Gauge Invariant Overlaps for Classical Solutions in Open String Field Theory

Isao Kishimoto (RIKEN)

Collaboration with Teruhiko Kawano (Univ. of Tokyo), Tomohiko Takahashi (Nara Women's Univ.) references:

Kawano-I.K.-Takahashi: arXiv:0804.1541, arXiv:0804.4414,

I.K.: arXiv:0808.0355

I.K.-Takahashi: arXiv:0902.0445, arXiv:0904.1095

seminar@Hokkaido Univ.

Non-perturbative vacuum in bosonic open string field theory

- Schnabl's solution $\Psi_{\rm Sch}$

[Ellwood, Kawano-Kishimoto-Takahashi(2008)]

Contents

- Introduction
- Schnabl's solution and gauge invariant overlap
- Review of Asano-Kato's *a*-gauge condition
- Gauge invariants for numerical solutions
- Summary and discussion (1)
- SFT around Takahashi-Tanimoto's solution
- Summary and discussion (2)

Bosonic cubic open string field theory

Action:

$$S[\Psi] = -\frac{1}{g^2} \left(\frac{1}{2} \langle \Psi, Q\Psi \rangle + \frac{1}{3} \langle \Psi, \Psi * \Psi \rangle \right)$$

$$Q = \oint \frac{dz}{2\pi i} \left(cT^m + bc\partial c + \frac{3}{2} \partial^2 c \right)$$
Equation of motion:

$$Q\Psi + \Psi * \Psi = 0$$
Gauge transformation:

$$\delta \cdot \Psi = Q\Lambda + \Psi * \Lambda = \Lambda * \Psi$$

Gauge transformation:

$$\delta_{\Lambda}\Psi=Q\Lambda+\Psi*\Lambda-\Lambda*\Psi$$

$$\delta_\Lambda S[\Psi]=0$$

Restrict string fields to twist even sector in the universal space:

 $\Psi = (t_1 + t_2 b_{-1} c_{-1} + t_3 L_{-2}^{(m)} + \cdots) c_1 |0\rangle + (u_1 b_{-2} + \cdots) c_0 c_1 |0\rangle$

Gauge invariant overlap

Gauge invariant for on-shell closed string state

$${\cal O}_V(\Psi) = \langle {\cal I} | V(i) | \Psi
angle = \langle \hat{\gamma}(1_{
m c},2) | \Phi_V
angle_{1_{
m c}} | \Psi
angle_2$$

$$|\Phi_V
angle=c_1ar{c}_1|V_{
m m}
angle$$

 $V_{
m m}\,$:matter primary with (1,1)-dim.

$$egin{aligned} \mathcal{O}_V(Q\Lambda) &= 0 \ \mathcal{O}_V(\Psi*\Lambda) &= \mathcal{O}_V(\Lambda*\Psi) \end{aligned}$$

In particular, it vanishes for pure gauge solutions: $\,{\cal O}_V(e^{-\Lambda}Qe^{\Lambda})=0$

Shapiro-Thorn's vertex $\langle \hat{\gamma}(1_{c}, 2) | \phi_{c} \rangle_{1_{c}} | \psi \rangle_{2} = \langle h_{1}[\phi_{c}(0)] h_{2}[\psi(0)] \rangle_{UHP}$

identity state: $\langle \mathcal{I} | \phi
angle = \langle h_{\mathcal{I}}[\phi(0)]
angle_{ ext{UHP}}$

Gauge invariant overlap for Schnabl's analytic solution

• Schnabl's solution for tachyon condensation

$$\begin{split} \Psi_{\rm Sch} &= \frac{\partial_r}{e^{\partial_r} - 1} \psi_r |_{r=0} = \sum_{n=0}^{\infty} \frac{B_n}{n!} \partial_r^n \psi_r |_{r=0} \\ &= \lim_{N \to +\infty} \left(\psi_{N+1} - \sum_{n=0}^N \partial_r \psi_r |_{r=n} \right) \\ \psi_r &\equiv \frac{2}{\pi} U_{r+2}^{\dagger} U_{r+2} \Big[-\frac{1}{\pi} (\mathcal{B}_0 + \mathcal{B}_0^{\dagger}) \tilde{c} (\frac{\pi r}{4}) \tilde{c} (-\frac{\pi r}{4}) + \frac{1}{2} (\tilde{c} (-\frac{\pi r}{4}) + \tilde{c} (\frac{\pi r}{4})) \Big] |0\rangle \quad U_r \equiv (2/r)^{\mathcal{L}_0} \end{split}$$

 $igsquigarrow \mathcal{O}_V(\psi_r)$:independent of $oldsymbol{\gamma}$

[Ellwood, Kawano-Kishimoto-Takahashi (2008)]

$$\mathcal{O}_V(\Psi_{\mathrm{Sch}}) \;\;=\;\; \mathcal{O}_V(\psi_0) = \lim_{N o \infty} \mathcal{O}_V(\psi_{N+1})$$

Analytic computation of gauge inv. overlap for Schnabl's solution (1)

Analytic computation of gauge inv. overlap for Schnabl's solution (2)

• Relation to the boundary state

$$\langle \hat{\gamma}(1_{
m c},2)|\psi_0
angle_2 {\cal P}_{1_{
m c}}=rac{1}{2\pi}\langle B|c_0^-$$
 [Kawano-I.K.-Takahashi(2008)]

generalization

[Kiermaier-Okawa-Zwiebach(2008)]

$$egin{aligned} |B_*(\Psi_{ ext{Sch}})
angle &\equiv e^{rac{\pi^2}{s}(L_0+ar{L}_0)} \oint_s \mathrm{P}e^{-\int_0^s dt [\mathcal{L}_R(t)+\{\mathcal{B}_R(t),\Psi_{ ext{Sch}}\}]} \ &= |B
angle + \sum_{k=1}^\infty |B_*^{(k)}(\Psi_{ ext{Sch}})
angle \ &= 0 \end{aligned}$$

Analytic computation of gauge inv. overlap for Schnabl's solution (3)

$$egin{aligned} \mathcal{O}_V(\Psi_{
m Sch}) &= & \mathcal{O}_V(\psi_0) = \langle \hat{\gamma}(1_{
m c},2) | \Phi_V
angle_{1_{
m c}} | \psi_0
angle_2 \ &= & rac{1}{2\pi} \langle B | c_0^- | \Phi_V
angle \end{aligned}$$

$$\langle B| = \langle 0|c_{-1}ar{c}_{-1}c_0^+ \exp\left(-\sum_{n=1}^{\infty}\left(rac{1}{n}lpha_n\cdotar{lpha}_n + c_nar{b}_n + ar{c}_nb_n
ight)
ight)$$

For the Schnabl solution with a parameter $~\lambda~~(\lambda
eq 1)$:

$$\Psi_{\lambda} = \frac{\lambda \partial_r}{\lambda e^{\partial_r} - 1} \psi_r|_{r=0} = \sum_{n=1}^{\infty} \frac{f_n(\lambda)}{n!} \partial_r^n \psi_r|_{r=0} = -\sum_{n=0}^{\infty} \lambda^{n+1} \partial_r \psi_r|_{r=n}$$

 $ightarrow \mathcal{O}_V(\Psi_\lambda)=0$

Gauge invariants for Schnabl's solution

Our result: $(\Psi_{\lambda=1}\equiv\Psi_{
m Sch})$

$${\cal O}_V(\Psi_\lambda) = \left\{egin{array}{cc} 1/(2\pi)\langle B|c_0^-|\Phi_V
angle & (\lambda=1)\ 0 & (|\lambda|<1) \end{array}
ight.$$

is consistent with

$$S[\Psi_\lambda] = \left\{egin{array}{cc} 1/(2\pi^2g^2) & (\lambda=1)\ 0 & (|\lambda|<1) \end{array}
ight.$$

[Schnabl(2005),Okawa,Fuchs-Kroyter(2006)]

$$\lambda=1$$
 \longrightarrow $\Psi_{
m Sch}$: nontrivial solution $|\lambda|<1$ \implies Ψ_{λ} : pure gauge solution

Ellwood's proposal

For a *solution* to the equation of motion Ψ

$$\mathcal{O}_{V}(\Psi) = \mathcal{A}_{\Psi}^{\text{disk}}(V) - \mathcal{A}_{0}^{\text{disk}}(V) \quad \text{[Ellwood(2008)]}$$

$$\stackrel{\uparrow}{\text{Disk amplitude for a closed string vertex } V \text{ specified by a solution } \Psi$$

$$\stackrel{\downarrow}{\text{lim}} \langle \Phi_{V} | c_{0}^{-} | B_{*}(\Psi) \rangle - \langle \Phi_{V} | c_{0}^{-} | B \rangle$$
[Kiermaier-Okawa-Zwiebach(2008)]

L **7**

In particular,

$${\mathcal O}_V(\Psi_{
m Sch})=0-{\mathcal A}_0^{
m disk}(V)$$

Gauge invariant overlap for marginal solutions

$$\mathcal{O}_{V}(\Psi_{\lambda_{\mathrm{m}}}^{J}) = \mathcal{O}_{V}(\Psi_{L,\lambda_{\mathrm{m}}}^{J}) = \frac{1}{2\pi i} \langle V_{\mathrm{m}}(0) e^{-\lambda_{\mathrm{m}} \oint J} \rangle_{\mathrm{disk}}^{\mathrm{mat}} - \frac{1}{2\pi i} \langle V_{\mathrm{m}}(0) \rangle_{\mathrm{disk}}^{\mathrm{mat}}$$

$$[Ellwood(2008)]$$
Fuchs-Kroyter-Potting/Kiermaier-Okawa's marginal solution (2007)
$$\Psi_{L,\lambda_{\mathrm{m}}}^{J} = \lambda_{\mathrm{m}} c J(0) |0\rangle + \cdots$$

Schnabl/Kiermaier-Okawa-Rastelli-Zwiebach's marginal solution (2007)

$$\Psi^J_{\lambda_{
m m}} = \lambda_{
m m} c J(0) |0
angle + \cdots$$

Gauge invariant overlap for string fields in the universal space

• For string fields in the twist even universal space such as

$$\Psi_{\text{univ}} = (t_1 + t_2 b_{-1} c_{-1} + t_3 L_{-2}^{(\text{m})} + t_4 b_{-3} c_{-1} + t_5 b_{-2} c_{-2} + t_6 b_{-1} c_{-3} + t_7 L_{-2}^{(\text{m})} b_{-1} c_{-1} + t_8 L_{-4}^{(\text{m})} + t_9 (L_{-2}^{(\text{m})})^2 + \cdots) c_1 |0\rangle + (u_1 b_{-2} + u_2 b_{-4} + u_3 b_{-2} b_{-1} c_{-1} + u_4 L_{-2}^{(\text{m})} b_{-2} + u_5 L_{-3}^{(\text{m})} b_{-1} + \cdots) c_0 c_1 |0\rangle$$

$$\mathcal{O}_V(\Psi_{\mathrm{univ}}) = rac{1}{4}t_1 - rac{1}{4}t_2 - rac{3}{4}t_3 + rac{1}{4}t_5 + rac{3}{4}t_7 + rac{3}{2}t_8 + rac{11}{2}t_9 + \cdots$$

• Here, we take a normalization such as

$$|V_{
m m}
angle=rac{-1}{26}\eta_{\mu
u}lpha_{-1}^{\mu}ar{lpha}_{-1}^{
u}|0
angle$$

Zero momentum dilaton state

$$\begin{split} \Phi_{\eta} &= \frac{1}{52\alpha' i} \eta_{\mu\nu} \lim_{\theta \to \frac{\pi}{2}} c(e^{i\theta}) \partial X^{\mu}(e^{i\theta}) c(e^{-i\theta}) \partial X^{\nu}(e^{-i\theta}) |\mathcal{I}\rangle \\ &= \left(\frac{1}{4} - \frac{2}{13} \sum_{n,m=1}^{\infty} mn \cos \frac{(m-n)\pi}{2} \alpha_{-m} \cdot \alpha_{-n} \right) e^{E} c_{0} c_{1} |0\rangle \,, \\ E &= \sum_{n=1}^{\infty} (-1)^{n} \left(-\frac{1}{2n} \alpha_{-n} \cdot \alpha_{-n} + c_{-n} b_{-n} \right) \end{split}$$

$$|\Phi_\eta
angle_3=\langle\hat\gamma(1_{
m c},2)|c_1ar c_1|V_{
m m}
angle_{1_{
m c}}|R(2,3)
angle$$

It satisfies $~~Q|\Phi_\eta
angle=0$

$$\begin{split} &(L_{2n}^{\text{mat}} - L_{-2n}^{\text{mat}}) |\Phi_{\eta}\rangle = (-1)^{n} 3n |\Phi_{\eta}\rangle \\ &(L_{2n-1}^{\text{mat}} + L_{-2n+1}^{\text{mat}}) |\Phi_{\eta}\rangle = 0 \end{split}$$

Level truncation of Schnabl's solution

Conventional oscillator expression

$$\begin{split} \psi_{r-2} &= \left[\prod_{k=1,\leftarrow}^{\infty} e^{u_{2k}(r)L_{-2k}}\right] \left[\frac{1}{\pi} \sin \frac{2\pi}{r} \left(1 - \frac{r}{2\pi} \sin \frac{2\pi}{r}\right) \sum_{p \ge -1; p: \text{odd}} \left(\frac{2}{r} \cot \frac{\pi}{r}\right)^p c_{-p} |0\rangle \\ &+ \frac{r}{2\pi^2} \left(\sin \frac{2\pi}{r}\right)^2 \sum_{s \ge 2; s: \text{even}} \frac{(-1)^{\frac{s}{2}+1}}{s^2 - 1} \left(\frac{2}{r}\right)^s \sum_{p,q \ge -1; p+q: \text{odd}} (-1)^q \left(\frac{2}{r} \cot \frac{\pi}{r}\right)^{p+q} b_{-s} c_{-p} c_{-q} |0\rangle \right] \\ &u_2(r) = -\frac{r^2 - 4}{3r^2}, \ u_4(r) = \frac{r^4 - 16}{30r^4}, \ u_6(r) = -\frac{16(r^2 - 4)(r^2 - 1)(r^2 + 5)}{945r^6}, \dots \end{split}$$
level L-truncation
$$(-1 \le \lambda \le 1) \qquad \mathcal{O}_{\eta}(\Psi_{\lambda,L}) = -\sum_{n=0}^{\infty} \lambda^{n+1} \partial_r \langle \Phi_{\eta}, \psi_{r,L} \rangle |_{r=n} \end{split}$$

$$\psi_{N+1} = O(N^{-3}) \quad (N \to \infty)$$

Evaluation of the potential height by level truncation

Evaluation of the gauge invariant overlap by level truncation

Numerical evaluation of gauge invariants for Schnabl's solution by "level truncation"

$S[\Psi_{ m Sch} _L]/S[\Psi_{ m Sch}]$			
(2,6)	1.06518		
(4,12)	1.04798		
(6,18)	1.03287		
(8,24)	1.02326		
(10,30)	1.01705		
(12,36)	1.01287		
(14,42)	1.00994		

$\mathcal{O}_V(\Psi_{ m Sch} _L)/\mathcal{O}_V(\Psi_{ m Sch})$			
L=2	0.937981		
L=4	0.985559		
L=6	0.988942		
L=8	0.997737		
L=10	0.997547		
L=12	1.00041		
L=14	1.00002		

Numerical solution by level truncation

- Numerical solution in the Siegel gauge : $b_0 |\Psi_{
 m N}
 angle = 0$ [...,Sen-Zwiebach(1999),...]
 - (1) $S[\Psi_{
 m N}]/S[\Psi_{
 m Sch}]$

(L,2L)-	truncation	(L,3L)-	truncation
(2,4)	0.9485534	(2,6)	0.9593766
(4,8)	0.9864034	(4,12)	0.9878218
(6,12)	0.9947727	(6,18)	0.9951771
(8,16)	0.9977795	(8,24)	0.9979302
(10,20)	0.9991161	(10,30)	0.9991825
(12,24)	0.9997907	(12,36)	0.9998223
(14,28)	1.0001580	(14,42)	1.0001737
(16,32)	1.0003678	(16,48)	1.0003754
(18,36)	1.00049	(18,54)	1.0004937

[Gaiotto-Rastelli(2002)]

Evidence of gauge equivalence:

(2) ${\cal O}_V(\Psi_{
m N})/{\cal O}_V(\Psi_{
m Sch})$

(L,2L)-truncation			(L,3L)-	truncation
(2,4)	0.8783238		(2,6)	0.8898618
(4,8)	0.9294792		(4,12)	0.9319524
(6,12)	0.9501746		(6,18)	0.9510789
(8,16)	0.9606165		(8,24)	0.9611748
(10,20)	0.9677900		(10,30)	0.9681148
(12,24)	0.9723211		(12,36)	0.9725595
(14,28)	0.9760046		(14,42)	0.9761715
(16,32)	0.9785442		(16,48)	0.9786768

[Kawano-Kishimoto-Takahashi(2008)] and the latest result

 $\Psi_{
m N} \sim \Psi_{
m Sch}$

Numerical solutions in *a*-gauges

 $(b_0 M + a\,b_0 c_0 ilde Q) |\Psi_a
angle = 0$ Asano-Kato's *a*-gauge ٠ $Q = ilde{Q} + c_0 L_0 + b_0 M$ a=0 \Rightarrow Siegel gauge: $b_0|\Psi_0
angle=0$ $a=\infty$ \Rightarrow Landau gauge: $b_0c_0 ilde{Q}|\Psi_\infty
angle=0$ For *a*-gauge solution, (6,18)-trucation $S[\Psi_a]/S[\Psi_{Sch}]$ (1) $a = \infty$ 0.9609438 a = 4.00.9244886 1.0045858 a = 0.50.9798943 a = -2.0[Asano-Kato(2006)] (and higher level?) $\mathcal{O}_V(\Psi_a)/\mathcal{O}_V(\Psi_{\mathrm{Sch}})$ (?) (2) \Rightarrow our computation

Asano-Kato's *a*-gauge

In the worldsheet ghost number 1 sector,

$$egin{aligned} &(b_0M+ab_0c_0 ilde{Q})\Phi_1=0\ &M=-2\sum_{n=1}^\infty nc_{-n}c_n\ & ilde{Q}=\sum_{n
eq 0}c_{-n}L_n^{(m)}-rac{1}{2}\sum_{n,m,m+n
eq 0}(m-n)c_{-m}c_{-n}b_{m+n} \end{aligned}$$

Note: a=1 \implies $b_0c_0Q\Phi_1=0$

Under the gauge transformation in the free level $\Phi_1 \mapsto \Phi_1 + Q\Lambda_0$ this condition cannot fix the gauge.

$$\implies a
eq 1$$
 perturbatively

On the *a*-gauge

• The *a*-gauge condition conserves the level.

suitable to the level truncation

• The *a*-gauge condition is compatible with the twist even sector in the universal space.

dimension of the truncated space in the *a*-gauge:

$egin{array}{c c} L \end{array}$	0	2	4	6	8	10	12	14	16	18
dim.	1	3	9	26	69	171	402	898	1925	3985

the same as that of the Siegel gauge

Asano-Kato's gauge fixed action

$$S_{GF} = -\frac{1}{2} \sum_{n=-\infty}^{\infty} \langle \Phi_n, Q\Phi_{2-n} \rangle - \frac{g}{3} \sum_{l+n+m=3} \langle \Phi_l, \Phi_m * \Phi_n \rangle + \sum_{n=-\infty}^{\infty} \langle (\mathcal{O}_a \mathcal{B})_{3-n}, \Phi_n \rangle$$

$$\Phi_n, \mathcal{B}_n : \text{worldsheet ghost number } n$$

$$(\mathcal{O}_a \mathcal{B})_n = (b_0 M^{n-1} + ac_0 b_0 M^{n-2} \tilde{Q}) \mathcal{B}_{3-n} \quad (n \ge 2)$$

$$(\mathcal{O}_a \mathcal{B})_{3-n} = (b_0 W_{n-2} + ac_0 b_0 W_{n-1} \tilde{Q}) \mathcal{B}_n \quad (n \ge 2)$$

$$w_n = \sum_{i=0}^{\infty} \frac{(-1)^i (n+i-1)!}{i! (n-1)! ((n+i)!)^2} M^i (M^-)^{n+i} \quad M^- = -\sum_{n=1}^{\infty} \frac{1}{2n} b_{-n} b_n$$

$$integrate \text{ out } \mathcal{B}_n$$

$$b_0 (M^{n-1} + ac_0 \tilde{Q} M^{n-2}) \Phi_{3-n} = 0$$

$$b_0 (W_{n-2} + ac_0 \tilde{Q} W_{n-1}) \Phi_n = 0 \quad (n \ge 2)$$

gauge fixing condition

Massless part

Let us consider "level 1" part of the string fields:

Construction of numerical solutions

$$egin{aligned} \Psi_{(0)} &= rac{64}{81\sqrt{3}}c_1|0
angle &: ext{ nontrivial solution for (0,0)-truncation} \ (b_0M+a\,b_0c_0 ilde Q)\Psi_{(n+1)} &= 0 &: a ext{-gauge condition} \ \mathcal{P}(Q_{\Psi_{(n)}}\Psi_{(n+1)}-\Psi_{(n)}*\Psi_{(n)}) &= 0 &: ext{linear equations!} \end{aligned}$$

 $\mathcal{P} = c_0 b_0$: a projection to solve equations $Q_{\Psi_{(n)}} \Phi \equiv Q \Phi + \Psi_{(n)} * \Phi - (-1)^{|\Phi|} \Phi * \Psi_{(n)}$: "BRST operator" around $\Psi_{(n)}$

We can define
$$\ \Psi_{(n)}\mapsto \Psi_{(n+1)}$$

 $\Psi_{(n+1)} \simeq (Q_{\Psi_{(n)}})^{-1} (\Psi_{(n)} * \Psi_{(n)})$ [Gaiotto-Rastelli(2002)]

On the equation of motion

If the iteration converges for $\ n \to \infty$

 $(b_0 M + a \, b_0 c_0 ilde Q) \Psi_{(\infty)} = 0$: *a*-gauge condition $\mathcal{P}(Q\Psi_{(\infty)} + \Psi_{(\infty)} * \Psi_{(\infty)}) = 0$: projected part of eq. of motion

We check the remaining part of the equation of motion for the resulting configuration:

$$\frac{(1-\mathcal{P})(Q\Psi_{(\infty)} + \Psi_{(\infty)} * \Psi_{(\infty)}) = 0 \quad (?)}{\frac{b_0 c_0}{2}}$$

"BRST invariance" [Hata-Shinohara(2000)]

"Norm" of string fields

Level *L*-truncated string field in the universal space:

$$\Phi = \sum_{k+l \leq L} \sum_{m_k, n_l} t_{k, m_k; l, n_l} \, arphi_{k, m_k} \otimes \psi_{l, n_l}$$

 $arphi_{k,m_{k}}$: a linear combination of

$$L_{-n_1}^{(\mathrm{m})}L_{-n_2}^{(\mathrm{m})}\cdots L_{-n_q}^{(\mathrm{m})}|0
angle_{\mathrm{m}} \quad (n_1\geq n_2\geq \cdots \geq n_q\geq 2)$$
s.t.

$$\langle arphi_{k,m_k}, arphi_{k',m'_{k'}}
angle = (-1)^k \delta_{k,k'} \delta_{m_k,m'_{k'}}, \quad L_0^{(\mathrm{m})} |arphi_{k,m_k}
angle = k |arphi_{k,m_k}
angle$$

$$egin{aligned} \psi_{k,m_k} &> = b_{-p_1} b_{-p_2} \cdots b_{-p_r} c_{-q_1} c_{-q_2} \cdots c_{-q_s} c_1 |0
angle_{ ext{gh}} \ p_1 &> p_2 > \cdots > p_r \geq 1, \ q_1 > q_2 > \cdots > q_s \geq 0, \ \sum_{t=1}^r p_t + \sum_{u=1}^s q_u = k \end{aligned}$$

$$\|\Phi\| = \left(\sum_{k,m_k,l,n_l} |t_{k,m_k;l,n_l}|^2
ight)^{rac{1}{2}}$$

Convergence of iterations

We continue the iterations until

Comments on projection

• If we solve the *a*-gauge condition explicitly and substitute it into the original action, we get

 $S[\Psi]|_{\Psi:a ext{-gauge}}$ variation $\mathrm{bpz}(\mathcal{P}_{\mathrm{GF}})(Q\Psi+\Psi*\Psi)=0$ ${\cal P}_{
m GF} = 1 + rac{1}{a-1} \Big(rac{Q}{L_0} + c_0 \Big) (b_0 + a b_0 c_0 W_1 ilde Q),$ $W_1 = \sum_{i=0}^{\infty} rac{(-1)^i}{\{(i+1)!\}^2} M^i (M^-)^{i+1}, \ \ M^- = -\sum_{i=0}^{\infty} rac{1}{2n} b_{-n} b_n.$

Complicated projection!

On fitting of the value of the action

• an extrapolation for the value of the *action*:

a = 0 (Siegel gauge) [Gaiotto-Rastelli(2002)]

 $F_N(L) = \sum_{n=0}^N rac{a_n}{(L+1)^n}$ data for (L,3L)-truncation (L = 0, 2, 4, 6, 8, 10, 12, 14, 16; N = 9)

Extrapolation for the *a*-gauge solutions

• In the same way, we fit the action for $a \ne 0$ -gauge solutions using data for (L,3L)-truncation. (L = 0, 2, 4, 6, 8, 10, 12, 14; N = 8)

 ${\cal O}_V(\Psi_a)/{\cal O}_V(\Psi_{
m Sch})$

 ${\cal O}_V(\Psi_a)/{\cal O}_V(\Psi_{
m Sch})$

Extrapolation of the gauge invariant overlap?

Gauge invariants for various *a*-gauge solutions (L,3L)-truncation

 ${\cal O}_V(\Psi_a)/{\cal O}_V(\Psi_{
m Sch})$

Gauge invariants for various *a*-gauge solutions (L,3L)-truncation $\mathcal{O}_V(\Psi_a)/\mathcal{O}_V(\Psi_{\mathrm{Sch}})$

 $S[\Psi_a]/S[\Psi_{
m Sch}]$

Gauge invariants for various *a*-gauge solutions (L,3L)-truncation $\mathcal{O}_V(\Psi_a)/\mathcal{O}_V(\Psi_{\mathrm{Sch}})$

 $S[\Psi_a]/S[\Psi_{
m Sch}]$

Coefficient of $c_{-2}c_1|0\rangle \in (1-\mathcal{P})(Q\Psi_a + \Psi_a * \Psi_a)$ (L,3L)-truncation

Coefficient of $c_{-2}c_1|0\rangle \in (1-\mathcal{P})(Q\Psi_a + \Psi_a * \Psi_a)$ (L,3L)-truncation

Extrapolation for consistency of EOM

• For the coefficient of $\ c_{-2}c_1|0
angle\in (1\!-\!\mathcal{P})(Q\Psi_a\!+\!\Psi_a\!*\!\Psi_a)$

we use
$$G_N(L) = \sum_{n=0}^N rac{a_n}{L^n}$$
 [Ga

[Gaiotto-Rastelli(2002)]

as a fitting function using the data $\ L=2,4,6,\cdots,L_{\max};N=L_{\max}/2-1$

Siegel gauge
$$(a=0)$$

 $G_7(\infty)=-0.000026$ $L_{
m max}=16$

$$a=0.5$$
 -gauge $G_6(\infty)=-0.000443 \qquad \qquad L_{
m max}=14$

$$a=-2$$
 -gauge $G_6(\infty)=-0.001239$ $L_{
m max}=14$

Coefficient of $c_{-2}c_1|0\rangle \in (1-\mathcal{P})(Q\Psi_a + \Psi_a * \Psi_a)$ (L,3L)-truncation

Summary (1)

- We have evaluated gauge invariants (action and gauge invariant overlap) for numerical solutions in *a*-gauges by level truncation ((L,2L) and (L,3L)-method).
- We have checked the consistency of the equation of motion.
- Our numerical results suggest: $-\infty \leq a \leq 0, 1 \ll a \leq \infty$

• These are consistent with the gauge equivalence: $\Psi_a \sim \Psi_{\rm Sch}$

Discussion (1)

- The approaching speed of the overlap to the expected value is slower than that of the action.
- Due to the subtlety of the midpoint(?)

(Suppose that the gauge invariant overlap is always well-defined.)

• If there is a small discrepancy between the gauge invariant overlap for the *a*-gauge solutions and that for the Schnabl solution, they are not gauge equivalent.

If so, they might describe different vacua. (!?)

Gauge invariants for various *a*-gauge solutions (L,2L)-truncation $\mathcal{O}_V(\Psi_a)/\mathcal{O}_V(\Psi_{\mathrm{Sch}})$

Gauge invariants for various *a*-gauge solutions (L,2L)-truncation $\mathcal{O}_V(\Psi_a)/\mathcal{O}_V(\Psi_{\mathrm{Sch}})$

Takahashi-Tanimoto's solution

- "Identity based solution" [Takahashi-Tanimoto(2002)]
 - $\Psi_0 = Q_L(e^h 1)\mathcal{I} C_L((\partial h)^2 e^h)\mathcal{I}$

In the following, we take

$$\begin{array}{lll} h(z) &=& \log\left(1+\frac{a}{2}\left(z+\frac{1}{z}\right)^2\right) \\ &=& -\log(1-Z(a))^2 - \sum_{n=1}^{\infty}\frac{(-1)^n}{n}Z(a)^n(z^{2n}+z^{-2n}) \\ Z(a) &=& (1+a-\sqrt{1+2a})/a \end{array}$$

On the TT solution

• Formal pure gauge form:

 $\Psi_0 = \exp(q_L(h)\mathcal{I})Q_{\mathrm{B}}\exp(-q_L(h)\mathcal{I})$

Gauge parameter string field: $\exp(\pm q_L(h)\mathcal{I}) = \exp(\pm q_L(h))\mathcal{I}$ $\exp(\pm q_L(h)) \quad : \text{ill-defined for} \quad a = -1/2$ $q_L(f) \equiv \int_{C_{\text{left}}} \frac{dz}{2\pi i} f(z) : cb : (z)$ Non-trivial solution (?)

However, it is difficult to compute $S[\Psi_0], \ \mathcal{O}_V(\Psi_0)$

SFT around the TT solution

• Expansion around the TT solution:

$$\begin{split} S_{a}[\Phi] &= S[\Psi_{0} + \Phi] - S[\Psi_{0}] \\ &= -\frac{1}{g^{2}} \left[\frac{1}{2} \langle \Phi, Q' \Phi \rangle + \frac{1}{3} \langle \Phi, \Phi * \Phi \rangle \right] \\ Q' &= (1+a)Q_{B} + \frac{a}{2} (Q_{2} + Q_{-2}) + 4aZ(a)c_{0} - 2aZ(a)^{2}(c_{2} + c_{-2}) \\ &- 2a(1 - Z(a)^{2}) \sum_{n=2}^{\infty} (-1)^{n} Z(a)^{n-1}(c_{2n} + c_{-2n}) \\ (Q')^{2} &= 0 \\ \delta_{\Lambda} \Phi &= Q'\Lambda + \Phi * \Lambda - \Lambda * \Phi \qquad \longrightarrow \qquad \delta_{\Lambda} S_{a}[\Phi] = 0 \\ \downarrow (\psi) = e^{Tm}(\psi) + \psi e^{2\omega + \frac{3}{2}} 2^{\frac{1}{2}}(\psi) = \sum_{n=2}^{\infty} Q_{n} e^{-n-1} \end{split}$$

$$j_{
m B}(z)=cT^{
m m}(z)\!+\!:\!bc\partial c\!:\!+\!rac{3}{2}\partial^2 c(z)=\sum_{n=-\infty}Q_nz^{-n-1}$$

On the new BRST operator

• cohomology of Q' [I.K.-Takahashi (2002), Takahashi-Zeze(2003)]

a>-1/2 the same as the original $\,Q_{
m B}$


```
\longrightarrow \Psi_0 : pure gauge
```

a = -1/2 no cohomology at ghost number 1 sector

no open string

 Ψ_0 : tachyon vacuum (!?)

Numerical solution in SFT around the TT solution

• We solve the EOM: $Q'\Phi + \Phi * \Phi = 0$ in the Siegel gauge by level truncation with the iterative algorithm: $c_0b_0(c_0L(a)\Phi^{(n+1)} + \Phi^{(n)} * \Phi^{(n+1)} + \Phi^{(n+1)} * \Phi^{(n)} - \Phi^{(n)} * \Phi^{(n)}) = 0$ $L(a) = \{b_0, Q'\}$ $= (1+a)L_0 + \frac{a}{2}(L_2 + L_{-2}) + a(q_2 - q_{-2}) + 4(1 + a - \sqrt{1+2a})$ If it converges $c_0b_0(Q'\Phi^{(\infty)} + \Phi^{(\infty)} * \Phi^{(\infty)}) = 0$ We also check $\|b_0c_0(Q'\Phi^{(\infty)} + \Phi^{(\infty)} * \Phi^{(\infty)})\|/\|\Phi^{(\infty)}\| \ll 1$

We evaluate the gauge invariants:

(1) potential height: $f_a(\Phi) = 2\pi^2 \left(\frac{1}{2} \langle \Phi, c_0 L(a)\Phi \rangle + \frac{1}{3} \langle \Phi, \Phi * \Phi \rangle \right)$ (2) gauge invariant overlap: $\mathcal{O}_V(\Phi) = 2\pi \langle \hat{\gamma}(\mathbf{1_c}, 2) | \Phi_V \rangle_{\mathbf{1_c}} | \Phi \rangle_2$

Construction of stable vacuum solution

- The initial configuration for $a = 0 \; (Q' = Q_{
 m B})$
- $\Phi^{(0)} = \frac{64}{81\sqrt{3}} c_1 |0\rangle \longrightarrow \Phi_1|_{a=0}$ iteration conventional tachyon vacuum solution $\text{The initial configuration for} \quad a = \epsilon \ (0 < |\epsilon| \ll 1)$ $\Phi^{(0)} = \Phi_1|_{a=0} \longrightarrow \Phi_1|_{a=\epsilon}$ $\text{The initial configuration for} \quad a = 2\epsilon$ $\Phi^{(0)} = \Phi_1|_{a=\epsilon} \longrightarrow \Phi_1|_{a=2\epsilon}$

iteration

Potential height for Φ_1

a

Gauge invariant overlap for Φ_1

a

Stable vacuum solution

• For $L \to \infty$, numerical results suggest

Construction of unstable vacuum solution

• The initial configuration for a = -1/2

$$\Phi^{(0)}=-rac{32}{9\sqrt{3}}\,c_1\left|0
ight
angle$$
 iteration $\Phi_2ig|_{a=-1/2}$

the nontrivial solution for (0,0) truncation

- The initial configuration for $a = -1/2 + \epsilon \ (0 < \epsilon \ll 1)$ $\Phi^{(0)} = \Phi_2|_{a=-1/2}$ $\Phi_2|_{a=-1/2+\epsilon}$ iteration
- The initial configuration for $a = -1/2 + 2\epsilon$ $\Phi^{(0)} = \Phi_2|_{a=-1/2+\epsilon}$ $\Phi_2|_{a=-1/2+2\epsilon}$ iteration

Potential height for Φ_2

a

Gauge invariants for $\Phi_2|_{a=-1/2}$

(L,3L)	$f_a(\Phi_2)$	${\cal O}_V(\Phi_2)$
(0,0)	2.3105796	-1.0748441
(2,6)	2.5641847	-1.0156983
(4,12)	1.6550774	-0.9539832
(6,18)	1.6727496	-0.9207572
(8,24)	1.4193393	-0.9377548
(10,30)	1.4168893	-0.9110994
(12,36)	1.3035715	-0.9237917
(14,42)	1.2986472	-0.9056729
(16,48)	1.2357748	-0.9229035

(L,3L)	Extrapolation of $f_a(\Phi_2)$
(4∞,12∞)	0.98107
(4∞+2,12∞+6)	0.98146

Fitting function:

$$F_N(L) = \sum_{n=0}^N \frac{a_n}{(L+1)^n}$$

Unstable vacuum solution

• For $L
ightarrow \infty$, numerical results suggest

Summary (2)

- We constructed stable solution and unstable solution in the expanded theory around TT's identity based solution.
- We evaluated the gauge invariants for the obtained solutions.
- Numerical results suggest the vacuum structure such as

• This is consistent with the expectation that

$$a>-1/2$$
 \longrightarrow Ψ_{0} : pure gauge $a=-1/2$ \longrightarrow Ψ_{0} : tachyon vacuum

Discussion (2)

Our result on TT solution suggests that the TT solution (*a*=-1/2) may be "gauge equivalent" to the Schnabl solution (λ=1) and give an alternative approach to the nonperturbative vacuum.

Regular solutions? Definition of space of string fields?

• Extension to superstring field theory?