Vacuum structure around identity based solutions in open string field theory

Isao Kishimoto

(RIKEN)

Based on

I.K.-Takahashi, arXiv:0904.1095 (to appear in PTP)

(cf. I.K.-Takahashi, arXiv:0902.0445; Kawano-I.K.-Takahashi, arXiv:0804.1541)

2009/06/17

seminar@T.I.T.ECH

Contents

- Introduction
- Schnabl's solution and gauge invariant overlap
- Gauge invariants for numerical solutions
- Takahashi-Tanimoto's Identity based solution
- String field theory around the TT solution
- Numerical stable solution around TT solution
- Numerical unstable solution around TT solution
- Summary and discussion

Non-perturbative vacuum in bosonic open string field theory

- Schnabl's solution $\Psi_{\rm Sch}$

[Ellwood, Kawano-Kishimoto-Takahashi(2008)]

Bosonic cubic open string field theory

Action:
$$S[\Psi] = -\frac{1}{g^2} \left(\frac{1}{2} \langle \Psi, Q_{\rm B} \Psi \rangle + \frac{1}{3} \langle \Psi, \Psi * \Psi \rangle \right)$$

 $Q_{\rm B} = \oint \frac{dz}{2\pi i} \left(cT^{({
m m})} + bc\partial c \right)$

Equation of motion:

 $Q_{
m B}\Psi+\Psi*\Psi=0$

Gauge transformation:

$$\delta_{\Lambda}\Psi=Q_{\mathrm{B}}\Lambda+\Psi{*}\Lambda-\Lambda{*}\Psi$$

$$ightarrow ~~ \delta_\Lambda S[\Psi] = 0$$

Here, we restrict string fields to twist even sector in the universal space:

 $\Psi = (t_1 + t_2 b_{-1} c_{-1} + t_3 L_{-2}^{(m)} + \cdots) c_1 |0\rangle + (u_1 b_{-2} + \cdots) c_0 c_1 |0\rangle$

Witten type interaction

$$egin{aligned} |A\ast B
angle &= \sum_i |\phi^i
angle \langle f_{(1)}[\phi_i]f_{(2)}[A]f_{(3)}[B]
angle_{ ext{UHP}}\ &f_{(r)}(z) = h^{-1}(e^{(1-r)rac{2\pi}{3}i}h(z)rac{2}{3})\ &h(z) = rac{1+iz}{1-iz} & \phi^i ext{:basis of worldsheet fields}\ &\langle \phi_i, \phi^j
angle = \delta^j_i \end{aligned}$$

Gauge invariant overlap

Gauge invariant for on-shell closed string state

$${\cal O}_V(\Psi) = \langle {\cal I} | V(i) | \Psi
angle = \langle \hat{\gamma}(1_{
m c},2) | \Phi_V
angle_{1_{
m c}} | \Psi
angle_2$$

$$|\Phi_V
angle=c_1ar{c}_1|V_{
m m}
angle$$

 $egin{aligned} V_{
m m} &: ext{matter primary with (1,1)-dim.} & V(i) \ && \mathcal{O}_V(Q_{
m B}\Lambda) = 0 & & \langle \mathcal{I}| & & & \\ \mathcal{O}_V(\Psi*\Lambda) &= \mathcal{O}_V(\Lambda*\Psi) & & & \langle \mathcal{I}| & & & & \end{pmatrix} \ && & & & & & & & \end{pmatrix} & \delta_\Lambda \mathcal{O}_V(\Psi) = 0 \end{aligned}$

In particular, it vanishes for pure gauge solutions: ${\cal O}_V(e^{-\Lambda}Q_{
m B}e^{\Lambda})=0$

Shapiro-Thorn's vertex $\langle \hat{\gamma}(1_{c}, 2) | \phi_{c} \rangle_{1_{c}} | \psi \rangle_{2} = \langle h_{1}[\phi_{c}(0)] h_{2}[\psi(0)] \rangle_{UHP}$

identity state: $\langle \mathcal{I} | \phi
angle = \langle h_{\mathcal{I}}[\phi(0)]
angle_{ ext{UHP}}$

Gauge invariant overlap for Schnabl's analytic solution

• Schnabl's solution for tachyon condensation

$$\begin{split} \Psi_{\rm Sch} &= \frac{\partial_r}{e^{\partial_r} - 1} \psi_r |_{r=0} = \sum_{n=0}^{\infty} \frac{B_n}{n!} \partial_r^n \psi_r |_{r=0} \\ &= \lim_{N \to +\infty} \left(\psi_{N+1} - \sum_{n=0}^N \partial_r \psi_r |_{r=n} \right) \\ \psi_r &\equiv \frac{2}{\pi} U_{r+2}^{\dagger} U_{r+2} \Big[-\frac{1}{\pi} (\mathcal{B}_0 + \mathcal{B}_0^{\dagger}) \tilde{c} (\frac{\pi r}{4}) \tilde{c} (-\frac{\pi r}{4}) + \frac{1}{2} (\tilde{c} (-\frac{\pi r}{4}) + \tilde{c} (\frac{\pi r}{4})) \Big] |0\rangle \quad U_r \equiv (2/r)^{\mathcal{L}_0} \end{split}$$

 $igsquigarrow \mathcal{O}_V(\psi_r)$:independent of $oldsymbol{\gamma}$

[Ellwood, Kawano-Kishimoto-Takahashi (2008)]

$$\mathcal{O}_V(\Psi_{\mathrm{Sch}}) \;\;=\;\; \mathcal{O}_V(\psi_0) = \lim_{N o \infty} \mathcal{O}_V(\psi_{N+1})$$

Analytic computation of gauge invariant overlap for Schnabl's solution (1)

• Note:
$$\psi_r = \frac{2}{\pi} c_1 |0\rangle + O(\mathcal{L}_0 - \mathcal{L}_0^{\dagger}, \mathcal{B}_0 - \mathcal{B}_0^{\dagger}, c_n + (-1)^n c_{-n})$$

 ψ_0
 $(1, 2)| \left((L_n^{(2)} - (-1)^n L_{-n}^{(2)} - (-1)^{\frac{n}{2}} \frac{n}{4} c \, \delta_{n:even} \right)$
 $(\hat{\gamma}(1_c, 2)| \left((L_n^{(2)} - (-1)^n L_{-n}^{(2)} - (-1)^{\frac{n}{2}} \frac{n}{4} c \, \delta_{n:even} \right)$
 $(\hat{\gamma}(1_c, 2)| (-2i^n) \sum_{m \ge 0} (-1)^m (\eta_{2m+1}^n - \eta_{2m-1}^n) (L_m^{(1)} + (-1)^n \bar{L}_m^{(1)})$
 $(\hat{\gamma}(1_c, 2)| (b_n^{(2)} - (-1)^n b_{-n}^{(2)})$
 $(\hat{\gamma}(1_c, 2)| (-2i^n) \sum_{m \ge 0} (-1)^m (\eta_{2m+1}^n - \eta_{2m-1}^n) (b_m^{(1)} + (-1)^n \bar{b}_m^{(1)})$
 $(\hat{\gamma}(1_c, 2)| (c_m^{(2)} + (-1)^m c_{-m}^{(2)})$
 $(\frac{1+x}{1-x})^k = \sum_{n=0}^{\infty} \eta_n^k x^n$
 $(\frac{1+x}{1-x})^k = \sum_{n=0}^{\infty} \eta_n^k x^n$

Analytic computation of gauge invariant overlap for Schnabl's solution (2)

• Relation to the boundary state

$$\langle \hat{\gamma}(1_{
m c},2)|\psi_0
angle_2 {\cal P}_{1_{
m c}}=rac{1}{2\pi}\langle B|c_0^-$$
 [Kawano-I.K.-Takahashi(2008)]

generalization

[Kiermaier-Okawa-Zwiebach(2008)]

$$egin{aligned} |B_*(\Psi_{ ext{Sch}})
angle &\equiv e^{rac{\pi^2}{s}(L_0+ar{L}_0)} \oint_s \mathrm{P}e^{-\int_0^s dt [\mathcal{L}_R(t)+\{\mathcal{B}_R(t),\Psi_{ ext{Sch}}\}]} \ &= |B
angle + \sum_{k=1}^\infty |B_*^{(k)}(\Psi_{ ext{Sch}})
angle \ &= 0 \end{aligned}$$

Analytic computation of gauge inv. overlap for Schnabl's solution (3)

$$egin{aligned} \mathcal{O}_V(\Psi_{
m Sch}) &= & \mathcal{O}_V(\psi_0) = \langle \hat{\gamma}(1_{
m c},2) | \Phi_V
angle_{1_{
m c}} | \psi_0
angle_2 \ &= & rac{1}{2\pi} \langle B | c_0^- | \Phi_V
angle \end{aligned}$$

$$\langle B| = \langle 0|c_{-1}ar{c}_{-1}c_0^+ \exp\left(-\sum_{n=1}^{\infty}\left(rac{1}{n}lpha_n\cdotar{lpha}_n + c_nar{b}_n + ar{c}_nb_n
ight)
ight)$$

For the Schnabl solution with a parameter $~\lambda~~(\lambda
eq 1)$:

$$\Psi_{\lambda} = \frac{\lambda \partial_r}{\lambda e^{\partial_r} - 1} \psi_r|_{r=0} = \sum_{n=1}^{\infty} \frac{f_n(\lambda)}{n!} \partial_r^n \psi_r|_{r=0} = -\sum_{n=0}^{\infty} \lambda^{n+1} \partial_r \psi_r|_{r=n}$$

 $ightarrow \mathcal{O}_V(\Psi_\lambda)=0$

Gauge invariants for Schnabl's solution

Our result: $(\Psi_{\lambda=1}\equiv\Psi_{\mathrm{Sch}})$

$${\cal O}_V(\Psi_\lambda) = \left\{egin{array}{cc} 1/(2\pi)\langle B|c_0^-|\Phi_V
angle & (\lambda=1)\ 0 & (|\lambda|<1) \end{array}
ight.$$

is consistent with

$$S[\Psi_\lambda] = \left\{egin{array}{cc} 1/(2\pi^2g^2) & (\lambda=1)\ 0 & (|\lambda|<1) \end{array}
ight.$$

[Schnabl(2005),Okawa,Fuchs-Kroyter(2006)]

$$\lambda=1$$
 \longrightarrow $\Psi_{
m Sch}$: nontrivial solution $|\lambda|<1$ \implies Ψ_{λ} : pure gauge solution

Erler-Schnabl's solution

[Erler-Schnabl (2009)]

$$\begin{split} \Psi_{\mathrm{ES}} &= \frac{2}{\pi} \frac{1}{\sqrt{1 + \frac{\pi}{2}K_{1}^{L}}} \mathcal{I} * \hat{U}_{1}c_{1}|0\rangle * \left(1 + \frac{\pi}{2}K_{1}^{L}\right) B_{1}^{L}\hat{U}_{1}c_{1}|0\rangle * \frac{1}{\sqrt{1 + \frac{\pi}{2}K_{1}^{L}}} \mathcal{I} \\ &= \frac{2}{\pi} \int_{0}^{\infty} dt \int_{0}^{\infty} ds \frac{e^{-t-s}}{\pi\sqrt{ts}} |t+1\rangle * \hat{U}_{1}c_{1}|0\rangle \left(1 + \frac{\pi}{2}K_{1}^{L}\right) B_{1}^{L}\hat{U}_{1}c_{1}|0\rangle * |s+1\rangle \\ &= \int_{0}^{\infty} dt \int_{0}^{\infty} ds \frac{e^{-t-s}}{\pi\sqrt{ts}} \hat{U}_{t+s+1} \left(\frac{2}{\pi}\tilde{c}\left(\frac{\pi}{4}(s-t)\right) + \frac{1}{\pi}Q_{\mathrm{B}}\hat{\mathcal{B}}\tilde{c}\left(\frac{\pi}{4}(s-t)\right)\right) |0\rangle \end{split}$$

A simple solution ("phantomless" solution)

Note:
$$\frac{1}{\sqrt{1-K}} = \int_0^\infty dt \, \frac{e^{-(1-K)t}}{\sqrt{\pi}\sqrt{t}}$$

Evaluation of gauge invariant overlap for Erler-Schnabl's solution

• Using some relations:

$$\hat{U}_{r+1} = r^{(\mathcal{L}_0 - \mathcal{L}_0^{\dagger})/2} r^{-\mathcal{L}_0}, \quad \tilde{c}(x) = e^{xK_1} \tilde{c}(0) e^{-xK_1}$$
$$\int_0^\infty dt \int_0^\infty ds \frac{e^{-t-s}}{\pi\sqrt{ts}} (t+s) = 1$$

we can compute the gauge invariant overlap as follows:

$$egin{aligned} \mathcal{O}_V(\Psi_{ ext{ES}}) &= \langle \hat{\gamma}(1_{ ext{c}},2) | \Phi_V
angle_{1_{ ext{c}}} | \Psi_{ ext{ES}}
angle_2 &= \langle \hat{\gamma}(1_{ ext{c}},2) | \Phi_V
angle_{1_{ ext{c}}} rac{2}{\pi} c_1 | 0
angle \ &= rac{1}{2\pi} \langle B | c_0^- | \Phi_V
angle \end{aligned}$$

Evaluation of the action for Erler-Schnabl's solution (1)

Note:

$$S[\Psi_{
m ES}] = rac{1}{6g^2} \langle \Psi_{
m ES}, \Psi_{
m ES} st \Psi_{
m ES}
angle = rac{1}{6g^2} \langle {\cal I} | \Psi_{
m ES} st \Psi_{
m ES} st \Psi_{
m ES}
angle$$

$$egin{aligned} \Psi_{\mathrm{ES}} st \Psi_{\mathrm{ES}} st \Psi_{\mathrm{ES}} &= -rac{4}{\pi^2} \int_0^\infty dt \int_0^\infty ds' rac{e^{-t-s'}}{\pi\sqrt{ts}} \int_0^\infty dx e^{-x} \hat{U}_{t+s'+x+1} \ & ilde{c} \left(rac{\pi}{4} (s'-t+x)
ight) ilde{c} ilde{\partial} ilde{c} \left(rac{\pi}{4} (s'-t-x)
ight) |0
angle \ & + Q_{\mathrm{B}}(\cdots) \end{aligned}$$

$$egin{aligned} &\langle \mathcal{I} | Q_{ ext{B}} = 0 \ &\langle \mathcal{I} | \hat{U}_{r+1} = \langle 0 | U_r, \quad \langle 0 | ilde{c}(x) ilde{c} ilde{\partial} ilde{c}(y) | 0
angle = - \sin^2(x-y) \end{aligned}$$

Evaluation of the action for Erler-Schnabl's solution (2)

$$\begin{split} \langle \Psi_{\rm ES}, \Psi_{\rm ES} * \Psi_{\rm ES} \rangle &= -\frac{4}{\pi^2} \int_0^\infty dt \int_0^\infty ds' \frac{e^{-t-s'}}{\pi\sqrt{ts}} \int_0^\infty dx \\ &e^{-x} \langle 0 | U_{t+s'+x} \tilde{c} \left(\frac{\pi}{4} (s'-t+x) \right) \tilde{c} \tilde{\partial} \tilde{c} \left(\frac{\pi}{4} (s'-t-x) \right) | 0 \rangle \\ &= -\frac{4}{\pi^2} \int_0^\infty dt \int_0^\infty ds' \frac{e^{-t-s'}}{\pi\sqrt{ts}} \int_0^\infty dx \frac{d}{dx} e^{-x} \left(\frac{t+s'+x}{2} \right)^2 \\ &\quad \langle 0 | \tilde{c} \left(\frac{\pi}{2} \frac{x}{t+s'+x} \right) \tilde{c} \tilde{\partial} \tilde{c} \left(\frac{\pi}{2} \frac{-x}{t+s'+x} \right) | 0 \rangle \\ &= -\frac{1}{\pi^2} \int_0^\infty dx \int_0^\infty dy e^{-x-y} (x+y)^2 \left(-\sin^2 \frac{\pi x}{x+y} \right) \\ &= \frac{1}{\pi^2} \int_0^\infty dr e^{-r} r^3 \int_0^1 du \sin^2 \pi u = \frac{3}{\pi^2} \end{split}$$

$$igsquare{ S[\Psi_{
m ES}]} = rac{1}{2\pi^2 g^2}$$

Numerical solution by level truncation

- Numerical solution in the Siegel gauge: $b_0 |\Psi_{
 m N}
 angle = 0$ [...,Sen-Zwiebach (1999),...]
 - (1) $S[\Psi_{
 m N}]/S[\Psi_{
 m Sch}]$

(L,2L)-	truncation	(L,3L)-truncation		
(2,4)	0.9485534	(2,6)	0.9593766	
(4,8)	0.9864034	(4,12)	0.9878218	
(6,12)	0.9947727	(6,18)	0.9951771	
(8,16)	0.9977795	(8,24)	0.9979302	
(10,20)	0.9991161	(10,30)	0.9991825	
(12,24)	0.9997907	(12,36)	0.9998223	
(14,28)	1.0001580	(14,42)	1.0001737	
(16,32)	1.0003678	(16,48)	1.0003754	
(18,36)	1.00049	(18,54)	1.0004937	

[Gaiotto-Rastelli (2002)]

Evidence of gauge equivalence:

(2) ${\cal O}_V(\Psi_{
m N})/{\cal O}_V(\Psi_{
m Sch})$

(L,2L)-truncation			(L,3L)-truncation		
(2,4)	0.8783238		(2,6)	0.8898618	
(4,8)	0.9294792		(4,12)	0.9319524	
(6,12)	0.9501746		(6,18)	0.9510789	
(8,16)	0.9606165		(8,24)	0.9611748	
(10,20)	0.9677900		(10,30)	0.9681148	
(12,24)	0.9723211		(12,36)	0.9725595	
(14,28)	0.9760046		(14,42)	0.9761715	
(16,32)	0.9785442		(16,48)	0.9786768	

[Kawano-Kishimoto-Takahashi (2008)] and the latest result

 $\Psi_{
m N} \sim \Psi_{
m Sch}$

On fitting of the value of the action

• an extrapolation for the value of the *action*:

$$F_N(L) = \sum_{n=0}^N rac{a_n}{(L+1)^n}$$

[Gaiotto-Rastelli (2002)]

data for (L,3L)-truncation (L = 0, 2, 4, 6, 8, 10, 12, 14, 16; N = 9)

Extrapolation of the gauge invariant overlap?

If we use the same fit function in the same way as the action *naively*, we have 1.10 $F_9(\infty) = 0.442107$ 1.05 1.00 The fitting does not work well. 0.95 0.90 0.85 $\frac{1}{50}$ L 40 30 10 20 However, if we take a fit function: $F_{exp}(L) = a_0 \exp\left(-\frac{a_1}{L+1} - \frac{a_2}{(L+1)^2}\right)$ ${\cal O}_V(\Psi_{
m N})/{\cal O}_V(\Psi_{
m Sch})$ using data for (L,3L)-truncation 0.99 (L = 0, 2, 4, 6, 8, 10, 12, 14, 16)0.98 0.97 $F_{\mathrm{exp}}(\infty) = 0.99954$ 0.96 0.95

 $\frac{1}{50}$ L

0.94

10

20

30

40

A good fitting function (!?)

Numerical solutions in Asano-Kato's a-gauges

Gauge invariants for AK's *a*-gauge solutions

((L,3L)-truncation)

Gauge invariants for AK's *a*-gauge solutions ((L,3L)-truncation)

Summary (1)

- We have evaluated gauge invariants (action and gauge invariant overlap) for numerical solutions in AK's *a*-gauges by level truncation
- Our numerical results suggest:

$$egin{aligned} L & o +\infty & S[\Psi_{a,L}]|_L o S[\Psi_{ ext{Sch}}] = S[\Psi_{ ext{ES}}] \ & \mathcal{O}_V(\Psi_{a,L}) o \mathcal{O}_V(\Psi_{ ext{Sch}}) = \mathcal{O}_V(\Psi_{ ext{ES}}) \end{aligned}$$

• It is consistent with the gauge equivalence:

 $\Psi_a \sim \Psi_{
m Sch} \sim \Psi_{
m ES}$

Takahashi-Tanimoto's solution

• "Identity based solution" [Takahashi-Tanimoto (2002)]

$$egin{aligned} \Psi_0 &= Q_L ig(e^h - 1 ig) \mathcal{I} - C_L ig(ig(\partial h ig)^2 e^h ig) \mathcal{I} \ Q_L (f) &\equiv \int_{C_{ ext{left}}} rac{dz}{2\pi i} f(z) j_{ ext{B}}(z) & C_L (f) &\equiv \int_{C_{ ext{left}}} rac{dz}{2\pi i} f(z) c(z) \end{aligned}$$

$$h(-1/z)=h(z), \hspace{1em} h(\pm i)=0$$

In the following, we take

$$egin{aligned} h(z) &= &\log\left(1+rac{a}{2}\left(z+rac{1}{z}
ight)^2
ight) \ &= &-\log(1-Z(a))^2-\sum_{n=1}^\inftyrac{(-1)^n}{n}Z(a)^n(z^{2n}+z^{-2n}) \ &Z(a) = (1+a-\sqrt{1+2a})/a \ &a \geq -1/2 \end{aligned}$$

Half-integration and identity state $(\sigma(z)A) * B = (-1)^{|\sigma||A|} * (z'^{2h}\sigma(z')B) \quad (zz' = -1, |z| = 1, \operatorname{Re} z \leq 0)$ \swarrow primary field (dim h) $(\Sigma_R(F)A) * B = -(-1)^{|\sigma||A|}A * (\Sigma_L(F)B)$

 $\mathcal{I} st A = A st \mathcal{I} = A$: identity element with respect to the star product

On the TT solution

• Formal pure gauge form:

 $\Psi_0 = \exp(q_L(h)\mathcal{I})Q_{\mathrm{B}}\exp(-q_L(h)\mathcal{I})$

Gauge parameter string field: $\exp(\pm q_L(h)\mathcal{I}) = \exp(\pm q_L(h))\mathcal{I}$ $\exp(\pm q_L(h)) \quad : \text{ill-defined for} \quad a = -1/2$ $q_L(f) \equiv \int_{C_{\text{left}}} \frac{dz}{2\pi i} f(z) : cb : (z)$ Non-trivial solution (?)

On the TT solution (1)

It is difficult to compute $S[\Psi_0]$, $\mathcal{O}_V(\Psi_0)$ directly, because $\langle \mathcal{I} | (\cdots) | \mathcal{I} \rangle$ is divergent.

Identity based solutions may be "singular."

Alternatively, we investigate string field theories around Ψ_0 .

SFT around the TT solution

• Expansion around the TT solution:

 $\delta_\Lambda {\cal O}_V(\Phi)=0$

On the new BRST operator

• cohomology of Q' [I.K.-Takahashi (2002)]

a>-1/2 the same as the original $\,Q_{
m B}$

 \longrightarrow Ψ_0 : pure gauge

a = -1/2 no cohomology at ghost number 1 sector

no open string

 Ψ_0 : tachyon vacuum (!?)

Note: vanishing cohomology around Schnabl's solution —> [Ellwood-Schnabl (2006)]

Numerical solution in SFT
around the TT solution (1)• We solve the EOM: $Q'\Phi + \Phi * \Phi = 0$
in the Siegel gauge $b_0\Phi = 0$ [cf. Gaiotto-Rastelli(2002)]by level truncation with the iterative algorithm:

 $c_0 b_0 (c_0 L(a) \Phi^{(n+1)} + \Phi^{(n)} * \Phi^{(n+1)} + \Phi^{(n+1)} * \Phi^{(n)} - \Phi^{(n)} * \Phi^{(n)}) = 0$

$$L(a) = \{b_0, Q'\}$$

= $(1+a)L_0 + \frac{a}{2}(L_2 + L_{-2}) + a(q_2 - q_{-2}) + 4(1 + a - \sqrt{1+2a})$
Using the above we can define $\Phi^{(n)} \mapsto \Phi^{(n+1)}$

dimension of the truncated space in the Siegel-gauge:

igsquare	0	2	4	6	8	10	12	14	16	18
dim.	1	3	9	26	69	171	402	898	1925	3985

Numerical solution in SFT
around the TT solution (2)If the iteration converges $c_0 b_0 (Q' \Phi^{(\infty)} + \Phi^{(\infty)} * \Phi^{(\infty)}) = 0$ Projected part of the equation of motion

We also check the "BRST invariance": [cf. Hata-Shinohara (2000)]

 $\|b_0 c_0 (Q' \Phi^{(\infty)} + \Phi^{(\infty)} * \Phi^{(\infty)})\| / \|\Phi^{(\infty)}\| \ll 1$

We evaluate the gauge invariants:

(1) potential height:
$$f_a(\Phi) = 2\pi^2 \left(rac{1}{2} \left< \Phi, c_0 L(a) \Phi \right> + rac{1}{3} \left< \Phi, \Phi * \Phi \right>
ight)$$

(2)gauge invariant overlap: $\mathcal{O}_V(\Phi) = 2\pi \langle \hat{\gamma}(1_c,2) | \Phi_V \rangle_{1_c} | \Phi \rangle_2$

Construction of stable vacuum solution

• The initial configuration for $a=0~(Q'=Q_{
m B})$

$$\Phi^{(0)} = rac{64}{81\sqrt{3}}\,c_1\ket{0}$$

iteration

conventional tachyon vacuum solution

 $|\Phi_1|_{a=0}$

the nontrivial solution for (0,0) truncation

- The initial configuration for $a = \epsilon \ (0 < |\epsilon| \ll 1)$ $\Phi^{(0)} = \Phi_1|_{a=0} \longrightarrow \Phi_1|_{a=\epsilon}$ iteration
- The initial configuration for $\ \ a=2\epsilon$

$$\Phi^{(0)} = \Phi_1|_{a=\epsilon}$$
 $\longrightarrow_{ ext{iteration}}$ $\Phi_1|_{a=2\epsilon}$

Potential height for Φ_1

Gauge invariant overlap for Φ_1

Stable vacuum solution

• For $L \to \infty$, numerical results suggest

Construction of unstable vacuum solution

• The initial configuration for a = -1/2

$$\Phi^{(0)} = -rac{32}{9\sqrt{3}} \, c_1 \left| 0
ight
angle$$
 iteration $\Phi_2 ig|_{a=-1/2}$

the nontrivial solution for (0,0) truncation

- The initial configuration for $a = -1/2 + \epsilon \ (0 < \epsilon \ll 1)$ $\Phi^{(0)} = \Phi_2|_{a=-1/2}$ $\Phi_2|_{a=-1/2+\epsilon}$ iteration
- The initial configuration for $a = -1/2 + 2\epsilon$ $\Phi^{(0)} = \Phi_2|_{a=-1/2+\epsilon}$ $\Phi_2|_{a=-1/2+2\epsilon}$ iteration

Potential height for Φ_2 (near -1/2)

 $f_a(\Phi_2)$

Gauge invariant overlap for Φ_2

Gauge invariant overlap for Φ_2

Gauge invariant overlap for Φ_2 (near -1/2)

Gauge invariants for $\Phi_2|_{a=-1/2}$

(L,3L)	$f_a(\Phi_2)$	${\cal O}_V(\Phi_2)$
(0,0)	2.3105796	-1.0748441
(2,6)	2.5641847	-1.0156983
(4,12)	1.6550774	-0.9539832
(6,18)	1.6727496	-0.9207572
(8,24)	1.4193393	-0.9377548
(10,30)	1.4168893	-0.9110994
(12,36)	1.3035715	-0.9237917
(14,42)	1.2986472	-0.9056729
(16,48)	1.2357748	-0.9229035

(L,3L)	Extrapolation of $f_a(\Phi_2)$			
(4∞,12∞)	0.98107			
(4∞+2,12∞+6)	0.98146			

Fitting function:

$$F_N(L)=\sum_{n=0}^Nrac{a_n}{(L+1)^n}$$

Unstable vacuum solution

• For $L \to \infty$, numerical results suggest

Summary (2)

- We constructed stable solution and unstable solution in the expanded theory around TT's identity based solution.
- We evaluated the gauge invariants for the obtained solutions.
- Numerical results suggest the vacuum structure is like this:

• This is consistent with the expectation that

$$a>-1/2$$
 \longrightarrow Ψ_{0} : pure gauge $a=-1/2$ \longrightarrow Ψ_{0} : tachyon vacuum

Discussion

- Our result on TT's solution suggests that the TT solution (*a*=-1/2) may be "gauge equivalent" to the Schnabl solution (λ=1) and give an alternative approach to investigating the nonperturbative vacuum.
- Regular solutions? Definition of the space of string fields?
- Extension to superstring field theory?

[Erler(2007), Aref'eva-Gorbachev-Medvedev(2008), Fuchs-Kroyter(2008),...]