psi \cdot Q \Psi+\frac{1}{3} \Psi \cdot \Psi * \Psi
$$

$$
Q=c(\pi / 2) \quad: \text { Pure ghost BRST operator }
$$

VSFT:

D-brane

\sim classical solution of

$$
Q\left|\Psi_{0}\right\rangle+\left|\Psi_{0}\right\rangle *\left|\Psi_{0}\right\rangle=0
$$

~ Projector with respect to Witten's $*$ product in the matter sector:
Sliver, Butterfly,... are constructed explicitly.

$$
|\Xi\rangle *|\Xi\rangle=|\Xi\rangle
$$

Essentially, they are the same as noncommutative solitons because Witten's * can be expressed as the Moyal product.

Around the sliver solution, we can solve

$$
\Xi * \delta \Psi+\delta \Psi * \Xi=\delta \Psi
$$

As solutions for $\delta \Psi$, open string spectrum is included and D-brane tension is reproduced: [Okawa(2002)]

$$
\begin{gathered}
-\left.S\right|_{\Xi} / V_{26}=T_{25} \\
\delta \Psi_{T} \sim \int d t e^{i k X(t)} \Xi
\end{gathered}
$$

However, there are more solutions which give different tension. [Hata-Kawano(2001)]

$$
\delta\left|\Psi_{T}\right\rangle_{\mathrm{HK}}=e^{k t_{n} \alpha_{-n}}|\Xi\rangle
$$

On the other hand,
D-brane \sim Boundary state \leftarrow closed string
Closed SFT description is more natural (!?)
$S=\frac{1}{2} \Phi \cdot Q \Phi+\frac{1}{3} \Phi \cdot \Phi * \Phi(+\cdots)$

HIKKO cubic closed SFT (Nonpolynomial closed SFT)

$$
|\boldsymbol{B}\rangle *|\boldsymbol{B}\rangle=|\boldsymbol{B}\rangle \text { (?) }
$$

Contents

- Introduction
- Star product in closed SFT
- Star product of boundary states [Kmw1]
- Idempotency equation [KMW1,KMw2]
- Fluctuations [KMw1,KMw2]
- Overall factor [KM2]
- Cardy states and idempotents $[\mathrm{KM1} 1,2]$
- $\mathrm{T}^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}} / \mathrm{Z}_{2}$ compactification $[\mathrm{KM} 2]$
- Comment on the Seiberg-Witten limit [Kм2]
- Summary and discussion [KMw3(?)]

Star product in closed SFT

* product is defined by 3-string vertex:

$\left|\Phi_{1} * \Phi_{2}\right\rangle_{3}={ }_{1}\left\langle\left.\Phi_{1}\right|_{2}\left\langle\Phi_{2} \mid V(1,2,3)\right\rangle\right.$

- HIKKO (Hata-Itoh-Kugo-Kunitomo-Ogawa) type
$\left(X^{(3)}-\Theta_{1} X^{(1)}-\Theta_{2} X^{(2)}\right)\left|V_{0}(1,2,3)\right\rangle=0$
and ghost sector (to be compatible with BRST invariance) with projection:
$|V(1,2,3)\rangle=\wp_{1} \wp_{2} \wp_{3}\left|V_{0}(1,2,3)\right\rangle, \quad \wp_{r}:=\oint \frac{d \theta}{2 \pi} e^{i \theta\left(L_{0}^{(r)}-\tilde{L}_{0}^{(r)}\right)}$

Overlapping condition for 3 closed strings

Interaction point

- Explicit representation of the 3-string vertex: solution to overlapping condition [HIKKO]

$$
\begin{aligned}
|V(1,2,3)\rangle= & \int \delta(1,2,3)[\mu(1,2,3)]^{2} \wp_{1} \wp_{2} \wp_{3} \frac{\alpha_{1} \alpha_{2}}{\alpha_{3}} \Pi_{c} \delta\left(\sum_{r=1}^{3} \alpha_{r}^{-1} \pi_{c}^{0(r)}\right) \\
& \left.\times \Pi_{r=1}^{3}\left[1+2^{-\frac{1}{2}} w_{I}^{(r)}\right)_{0}^{(r)}\right] e^{F(1,2,3)}\left|p_{1}, \alpha_{1}\right\rangle_{1}\left|p_{2}, \alpha_{2}\right\rangle_{2}\left|p_{3}, \alpha_{3}\right\rangle_{3} \\
F(1,2,3)= & \sum_{r, s=1}^{3} \sum_{m, n \geq 1} \tilde{N}_{m n}^{r s}\left[\frac{1}{2} a_{m}^{(r) \dagger} a_{n}^{(s) \dagger}+\sqrt{m} \alpha_{r} c_{-m}^{(r)}\left(\sqrt{n} \alpha_{s}\right)^{-1} b_{-n}^{(s)}\right. \\
& \left.+\frac{1}{2} \tilde{a}_{m}^{(r) \dagger} \tilde{a}_{n}^{(s) \dagger}+\sqrt{m} \alpha_{r} \tilde{c}_{-m}^{(r)}\left(\sqrt{n} \alpha_{s}\right)^{-1} \tilde{b}_{-n}^{(s)}\right] \\
& +\frac{1}{2} \sum_{r=1}^{3} \sum_{n \geq 1} \tilde{N}_{n}^{r}\left(a_{n}^{(r) \dagger}+\tilde{a}_{n}^{(r) \dagger}\right) \mathrm{P}-\frac{\tau_{0}}{4 \alpha_{1} \alpha_{2} \alpha_{3}} \mathrm{P}^{2} \\
& \text { (Gaussian !) }
\end{aligned}
$$

$\tilde{N}_{m n}^{r s}, \tilde{N}_{n}^{r}$: Neumann coefficients of light-cone type
$\tilde{N}_{m n}^{r s}=\frac{m n \alpha_{1} \alpha_{2} \alpha_{3}}{\alpha_{r} n+\alpha_{s} m} \tilde{N}_{m}^{r} \tilde{N}_{n}^{s}$,
$\tilde{N}_{m}^{r}=\frac{\sqrt{m}}{\alpha_{r} m!} \frac{\Gamma\left(-m \alpha_{r+1} / \alpha_{r}\right)}{\Gamma\left(1+m \alpha_{r-1} / \alpha_{r}\right)} e^{\frac{m \tau_{0}}{\alpha_{r}}}, \quad \tau_{0}=\sum_{r=1}^{3} \alpha_{r} \log \left|\alpha_{r}\right|$

We can prove various relations. [Mandelstam, Green-Schwarz,...] In particular, Yoneya formulae are essential to computation of $\mathrm{B} * \mathrm{~B}$.

$$
\begin{aligned}
& \sum_{t=1}^{3} \sum_{p=1}^{\infty} \tilde{N}_{m p}^{r t} \tilde{N}_{p n}^{t s}=\delta_{r, s} \delta_{m, n}, \quad \sum_{t=1}^{3} \sum_{p=1}^{\infty} \tilde{N}_{m p}^{r t} \tilde{N}_{p}^{t}=-\tilde{N}_{m}^{r} \\
& \sum_{t=1}^{3} \sum_{p=1}^{\infty} \tilde{N}_{p}^{t} \tilde{N}_{p}^{t}=\frac{2 \tau_{0}}{\alpha_{1} \alpha_{2} \alpha_{3}}
\end{aligned}
$$

Star product of boundary state

The boundary state for Dp-brane with constant flux:

$$
\begin{aligned}
\left|B\left(x^{\perp}\right)\right\rangle= & \exp \left(-\sum_{n=1}^{\infty} \frac{1}{n} \alpha_{-n} \mathcal{O} \tilde{\alpha}_{-n}+\sum_{n=1}^{\infty}\left(c_{-n} \tilde{b}_{-n}+\tilde{c}_{-n} b_{-n}\right)\right) \\
& \times c_{0}^{+} c_{1} \tilde{c}_{1}\left|p^{\|}=0, x^{\perp}\right\rangle \otimes|0\rangle_{g h}, \\
\mathcal{O}^{\mu}= & {\left[(1+F)^{-1}(1-F)\right]_{\nu}^{\mu}, \quad \mu, \nu=0,1, \cdots, p, \quad \text { (Neumann) } } \\
\mathcal{O}_{j}^{i}= & -\delta_{j}^{i}, \quad i, j=p+1, \cdots, d-1 . \text { (Dirichlet) }
\end{aligned}
$$

We define the string field $\Phi_{B}\left(x^{\perp}, \alpha\right)$:

$$
\left|\Phi_{B}\left(x^{\perp}, \alpha\right)\right\rangle=c_{0}^{-} b_{0}^{+}\left|B\left(x^{\perp}\right)\right\rangle \otimes|\alpha\rangle
$$

- Comment on the ghost sector

The ghost sector of conventional boundary state:

$$
\left(b_{n}-\tilde{b}_{-n}\right)|B\rangle=\left(c_{n}+\tilde{c}_{-n}\right)|B\rangle=0
$$

$Q_{B}|\quad\rangle_{\text {mat }} \otimes|B\rangle_{\mathrm{gh}}=\sum_{n} c_{-n}\left(L_{n}^{\mathrm{mat}}-\tilde{L}_{-n}^{\mathrm{mat}}\right)| \rangle_{\mathrm{mat}} \otimes|B\rangle_{\mathrm{gh}}$

$$
\Rightarrow \quad Q_{B}\left|B\left(x^{\perp}\right)\right\rangle=0
$$

Note 1: $\quad\left|\boldsymbol{B}\left(\boldsymbol{x}^{\perp}\right)\right\rangle *\left|\boldsymbol{B}\left(\boldsymbol{y}^{\perp}\right)\right\rangle=0$,
which follows from $\quad b_{0}^{-}\left|\boldsymbol{B}\left(\boldsymbol{x}^{\perp}\right)\right\rangle=0$.
Note 2: $\quad|\Phi\rangle=c_{0}^{-}|\phi\rangle+c_{0}^{-} c_{0}^{+}|\psi\rangle+|\chi\rangle+c_{0}^{+}|\eta\rangle$
φ : "physical sector" i.e.,

$$
\frac{1}{2} \Phi \cdot Q_{B} \Phi=\frac{1}{2}\left\langle I[\phi]\left(L_{0}+\tilde{L}_{0}-2\right) \phi\right\rangle+\cdots
$$

$\left|\Phi_{B}\left(x^{\perp}, \alpha\right)\right\rangle$ and $|V(1,2,3)\rangle$ are "Gaussian." \mathcal{O} is orthogonal. Using Yoneya formula for Neumann matrices, we have obtained
$\left|\Phi_{B}\left(x^{\perp}, \alpha_{1}\right)\right\rangle *\left|\Phi_{B}\left(y^{\perp}, \alpha_{2}\right)\right\rangle=\delta\left(x^{\perp}-y^{\perp}\right) \mathcal{C} c_{0}^{+}\left|\Phi_{B}\left(x^{\perp}, \alpha_{1}+\alpha_{2}\right)\right\rangle$
"idempotency equation"
\mathcal{C} is given by

$$
\begin{aligned}
& \mathcal{C}=[\mu(1,2,3)]^{2}\left[\operatorname{det}\left(1-\left(\tilde{N}^{33}\right)^{2}\right)\right]^{-\frac{d-2}{2}} \\
& \text { where } \mu(1,2,3)=e^{-\tau_{0} \sum_{r=1}^{3} \alpha_{r}^{-1}}
\end{aligned}
$$

\mathcal{C} is divergent because $\tilde{N}_{\boldsymbol{m} \boldsymbol{n}}^{33}$ is $\infty \times \infty$ matrix.
However, by regularizing with parameter \boldsymbol{T} :
$\tilde{N}_{m n}^{33} \rightarrow \tilde{N}_{m n}^{33} e^{-(m+n) \frac{T}{\left|\alpha_{3}\right|}}$
\mathcal{C} can be simplified drastically for $d=26$.

We use Cremmer-Gervais identity to evaluate the regularized \mathcal{C}.
By algebraic calculation, we obtain the differential equation:

$$
\frac{\partial^{2}}{\partial T^{2}} \log \operatorname{det}\left(1-\tilde{N}^{66} \tilde{N}_{T}^{55}\right)=-\frac{1}{4}\left[\frac{\partial_{T}^{2} a}{\partial_{T} b}\right]^{2}
$$

where

$$
\begin{aligned}
a & =\alpha_{1} \alpha_{2} \tilde{N}_{n}^{6}\left[\tilde{N}_{T}^{55}\left(1-\tilde{N}^{66} \tilde{N}_{T}^{55}\right)^{-1}\right]_{n m} \tilde{N}_{m}^{6} \\
b & =\tilde{N}_{T n}^{5}\left[\left(1-\tilde{N}^{66} \tilde{N}_{T}^{55}\right)^{-1}\right]_{n m} \tilde{N}_{m}^{6}
\end{aligned}
$$

These are evaluated by identifying Neumann coefficients for zero modes in 4-string vertex:
$\langle R(5,6)| e^{-\frac{T}{\alpha_{5}}\left(L_{0}^{(5)}+\tilde{L}_{0}^{(5)}\right)}|V(1,2,6)\rangle|V(5,3,4)\rangle \sim\left|V_{T}(1,2,3,4)\right\rangle$.

The equation can be integrated and the result is $\mathcal{C}=2^{5} T^{-3}\left|\alpha_{1} \alpha_{2} \alpha_{3}\right| \quad$ for $T \rightarrow+0 \quad$ (and $d=26$).

On the other hand, we have computed \mathcal{C} numerically by truncating the size of $\tilde{N}_{\boldsymbol{m}}^{33}$ to \boldsymbol{L}. We have observed $\mathcal{C} \sim L^{3}\left|\left(\alpha_{1} / \alpha_{3}\right)\left(\alpha_{2} / \alpha_{3}\right)\right|$, therefore, $T \sim\left|\alpha_{3}\right| / L$.

Plots of $\mathcal{C} /\left[L^{3}(-\beta(1+\beta)]\right.$ by level truncation ($\left.\beta:=-\alpha_{1} /\left(\alpha_{1}+\alpha_{2}\right)\right)$ using Mathematica5.

Idempotency equation

$$
\left|\Phi\left(\alpha_{1}\right)\right\rangle *\left|\Phi\left(\alpha_{2}\right)\right\rangle=K^{3} \hat{\alpha}^{2} c_{0}^{+}\left|\Phi\left(\alpha_{1}+\alpha_{2}\right)\right\rangle
$$

$$
\text { where } c_{0}^{+}=\frac{1}{2}\left(c_{0}+\tilde{c}_{0}\right)
$$

$$
K\left(\sim T^{-1} \rightarrow \infty\right): \text { constant and } \alpha_{1} \alpha_{2}>0
$$

$\hat{\boldsymbol{\alpha}}^{2} c_{0}^{+}$is a "pure ghost" BRST operator which is nilpotent, partial integrable and derivation with respect to * product.

The boundary state which corresponds to Dp-brane is a solution to this equation in the following sense.

- Boundary state as an "idempotent" :
$\left|\Phi_{f}(\alpha)\right\rangle=\int d^{d-p-1} x^{\perp} f\left(x^{\perp}\right)\left|\Phi_{B}\left(x^{\perp}, \alpha\right)\right\rangle / \alpha$
$f\left(x^{\perp}\right)$ is a solution to $f\left(x^{\perp}\right)^{2}=f\left(x^{\perp}\right)$.
Namely, "commutative soliton" $f\left(x^{\perp}\right)=\left\{\begin{array}{cc}1 & \left(x^{\perp} \in \Sigma\right) \\ 0 & \text { (otherwise) }\end{array}\right.$ for some subset $\boldsymbol{\Sigma}$ of $\mathrm{R}^{\boldsymbol{d - p - 1}}$.

$$
\left|\Phi_{f}\left(\alpha_{1}\right)\right\rangle *\left|\Phi_{f}\left(\alpha_{2}\right)\right\rangle=K^{3} \hat{\alpha}^{2} c_{0}^{+}\left|\Phi_{f}\left(\alpha_{1}+\alpha_{2}\right)\right\rangle
$$

Fluctuations

Infinitesimal deformation of "idempotency equation" around $\Phi_{B}\left(x^{\perp}, \alpha\right)$:

$$
\begin{aligned}
& \delta \Phi_{B}\left(x^{\perp}, \alpha_{1}\right) * \Phi_{B}\left(y^{\perp}, \alpha_{2}\right)+\Phi_{B}\left(x^{\perp}, \alpha_{1}\right) * \delta \Phi_{B}\left(y^{\perp}, \alpha_{2}\right) \\
& \quad=\delta^{d-p-1}\left(x^{\perp}-y^{\perp}\right) \mathcal{C} c_{0}^{+} \delta \Phi_{B}\left(x^{\perp}, \alpha_{1}+\alpha_{2}\right) . \\
& \text { Ansatz: } \delta \Phi_{B}\left(x^{\perp}, \alpha\right)=\oint \frac{d \sigma}{2 \pi} V(\sigma) \Phi_{B}\left(x^{\perp}, \alpha\right)
\end{aligned}
$$

By straightforward computation in oscillator language, we found scalar and vector type "solutions":

$$
\begin{aligned}
& V_{S}(\sigma)=: e^{i k_{\mu} X^{\mu}(\sigma)}:, \quad k_{\mu} G^{\mu \nu} k_{\nu}=\alpha^{\prime-1} \\
& V_{V}(\sigma)=: \zeta_{\nu} \partial_{\sigma} X^{\nu} e^{i k_{\mu} X^{\nu}(\sigma)}:, \quad k_{\mu} G^{\mu \nu} k_{\nu}=0, \\
& \left(G^{\mu \nu}=\left[(1+F)^{-1} \eta(1-F)^{-1}\right]^{\mu \nu}: \text { open string metric }\right) .
\end{aligned}
$$

In computation of tachyon mass using Neumann coefficients, we enconunter

$$
k_{\mu} G^{\mu \nu} k_{\nu}\left(\sum_{n=1}^{\infty} \frac{1}{n}-\sum_{m=1}^{\infty} \frac{1}{m}\right)
$$

at least naively. \rightarrow We should take some regularization.

By truncating the level of string r as is proportional to $\left|\alpha_{r}\right|$, we obtain on-shell condition uniquely:

where $\beta=\alpha_{1} / \alpha_{3}$
$\rightarrow \quad$ open string tachyon: $\boldsymbol{k}_{\boldsymbol{\mu}} G^{\mu \nu} \boldsymbol{k}_{\boldsymbol{\nu}}=\alpha^{\prime-1}$.

For vector type fluctuation $\delta_{V} \Phi_{B}$, we compute

$$
\begin{aligned}
& \left|\delta_{V} \Phi_{B}\left(\alpha_{1}\right)\right\rangle *\left|\Phi_{B}\left(\alpha_{2}\right)\right\rangle+\left|\Phi_{B}\left(\alpha_{1}\right)\right\rangle *\left|\delta_{V} \Phi_{B}\left(\alpha_{2}\right)\right\rangle \\
= & \left((-\beta)^{\alpha^{\prime} k_{\mu} G^{\mu \nu} k_{\nu}+1}+(1+\beta)^{\alpha^{\prime} k_{\mu} G^{\mu \nu} k_{\nu}+1}\right) \mathcal{C} c_{0}^{+}\left|\delta_{V} \Phi_{B}\left(\alpha_{1}+\alpha_{2}\right)\right\rangle \\
& +\left((-\beta)^{\left.\alpha^{\prime} k_{\mu} G^{\mu \nu} k_{\nu}-(1+\beta)^{\alpha^{\prime} k_{\mu} G^{\mu \nu} k_{\nu}}\right)}\right. \\
& \times\left[-i \zeta_{\mu} G^{\mu \nu} k_{\nu} \sum_{p=1}^{\infty} \frac{\sin ^{2} p \pi \beta}{\pi p} \mathcal{C} c_{0}^{+}\left|\delta_{S} \Phi_{B}\left(\alpha_{1}+\alpha_{2}\right)\right\rangle+\cdots\right] .
\end{aligned}
$$

We obtain massless condition $\boldsymbol{k}_{\boldsymbol{\mu}} \boldsymbol{G}^{\mu \nu} \boldsymbol{k}_{\nu}=\mathbf{0}$.
However, the transversality condition is subtle because
$\left((-\beta)^{0}-(1+\beta)^{0}\right) \sum_{p=1}^{\infty} \frac{\sin ^{2} \pi p \beta}{\pi p} \sim 0 \times \infty$.

Let us consider LPP formulation [LeClair-Peskin-Preitshopf(1989)] , which refers to CFT correlation function to define 3-string vertex:

$$
\begin{aligned}
& \left(\Phi_{1}\left(\alpha_{1}\right) * \Phi_{2}\left(\alpha_{2}\right)\right) \cdot \Phi_{3}\left(\alpha_{3}\right) \\
& =2 \pi \delta\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)(-1)^{\left|\Phi_{2}\right|}\left\langle h_{1}\left[b_{0}^{-} \wp \Phi_{1}\right] h_{2}\left[b_{0}^{-} \wp \Phi_{2}\right] h_{3}\left[b_{0}^{-} \wp \Phi_{3}\right]\right\rangle,
\end{aligned}
$$

where

$$
\begin{aligned}
& \rho(z)=\alpha_{1} \log (z-1)+\alpha_{2} \log z \\
& h_{r}\left(w_{r}\right)=\rho^{-1}\left(f_{r}\left(w_{r}\right)\right), \quad f_{r}\left(w_{r}\right)=\alpha_{r} \log w_{r}+\tau_{0}+i \beta_{r}
\end{aligned}
$$

Using LPP formulation for the HIKKO closed SFT, the equation for the fluctuation is reduced to
$\wp\left(\oint \frac{d \sigma_{1}}{2 \pi} \Sigma_{1}\left[V\left(\sigma_{1}\right)\right]+\oint \frac{d \sigma_{2}}{2 \pi} \Sigma_{2}\left[V\left(\sigma_{2}\right)\right]+\oint \frac{d \sigma_{3}}{2 \pi} V\left(\sigma_{3}\right)\right)\left|B\left(x^{\perp}\right)\right\rangle=0$.
A sufficient condition for this solution : primary with weight 1

$$
\begin{aligned}
& \Sigma_{r}\left[V\left(\sigma_{r}\right)\right]\left|B\left(x^{\perp}\right)\right\rangle=\frac{d}{d \sigma_{r}} \Sigma_{r}\left(\sigma_{r}\right) V\left(\Sigma_{r}\left(\sigma_{r}\right)\right)\left|B\left(x^{\perp}\right)\right\rangle . \\
& \quad \rightarrow \text { open string spectrum! }
\end{aligned}
$$

However, Σ_{r} is a particular mapping. Is this a necessary condition?

By modifying the vector type fluctuation [Murakami-Nakatsu(2002)]:

$$
\begin{aligned}
& V_{S}(\sigma)=: e^{i k_{\mu} X^{\mu}(\sigma)}:, \quad V_{V}(\sigma)=: \zeta_{\mu} \partial_{\sigma} X^{\mu}(\sigma) e^{i k_{\nu} X^{\nu}(\sigma)}: \\
& \hat{V}_{V}(\sigma) \equiv V_{V}(\sigma)-\left(\zeta_{\mu} \theta^{\mu \nu} k_{\nu} / 4 \pi\right) V_{S}(\sigma)
\end{aligned}
$$

$$
\text { where } \theta \equiv \pi\left(\mathcal{O}-\mathcal{O}^{T}\right) / 2=-2 \pi(1+F)^{-1} F(1-F)^{-1}
$$

we obtain the finite transformation

$$
\begin{aligned}
(d \sigma)^{\Delta} V_{S}(\sigma)\left|B\left(x^{\perp}\right)\right\rangle & =(d \lambda)^{\Delta} V_{S}(\lambda)\left|B\left(x^{\perp}\right)\right\rangle \\
(d \sigma)^{\Delta+1} \hat{V}_{V}(\sigma)\left|B\left(x^{\perp}\right)\right\rangle & =(d \lambda)^{\Delta+1}\left[\hat{V}_{V}(\lambda)\left|B\left(x^{\perp}\right)\right\rangle-\Xi \frac{\partial_{\lambda}^{2} \sigma}{\partial_{\lambda} \sigma} V_{S}(\lambda)\left|B\left(x^{\perp}\right)\right\rangle\right]
\end{aligned}
$$

where

$$
\Delta \equiv \alpha^{\prime} k_{\mu} G^{\mu \nu} k_{\nu}, \quad \Xi \equiv-i \zeta_{\mu} G^{\mu \nu} k_{\nu} / 2
$$

Σ_{1}, Σ_{2} are linear mappings
$\rightarrow \Delta=1$ for V_{S} and $\Delta=0$ for $\hat{V}_{\boldsymbol{V}}$.
We should note the singularity at the interaction point for $\hat{\boldsymbol{V}}_{\boldsymbol{V}}$.

Around the interaction pt. for $\Delta=0$, noting $\frac{d \rho}{d z} \sim$ const. $\left(z-z_{0}\right)$,

$$
\begin{aligned}
& d \sigma \hat{V}_{V}(\sigma)\left|B\left(x^{\perp}\right)\right\rangle \\
& =d z\left[\hat{V}_{V}(z)\left|B\left(x^{\perp}\right)\right\rangle-\Xi\left(\left(z-z_{0}\right)^{-1}+\mathcal{O}\left(\left(z-z_{0}\right)^{0}\right)\right) V_{S}(z)\left|B\left(x^{\perp}\right)\right\rangle\right]
\end{aligned}
$$

\rightarrow

$$
\begin{aligned}
& \wp\left(\oint \frac{d \sigma_{1}}{2 \pi} \Sigma_{1}\left[V\left(\sigma_{1}\right)\right]+\oint \frac{d \sigma_{2}}{2 \pi} \Sigma_{2}\left[V\left(\sigma_{2}\right)\right]+\oint \frac{d \sigma_{3}}{2 \pi} V\left(\sigma_{3}\right)\right)\left|B\left(x^{\perp}\right)\right\rangle \\
& =i \wp \Xi V_{S}\left(z_{0}\right)\left|B\left(x^{\perp}\right)\right\rangle=i \Xi \oint \frac{d \sigma}{2 \pi} V_{S}(\sigma)\left|B\left(x^{\perp}\right)\right\rangle
\end{aligned}
$$

\rightarrow the transversality condition $2 i \Xi=\zeta_{\mu} G^{\mu \nu} k_{\nu}=0$ is imposed.
Correct open string spectrum!

Overall factor

- Let us reconsider $B * B$.

Note:

(a)

(b)
(c)

Conversely, it corresponds to a particular case of degeneration of a Riemann surface:

Generally, this process is described by factorization:

$$
\langle\mathcal{O} \cdots\rangle \longrightarrow \sum_{i}\left\langle\mathcal{O} \cdots A_{i}\left(z_{1}\right) A_{i}\left(z_{2}\right)\right\rangle q^{\Delta_{i}}
$$

In the case of $B * B$, it roughly implies
$\left.|B * B\rangle\right|_{\text {regularized }} \sim q^{-1} c\left(\sigma_{1}\right) c\left(\sigma_{2}\right)|B\rangle+($ less singular part $)$.

More precisely, we should consider modulus in terms of regulator and ghost structure in computation of $*$ product:

c.f. [Asakawa-Kugo-Takahashi(1999)]

Mandelstam mapping:
$\rho(u)=\left(\alpha_{1}+\alpha_{2}\right) \log \frac{\vartheta_{1}\left(u-\bar{Z}_{2} \mid \tilde{\tau}\right)}{\vartheta_{1}\left(u-Z_{2} \mid \tilde{\tau}\right)}-2 \pi i \alpha_{1} u$.
Modulus:

$$
\begin{aligned}
& e^{-\frac{i \pi}{\tilde{\tau}}}=q^{1 / 2} \\
& \sim \frac{\tau_{1}}{8\left(\alpha_{1}+\alpha_{2}\right) \sin \left(\pi \alpha_{1} /\left(\alpha_{1}+\alpha_{2}\right)\right)}(\rightarrow 0)
\end{aligned}
$$

- Evaluation of the coefficient

Using the idempotency equation, we get
$\mathcal{C}=\left(\left\langle\left. B_{1}\right|_{\frac{\tau_{1}}{2 \alpha_{1}}} b_{0}^{+} c_{0}^{-} *\left\langle\left. B_{2}\right|_{\frac{\tau_{1}}{2 \alpha_{2}}} b_{0}^{+} c_{0}^{-}\right) \mid \phi\right\rangle /\left\langle B_{2}\right| b_{0}^{+} c_{0}^{-} c_{0}^{+}|\phi\rangle\right.$.
In the following, we take $\phi=c \tilde{c}$ for simplicity.
From the previous figure b), we compute the numerator as

$$
\begin{aligned}
\mathcal{F}^{\mathrm{m}} & =\left\langle B_{1}^{\mathrm{m}}\right| \tilde{q}^{\frac{1}{2}\left(L_{0}+\tilde{L}_{0}-\frac{c}{12}\right)}\left|B_{2}^{\mathrm{m}}\right\rangle \\
& =q^{-\frac{c}{24}} \delta_{12}+(\text { higer order in } q)
\end{aligned}
$$

in the matter sector and

$$
\begin{aligned}
\mathcal{F}_{c \tilde{c}}^{\mathrm{gh}}= & 4 \alpha_{1} \alpha_{2}(2 \pi)^{2} \int_{C_{1}} \frac{d u_{1}}{2 \pi i} \frac{d u_{1}}{d \rho} \int_{C_{2}} \frac{d u_{2}}{2 \pi i} \frac{d u_{2}}{d \rho}\left[\left.\left.\frac{d u}{d w_{3}}\right|_{w_{3}=0} \frac{d \bar{u}}{d \bar{w}_{3}}\right|_{\bar{w}_{3}=0}\right]^{-1} \\
& \times\langle B| \tilde{q}^{\frac{1}{2}\left(L_{0}+\tilde{L}_{0}+\frac{13}{6}\right)} b\left(2 \pi i u_{1}\right) c\left(2 \pi i Z_{2}\right) \tilde{c}\left(-2 \pi i \bar{Z}_{2}\right) b\left(2 \pi i u_{2}\right)|B\rangle
\end{aligned}
$$

in the ghost sector.

Combining matter and ghost contribution, the numerator is evaluated as:

$$
\begin{aligned}
& \left(\left\langle\left. B_{1}\right|_{\frac{\tau_{1}}{2 \alpha_{1}}} b_{0}^{+} c_{0}^{-} *\left\langle\left. B_{2}\right|_{\frac{\tau_{1}}{2 \alpha_{2}}} b_{0}^{+} c_{0}^{-}\right) c_{1} \tilde{c}_{1} \mid 0\right\rangle\right. \\
& =\mathcal{F}^{\mathrm{m}} \mathcal{F}_{c \tilde{c}}^{\mathrm{gh}}(\log q)^{-1} \\
& \sim 32 \delta_{12} \alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right) \tau_{1}^{-3} q^{\frac{26-c}{24}}
\end{aligned}
$$

The facotor $(\log q)^{-1}$ comes from the identification $\alpha \sim p^{+}$.

The denominator is give by $\left\langle B_{2}\right| b_{0}^{+} c_{0}^{-} c_{0}^{+} c_{1} \tilde{c}_{1}|0\rangle=\boldsymbol{T}_{B_{2}}$.
Namely, $\quad \mathcal{C} \sim 32 \delta_{12} \alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right) \tau_{1}^{-3} \boldsymbol{T}_{B_{2}}^{-1}$
for $\mathrm{C}=26$ and this is consistent with the correspondence of regularizations:

$$
\tau_{1} \sim T \sim\left|\alpha_{3}\right| / L .
$$

Cardy states and idempotents

- On the flat (R^{d}) background, we have $*$ product formula for Ishibashi states:

$$
\left.\left.\left.\left|p_{1}^{\perp}\right\rangle\right\rangle_{\alpha_{1}} *\left|p_{2}^{\perp}\right\rangle\right\rangle_{\alpha_{2}}=\mathcal{C} c_{0}^{+}\left|p_{1}^{\perp}+p_{2}^{\perp}\right\rangle\right\rangle_{\alpha_{1}+\alpha_{2}}
$$

$\left.\left|p^{\perp}\right\rangle\right\rangle$ satisfies $\left.\left(L_{n}-\tilde{L}_{-n}\right)\left|\boldsymbol{p}^{\perp}\right\rangle\right\rangle=0$, but is not an idempotent. Its Fourier transform $\left|\boldsymbol{B}\left(\boldsymbol{x}^{\perp}\right)\right\rangle$ which is a Cardy state gives an idempotent.

Conjecture

Cardy states \sim idempotents in closed SFT
even on nontrivial backgrounds.

Cardy states $|\boldsymbol{B}\rangle$:

1. $\left(L_{n}-\tilde{L}_{-n}\right)|B\rangle=0$.
2. $\langle\boldsymbol{B}| \tilde{q}^{\frac{1}{2}\left(L_{0}+\tilde{L}_{0}-\frac{c}{12}\right)}\left|B^{\prime}\right\rangle=\sum_{i} N_{B B^{\prime}}^{i} \chi_{i}(q)$,
$N_{B B^{\prime}}^{i}$:nonnegative integer.

Closed SFT:

$$
\begin{aligned}
& \text { 1. }\left(L_{n}-\tilde{L}_{-n}\right)|B\rangle=0, \quad\left(L_{n}-\tilde{L}_{-n}\right)\left|B^{\prime}\right\rangle=0, \\
& \quad \rightarrow \quad\left(L_{n}-\tilde{L}_{-n}\right)|B\rangle *\left|B^{\prime}\right\rangle=0 .
\end{aligned}
$$

2. idempotency: $|\boldsymbol{B}\rangle *\left|\boldsymbol{B}^{\prime}\right\rangle=\boldsymbol{\delta}_{\boldsymbol{B}, \boldsymbol{B}^{\prime}} \mathcal{C}|\boldsymbol{B}\rangle$.

- Orbifold (M / Γ)
twisted sector: $X(\sigma+2 \pi)=g X(\sigma) \quad(g \in \Gamma)$
$(\boldsymbol{g}$-twisted $) *\left(\boldsymbol{g}^{\prime}\right.$-twisted $) \sim\left(\boldsymbol{g}^{\prime} \boldsymbol{g}^{\prime}\right.$-twisted $)$
$\rightarrow \quad *$ product of Ishibashi states should be $\left.\left.|\boldsymbol{g}\rangle\rangle_{\alpha_{1}} *\left|\boldsymbol{g}^{\prime}\right\rangle\right\rangle_{\alpha_{2}} \sim\left|\boldsymbol{g} \boldsymbol{g}^{\prime}\right\rangle\right\rangle_{\alpha_{1}+\alpha_{2}}$

Group ring $\mathrm{C}^{[\Gamma]}: \sum_{g \in \Gamma} \boldsymbol{\lambda}_{\boldsymbol{g}} \boldsymbol{e}_{\boldsymbol{g}} \in \mathrm{C}^{[\Gamma]}, \boldsymbol{\lambda}_{\boldsymbol{g}} \in \mathrm{C}$

$$
e_{g} \star e_{g^{\prime}}=e_{g g^{\prime}}
$$

Γ :nonabelian $\quad e_{g} \rightarrow e_{i}=\sum_{g \in \mathcal{C}_{i}} e_{g} \quad\left(\mathcal{C}_{i}:\right.$ conjugacy class $)$.
Formula: $\quad e_{i} \star e_{j}=\mathcal{N}_{i j}{ }^{k} e_{k}$

$$
\mathcal{N}_{i j}^{k}=\frac{1}{|\Gamma|} \sum_{\alpha: \text { irreps. }} \frac{\left|\mathcal{C}_{i}\right|\left|\mathcal{C}_{j}\right| \zeta_{i}^{(\alpha)} \zeta_{j}^{(\alpha)} \zeta_{k}^{(\alpha) *}}{\zeta_{1}^{(\alpha)}} \cdot\left(\zeta_{i}^{(\alpha)}: \text { character }\right)
$$

idempotents: $P^{(\alpha)}=\frac{\zeta_{1}^{(\alpha)}}{|\Gamma|} \sum_{i: \text { class }} \zeta_{i}^{(\alpha)} e_{i}, \quad P^{(\alpha)} \star P^{(\beta)}=\delta_{\alpha, \beta} P^{(\beta)}$.

Cardy states: $\left.\left.\left.|\alpha\rangle=\frac{1}{\sqrt{|\Gamma|}} \sum_{i: \text { class }} \zeta_{i}^{(\alpha)} \sqrt{\sigma_{i}}|i\rangle\right\rangle, \quad|i\rangle\right\rangle:=\sum_{g \in \mathcal{C}_{i}}|g\rangle\right\rangle$,

$$
\begin{aligned}
\sigma_{i}= & \sigma(e, g), g \in \mathcal{C}_{i}, \quad \chi_{h}^{g}(q)=\operatorname{Tr}_{\mathcal{H}_{h}}\left(g q^{L_{0}-\frac{c}{24}}\right)=\sigma(h, g) \chi_{g}^{h^{-1}}(\tilde{q}) \\
& \rightarrow|\alpha\rangle: \text { idempotents in closed SFT (?) }
\end{aligned}
$$

- Fusion ring of RCFT

$$
e_{i} \star e_{j}=N_{i j}^{k} e_{k}, \quad N_{i j}^{k}=\sum_{l} \frac{S_{i l} S_{j l} S_{k l}^{*}}{S_{1 l}}
$$

idempotents: $P^{(\alpha)}=S_{1 \alpha}^{*} \sum_{i: \text { primary }} S_{i \alpha} e_{i}, \quad P^{(\alpha)}{ }_{\star} P^{(\beta)}=\delta_{\alpha, \beta} P^{(\beta)}$.
[T.Kawai (1989)]

$$
\ddagger
$$

Cardy states: $\left.|\alpha\rangle=\sum_{i: \text { primary }} \frac{S_{\alpha i}}{\sqrt{S_{1 i}}}|i\rangle\right\rangle$
Suppose $\left.\left.\quad|i\rangle\rangle_{\alpha_{1}} *|j\rangle\right\rangle_{\alpha_{2}} \sim N_{i j}^{k}|k\rangle\right\rangle_{\alpha_{1}+\alpha_{2}}$, then Cardy states $|\alpha\rangle \sim$ idempotents in closed SFT

- Conversely, suppose the idempotency relation

$$
|a\rangle *|b\rangle=q^{-\frac{c}{24}} \delta_{a b} T_{b}^{-1}|b\rangle
$$

where $\left.\quad|a\rangle=\sum_{j} \frac{\psi_{a}^{j}}{\sqrt{S_{j 1}}}|j\rangle\right\rangle \quad$ is generalized Cardy state s.t. [cf. Behrend et al.(1999)]

$$
T_{b}=\frac{\psi_{a}^{1}}{\sqrt{S_{11}}}, \quad \sum_{a} \psi_{a}^{i}\left(\psi_{a}^{j}\right)^{*}=\delta_{i j}, \quad \sum_{i} \psi_{a}^{i}\left(\psi_{b}^{i}\right)^{*}=\delta_{a b} .
$$

Then, the algebra of the Ishibashi states becomes

$$
\begin{gathered}
\left.\left.|i\rangle\rangle^{\prime} *|j\rangle\right\rangle^{\prime}=q^{-\frac{c}{24}} \sum_{k} \mathcal{N}_{i j}^{k}|k\rangle\right\rangle^{\prime}, \\
\left.|i\rangle\rangle^{\prime} \equiv\left(S_{i 1} S_{11}\right)^{-1 / 2}|i\rangle\right\rangle, \quad \mathcal{N}_{i j}^{k}=\sum_{a} \frac{\left(\psi_{a}^{i}\right)^{*}\left(\psi_{a}^{j}\right)^{*} \psi_{a}^{k}}{\psi_{a}^{1}} .
\end{gathered}
$$

Can we check the above algebra in closed SFT on nontrivial background?

$T^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}} / \mathrm{Z}_{2}$ compactification

Explicit formulation of closed SFT on $T^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}} / \mathrm{Z}_{2}$ is known. [HIKKO(1987), Itoh-Kunitomo(1988)]

3-string vertex is modified:

$$
\begin{aligned}
& (-1)^{p_{2} w_{2}-p_{1} w_{3}}\left|V_{0}\left(1_{u}, 2_{u}, 3_{u}\right)\right\rangle \\
& (-1)^{p_{1} n_{3}^{f}} \delta\left(\left[n_{3}^{f}-n_{2}^{f}+w_{1}\right]\right)\left|V_{0}\left(1_{u}, 2_{t}, 3_{t}\right)\right\rangle
\end{aligned}
$$

- cocycle factor \leftarrow Jacobi identity,
- matter zero mode part.
- untwisted-twisted-twisted: different Neumann coefficients $\tilde{\boldsymbol{T}}_{n_{r} n_{s}}^{r s}$,
- Z_{2} projection

We can compute * product of Ishibashi states directly.

Ishibashi states:

$$
\begin{aligned}
& |\iota(\mathcal{O}, p, w)\rangle\rangle_{u}=e^{-\sum_{n=1}^{\infty} \frac{1}{n} \alpha_{-n}^{i} G_{i j} \mathcal{O}_{k}^{j} \tilde{\alpha}^{k}} \underset{-n}{ }|p, w\rangle, \\
& \left.\left|\iota\left(\mathcal{O}, n^{f}\right)\right\rangle\right\rangle_{t}=e^{-\sum_{r=1 / 2}^{\infty} \frac{1}{r} \alpha_{-r}^{i} G_{i j} \mathcal{O}_{k}^{j} \tilde{\alpha}^{k}}{ }_{-r}\left|n^{f}\right\rangle,
\end{aligned}
$$

$\mathcal{O}^{\boldsymbol{T}} \boldsymbol{G \mathcal { O }}=\boldsymbol{G} ; \boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{w}^{\boldsymbol{j}}$:integers such as $\boldsymbol{p}_{\boldsymbol{i}}=-\boldsymbol{F}_{\boldsymbol{i j}} \boldsymbol{w}^{\boldsymbol{j}}$,
$\boldsymbol{F}=-(G+B-(G-B) \mathcal{O})(1+\mathcal{O})^{-1} ;\left(n^{f}\right)^{i}=0,1$: fixed point.

* products of these states are not diagonal. \rightarrow We consider following linear combinations:

Dirichlet type $(\mathcal{O}=-1)$

$$
\begin{aligned}
\left|n^{f}\right\rangle_{u} & \left.:=\left(\operatorname{det}\left(2 G_{i j}\right)\right)^{-\frac{1}{4}} \sum_{p_{i}}(-1)^{p n^{f}}|\iota(-1, p, 0)\rangle\right\rangle_{u} \\
\left|n^{f}\right\rangle_{t} & \left.:=\left|\iota\left(-1, n^{f}\right)\right\rangle\right\rangle_{t}
\end{aligned}
$$

Neumann type $(\mathcal{O} \neq-1)$

$$
\begin{aligned}
&\left|m^{f}, F\right\rangle_{u}\left.:=\left(\operatorname{det}\left(2 G_{O}^{-1}\right)\right)^{-\frac{1}{4}} \sum_{w}(-1)^{w m^{f}+w F_{u} w}|\iota(\mathcal{O},-\boldsymbol{F} w, w)\rangle\right\rangle_{u} \\
&\left|m^{f}, F\right\rangle_{t}:=2^{-\frac{D}{2}} \sum_{n^{f} \in\{0,1\}^{D}}(-1)^{\left.m^{f} n^{f}+n^{f} F_{u} n^{f}\left|\iota\left(\mathcal{O}, n^{f}\right)\right\rangle\right\rangle_{t}} \\
& \text { where }\left(m^{f}\right)^{i}=1,0, G_{O}^{-1}=(\boldsymbol{G}+B+\boldsymbol{F})^{-1} G(\boldsymbol{G}-\boldsymbol{B}-\boldsymbol{F})^{-1}
\end{aligned}
$$

* product (Dirichlet type)

$$
\begin{aligned}
& \left|n_{1}^{f}, x^{\perp}, \alpha_{1}\right\rangle_{u} *\left|n_{2}^{f}, y^{\perp}, \alpha_{2}\right\rangle_{u} \\
& =\left(\operatorname{det}\left(2 G_{i j}\right)\right)^{-\frac{1}{4}}(2 \pi)^{D} \delta^{D}(0) \delta_{n_{1}, n_{2}}^{D} \delta^{d-p-1}\left(x^{\perp}-y^{\perp}\right) \\
& \quad \times \mu_{u}^{2} \operatorname{det}^{-\frac{d+D-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right) c_{0}^{+}\left|n_{2}^{f}, y^{\perp}, \alpha_{1}+\alpha_{2}\right\rangle_{u} \\
& \left|n_{1}^{f}, x^{\perp}, \alpha_{1}\right\rangle_{u} *\left|n_{2}^{f}, y^{\perp}, \alpha_{2}\right\rangle_{t} \\
& =\left(\operatorname{det}\left(2 G_{i j}\right)\right)^{-\frac{1}{4}}(2 \pi)^{D} \delta^{D}(0) \delta_{n_{1}, n_{2}}^{D} \delta^{d-p-1}\left(x^{\perp}-y^{\perp}\right) \\
& \quad \times \mu_{t}^{2} \operatorname{det}^{-\frac{D}{2}}\left(1-\left(\tilde{T}^{3_{3} 3_{t}}\right)^{2}\right) \operatorname{det}^{-\frac{d-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right) c_{0}^{+}\left|n_{2}^{f}, y^{\perp}, \alpha_{1}+\alpha_{2}\right\rangle_{t} \\
& \left|n_{1}^{f}, x^{\perp}, \alpha_{1}\right\rangle_{t} *\left|n_{2}^{f}, y^{\perp}, \alpha_{2}\right\rangle_{t} \\
& =\left(\operatorname{det}\left(2 G_{i j}\right)\right)^{\frac{1}{4}} \delta_{n_{1}, n_{2}}^{D} \delta^{d-p-1}\left(x^{\perp}-y^{\perp}\right) \\
& \quad \times \mu_{t}^{2} \operatorname{det}^{-\frac{D}{2}}\left(1-\left(\tilde{T}^{3_{u} 3_{u}}\right)^{2}\right) \operatorname{det}^{-\frac{d-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right) c_{0}^{+}\left|n_{2}^{f}, y^{\perp}, \alpha_{1}+\alpha_{2}\right\rangle_{u} .
\end{aligned}
$$

(Here we have included flat R^{d} sector and ghost sector.)
In the above formulae, twisted sector is not diagonalized.
We should take linear combinations of untwisted and twisted sector in order to get idempotents which include twisted sector.

- Neumann coefficients in the twisted sector

$$
\begin{aligned}
& \left|V_{0}\left(1_{u}, 2_{t}, 3_{t}\right)\right\rangle=\mu_{t}^{2} e^{\frac{1}{2} a^{\dagger r} \tilde{T}^{r s} a^{\dagger s}+\frac{1}{2} \tilde{a}^{\dagger r} \tilde{T}^{r s} \tilde{a}^{\dagger s}\left|p_{1}, w_{1} ; n_{2}^{f} ; n_{3}^{f}\right\rangle} \\
& \sum_{t, l_{t}} \tilde{T}_{n_{r}}^{r t} \tilde{T}_{t} \tilde{T}_{l_{t} m_{s}}^{t s}=\delta_{n_{r}, m_{s}} \delta_{r, s}, \quad \sum_{t, l_{t}} \tilde{T}_{0 l_{t}}^{1 t} \tilde{T}_{l_{t} m_{s}}^{t s}=-\tilde{T}_{0 m_{s}}^{1 s}, \quad \sum_{t, l_{t}} \tilde{T}_{0 l_{t}}^{1} \tilde{T}_{l_{t} 0}^{t 1}=-2 T_{00}^{11}, \\
& \tilde{T}_{n_{r} m_{s}}^{r s}=\frac{\alpha_{1} n_{r} m_{s}}{\alpha_{r} m_{s}+\alpha_{s} n_{r}} \tilde{T}_{n_{r} 0}^{r 1} \tilde{T}_{m_{s} 0}^{s 1} \\
& T_{00}^{11}-\sum_{r, s=2,3} \tilde{T}_{0 .}^{1 r}\left[(1+\tilde{T})^{-1}\right]^{r s} \tilde{T}_{\cdot 0}^{s 1}=-2 \sum_{n=1}^{\infty} \frac{\cos ^{2}\left(\frac{\alpha_{1}}{\alpha_{3}} n \pi\right)}{n}=-\infty
\end{aligned}
$$

We have used the above relations to compute * product.
Note:
$\mathcal{C}:=\mu_{u}^{2} \operatorname{det}^{-\frac{d+D-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right)$
$=\mu_{t}^{2} \operatorname{det}^{-\frac{D}{2}}\left(1-\left(\tilde{T}^{3^{3} t_{t}}\right)^{2}\right) \operatorname{det}^{-\frac{d-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right)$,
$\sim\left|\alpha_{1} \alpha_{2} \alpha_{3}\right| T^{-3}$
follows from Cremmer-Gervais identity for $D+d=26$.

$\mathcal{C}^{\prime}:=\mu_{t}^{2} \operatorname{det}^{-\frac{D}{2}}\left(1-\left(\tilde{T}^{3_{u} 3_{u}}\right)^{2}\right) \operatorname{det}^{-\frac{d-2}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right)$ cannot be evaluated similarly.

We can conclude that
$\left|n^{f}, x^{\perp}, \alpha\right\rangle_{ \pm}=\frac{1}{2}(2 \pi \delta(0))^{-D}\left(\left(\operatorname{det}\left(2 G_{i j}\right)\right)^{\frac{1}{4}}\left|n^{f}, x^{\perp}, \alpha\right\rangle_{u} \pm c_{t}(2 \pi \delta(0))^{\frac{D}{2}}\left|n^{f}, x^{\perp}, \alpha\right\rangle_{t}\right)$
are idempotents:
$\left|n_{1}^{f}, x^{\perp}, \alpha_{1}\right\rangle_{ \pm} *\left|n_{2}^{f}, y^{\perp}, \alpha_{2}\right\rangle_{ \pm}=\delta_{n_{1}^{f}, n_{2}^{f}}^{D} \delta^{d-p-1}\left(x^{\perp}-y^{\perp}\right) \mathcal{C} c_{0}^{+}\left|n_{2}^{f}, y^{\perp}, \alpha_{1}+\alpha_{2}\right\rangle_{ \pm}$,
$\left|n_{1}^{f}, x^{\perp}, \alpha_{1}\right\rangle_{ \pm}\left|n_{2}^{f}, y^{\perp}, \alpha_{2}\right\rangle_{\mp}=0$.
c_{t} is given by
which is evaluated by 1-loop amplitude as

$$
c_{t}(2 \pi \delta(0))^{\frac{D}{2}}=2^{\frac{D}{4}}(\operatorname{det}(2 G))^{\frac{1}{4}}=\sqrt{\sigma(e, g)}(2 \pi)^{-\frac{D}{2}}
$$

$\rightarrow\left|\boldsymbol{n}^{f}, \boldsymbol{x}^{\perp}, \boldsymbol{\alpha}\right\rangle_{ \pm}$: Cardy state for fractional D-brane.

Ratio of 1-loop amplitude :

$$
\left\langle\boldsymbol{B}_{t}\right| \tilde{\boldsymbol{q}}^{\frac{1}{2}\left(L_{0}+\tilde{L}_{0}\right)}\left|\boldsymbol{B}_{t}\right\rangle /\left\langle\boldsymbol{B}_{u}\right| \tilde{\boldsymbol{q}}^{\frac{1}{2}\left(L_{0}+\tilde{L}_{0}\right)}\left|\boldsymbol{B}_{u}\right\rangle
$$

$\sim \tilde{q}^{D} \prod_{n \geq 1}\left(1-\tilde{q}^{n-\frac{1}{2}}\right)^{-D}\left((2 \pi \delta(0))^{-D} \tilde{q}^{-\frac{D}{24}} \prod_{n \geq 1}\left(1-\tilde{q}^{n}\right)^{-D} \sum_{p \in Z^{D}} \tilde{q}^{\left.\frac{1}{4} p G^{-1} p\right)^{-1}}\right.$
$=\left(\frac{\eta(\tilde{\tau})}{\vartheta_{0}(\tilde{\tau})}\right)^{\frac{D}{2}}\left((2 \pi \delta(0))^{-D} \eta(\tilde{\tau})^{-D} \sum_{p \in Z^{D}} \tilde{q}^{\frac{1}{4} p G^{-1} p}\right)^{-1}$
$=\left(\frac{\eta(\tau)}{\vartheta_{2}(\tau)}\right)^{\frac{D}{2}}\left((2 \pi \delta(0))^{-D} \operatorname{det}^{\frac{1}{2}}(2 G) \eta(\tau)^{-D} \sum_{m \in Z^{D}} q^{m G m}\right)^{-1}$
$\rightarrow 2^{-\frac{D}{2}}(2 \pi \delta(0))^{D} \operatorname{det}^{-\frac{1}{2}}(2 G)=\frac{\mathcal{C}^{\prime}}{\mathcal{C}} \quad \tilde{\tau} \rightarrow+i 0 \quad$:degenerating limit

Similarly, we obtain Neumann type idempotents:

$$
\begin{aligned}
& \left|m^{f}, F, x^{\perp}, \alpha\right\rangle_{ \pm}=\frac{1}{2} \frac{\operatorname{det}^{\frac{1}{4}}\left(2 G_{O}^{-1}\right)}{(2 \pi \delta(0))^{D}}\left[\left|m^{f}, F, x^{\perp}, \alpha\right\rangle_{u} \pm 2^{\frac{D}{4}}\left|m^{f}, F, x^{\perp}, \alpha\right\rangle_{t}\right] \\
& \left|m_{1}^{f}, F, x^{\perp}, \alpha_{1}\right\rangle_{ \pm *} *\left|m_{2}^{f}, F, y^{\perp} \alpha_{2}\right\rangle_{ \pm}=\delta_{m_{1}^{f}, m_{2}^{f}}^{D} \delta\left(x^{\perp}-y^{\perp}\right) \mathcal{C} c_{0}^{+}\left|m_{2}^{f}, F, x^{\perp}, \alpha_{1}+\alpha_{2}\right\rangle_{ \pm} \\
& \left|m_{1}^{f}, F, x^{\perp}, \alpha_{1}\right\rangle_{ \pm} *\left|m_{2}^{f}, F, y^{\perp}, \alpha_{2}\right\rangle_{\mp}=0 .
\end{aligned}
$$

(※) Neumann type idempotents are obtained from Dirichlet type by T-duality :

$$
\mathcal{U}_{g}^{\dagger}\left|n^{f}, \alpha\right\rangle_{ \pm, E}=\left|m^{f}=n^{f}, F, \alpha\right\rangle_{ \pm, g(E)}
$$

In fact, we can prove

$$
\mathcal{U}_{g}^{\dagger}|A * B\rangle_{E}=\left|\left(\mathcal{U}_{g}^{\dagger} A\right) *\left(\mathcal{U}_{g}^{\dagger} B\right)\right\rangle_{g(E)}, \quad g=\left(\begin{array}{cc}
-F & 1 \\
1 & 0
\end{array}\right) \in O(D, D ; \mathrm{Z})
$$

for both $u u u$ and $u t t 3$-string vertices. $(\boldsymbol{E}=\boldsymbol{G}+\boldsymbol{B})$
\mathcal{U}_{g} is given by Kugo-Zwiebach's transformation for the untwisted sector and

$$
\begin{aligned}
& \mathcal{U}_{g}^{\dagger} \alpha_{r}(E) \mathcal{U}_{g}=-E^{T-1} \alpha_{r}(g(E)), \quad \mathcal{U}_{g}^{\dagger} \tilde{\alpha}_{r}(E) \mathcal{U}_{g}=E^{-1} \tilde{\alpha}_{r}(g(E)), \\
& \mathcal{U}_{g}^{\dagger}\left|n^{f}\right\rangle_{E}=2^{-\frac{D}{2}} \sum_{m^{f} \in\{0,1\}^{D}}(-1)^{n^{f} m^{f}+m^{f} F_{u} m^{f}\left|n^{f}\right\rangle_{g(E)},}
\end{aligned}
$$

for the twisted sector. $\left(F_{u}\right)_{i j}:=F_{i j}(i<j), 0$ (otherwise).

Comment on the Seiberg-Witten limit

KT operator which was introduced to represent noncommutativety in SFT on constant B-field background : [Kawano-Takahashi]

$$
V_{\theta, \sigma_{c}}=\exp \left(-\frac{i}{4} \int_{\sigma_{c}}^{2 \pi+\sigma_{c}} d \sigma \int_{\sigma_{c}}^{2 \pi+\sigma_{c}} d \sigma^{\prime} P_{i}(\sigma) \theta^{i j} \epsilon\left(\sigma, \sigma^{\prime}\right) P_{j}\left(\sigma^{\prime}\right)\right) .
$$

In fact, noting $V_{\theta} \partial_{\sigma} X^{i}(\sigma) V_{\theta}^{-1}=\partial_{\sigma} X^{i}(\sigma)-\theta^{i j} P_{j}(\sigma)$, KT operator induces a map from Dirichlet boundary state to Neumann one with constant flux at least naively.

More precisely, we find the identity:

$$
\left.V_{\theta, \sigma_{c}}|p\rangle\right\rangle_{D}=: e^{i p X\left(\sigma_{c}\right)}:\left|B\left(F_{i j}=-\left(\theta^{-1}\right)_{i j}\right)\right\rangle
$$

Dirichlet type Ishibashi state
Neumann type boundary state

In the Seiberg-Witten limit: $\alpha^{\prime} \sim \epsilon^{1 / 2}, g_{i j} \sim \epsilon, \epsilon \rightarrow 0$, deformed Ishibashi states form a closed algebra:

$$
\begin{gathered}
\left.\left.\left.V_{\theta, \sigma_{c}}\left|p_{1}\right\rangle\right\rangle_{D, \alpha_{1}} * V_{\theta, \sigma_{c}}\left|p_{2}\right\rangle\right\rangle_{D, \alpha_{2}} \sim a_{\beta}\left(p_{1}, p_{2}\right) V_{\theta, \sigma_{c}}\left|p_{1}+p_{2}\right\rangle\right\rangle_{D, \alpha_{1}+\alpha_{2}} \\
a_{\beta}\left(p_{1}, p_{2}\right)=\operatorname{det}^{-\frac{d}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right) \frac{\sin \left(\beta p_{1} \theta p_{2}\right)}{\beta p_{1} \theta p_{2}} \frac{\sin \left((1+\beta) p_{1} \theta p_{2}\right)}{(1+\beta) p_{1} \theta p_{2}}, \quad \beta=\frac{-\alpha_{1}}{\alpha_{1}+\alpha_{2}} .
\end{gathered}
$$

In terms of coefficients function:
$\alpha_{\alpha_{1}+\alpha_{2}}\langle x|\left[\int d y f_{\alpha_{1}}(y) \hat{V}_{\theta, \sigma_{c}}|B(y)\rangle_{\alpha_{1}} * \int d y^{\prime} g_{\alpha_{2}}\left(y^{\prime}\right) \hat{V}_{\theta, \sigma_{c}}\left|B\left(y^{\prime}\right)\right\rangle_{\alpha_{2}}\right]$
$\sim\left[\operatorname{det}^{-\frac{d}{2}}\left(1-\left(\tilde{N}^{33}\right)^{2}\right) 2 \pi \delta(0)\right] f_{\alpha_{1}}(x) \frac{\sin (-\beta \lambda) \sin ((1+\beta) \lambda)}{(-\beta)(1+\beta) \lambda^{2}} g_{\alpha_{2}}(x)$ where $\lambda=\frac{1}{2} \frac{\overleftarrow{\partial}}{\partial x^{i}} \theta^{i j} \frac{\vec{\partial}}{\partial x^{j}}$
By taking the Laplace transformation with an ansatz:
$f_{\alpha}(x)=\alpha^{\delta-1} f(x)$ the idempotency equation is reduced to

$$
f(x) \frac{\sin \lambda}{\lambda} f(x)=f(x)
$$

i.e., projector eq. with respect to the Strachan product (or one of the generalized star product: $*_{2}$) which is commutative and non-associative.
feature of the HIKKO closed SFT * product

Summary and discussion

- Cardy states satisfy idempotency equation in closed SFT (on $R^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}}, \mathrm{T}^{\mathrm{D}} / \mathrm{Z}_{2}$).
- Variation around idempotents gives open string spectrum.
- Idempotents \sim Cardy states more detailed and general correspondence?
(Proof of necessary and sufficient conditions)
- Closed version of VSFT? (Veneziano amplitude,...)
- Supersymmetric extension? (HIKKO's NSR vertex, Green-Schwarz LCSFT, Witten type, Berkovits type...)
- 3-string vertex in Nonpolynomial closed SFT

[Saadi-Zwiebach,Kugo-Kunitomo-Suehiro,Kugo-Suehiro,Kaku,...]
\leftarrow closed string version of Witten's * product

We can also prove idempotency straightforwardly:

$$
\left|\Phi_{B}\left(x^{\perp}\right)\right\rangle *\left|\Phi_{B}\left(y^{\perp}\right)\right\rangle=\delta\left(x^{\perp}-y^{\perp}\right) \mathcal{C}_{W} c_{0}^{+} b_{0}^{-}\left|\Phi_{B}\left(x^{\perp}\right)\right\rangle
$$

(Computation is simplified by closed sting version of MSFT. [Bars-Kishimoto-Matsuo])

- n -string vertices $(\mathrm{n} \geqq 4)$ in nonpolynomial closedSFT?

$$
(|i\rangle\rangle,|j\rangle\rangle,|k\rangle\rangle):=\left\langle\langle i | \left\langle\langle j | \left\langle\left\langle k \mid V_{4}\right\rangle=?, \cdots\right.\right.\right.
$$

- Green-Schwarz-Brink's closed light-cone super SFT We will be able to compute straightforwardly as

$$
\langle B|\left\langle B \mid V_{3}\right\rangle=G|B\rangle .
$$

The boundary state $|\mathrm{B}\rangle$ is given in terms of Green-Schwarz formulation, which is constructed in [Green-Gutperle(1996)]:

$$
|B\rangle=e^{\sum_{n \geq 1}\left(\frac{1}{n} M_{I J} \alpha_{-n}^{I} \tilde{\alpha}_{-n}^{J}-i M_{a b} S_{-n}^{a} \tilde{S}_{-n}^{b}\right)}\left|B_{0}\right\rangle
$$

where G comes from the prefactor of interaction vertex and the determinant of Neumann matrices.

- We have checked the above relation for "D-instanton" (up to zero mode dependence) by direct computation.

What is the explicit form and meaning of G ?

- super SFT in terms of NSR formulation

There are explicit representations of 3 -string vertex for both HIKKO and Witten type in open super SFT
[HIKKO, Gross-Jevicki, Suehiro, Samuel...]

$$
\left|V\left(1_{\mathrm{NS}}, 2_{\mathrm{NS}}, 3_{\mathrm{NS}}\right)\right\rangle, \quad\left|V\left(1_{\mathrm{NS}}, 2_{\mathrm{R}}, 3_{\mathrm{R}}\right)\right\rangle .
$$

Boundary states are known:

$$
|B\rangle=\mathcal{P}_{\mathrm{GSO}}|B, \boldsymbol{\eta}\rangle_{\mathrm{NSNS}}+\mathcal{P}_{\mathrm{GSO}}|\boldsymbol{B}, \boldsymbol{\eta}\rangle_{\mathrm{RR}} .
$$

-Define 3-string vertex for closed super SFT.
-Compute $*$ product of boundary states:

$$
\begin{aligned}
& |B\rangle_{\mathrm{NSNS}} *|B\rangle_{\mathrm{NSNS}} \sim|B\rangle_{\mathrm{NSNS}}, \quad|B\rangle_{\mathrm{NSNS}} *|B\rangle_{\mathrm{RR}} \sim|B\rangle_{\mathrm{RR}}, \\
& |B\rangle_{\mathrm{RR}} *|B\rangle_{\mathrm{RR}} \sim|B\rangle_{\mathrm{NSNS}} .
\end{aligned}
$$

-Can we find a universal relation for boundary states ?
-Divergence of the coefficients would vanish and the idempotency equation might become regular.

