Vacuum structure around identity based solutions

Isao Kishimoto

(RIKEN)

Collaboration with Tomohiko Takahashi (Nara Women's Univ.) Ref. I.K.-Takahashi, arXiv:0904.1095 (to appear in PTP)

2009/07/08

qft2009@YITP Kyoto Univ.

Non-perturbative vacuum in bosonic open string field theory

- Schnabl's solution $\Psi_{\rm Sch}$

[Ellwood, Kawano-Kishimoto-Takahashi(2008)]

Bosonic cubic open string field theory

Action: $S[\Psi] = -\frac{1}{g^2} \left(\frac{1}{2} \langle \Psi, Q_{\rm B} \Psi \rangle + \frac{1}{3} \langle \Psi, \Psi * \Psi \rangle \right)$ $Q_{\rm B} = \oint \frac{dz}{2\pi i} \left(cT^{({
m m})} + bc\partial c \right)$

Equation of motion:

 $Q_{\mathrm{B}}\Psi + \Psi * \Psi = 0$

Gauge transformation: $\delta_\Lambda \Psi$

$$\delta_\Lambda \Psi = Q_{
m B}\Lambda + \Psi * \Lambda - \Lambda * \Psi$$

$$ightarrow ~~ \delta_\Lambda S[\Psi] = 0$$

Gauge invariant overlap

Gauge invariant for on-shell closed string state

$${\cal O}_V(\Psi) = \langle {\cal I} | V(i) | \Psi
angle = \langle \hat{\gamma}(1_{
m c},2) | \Phi_V
angle_{1_{
m c}} | \Psi
angle_2$$

$$|\Phi_V
angle=c_1ar{c}_1|V_{
m m}
angle$$

 $V_{
m m}\,$:matter primary with (1,1)-dim.

Shapiro-Thorn's open-closed vertex

 $egin{aligned} \mathcal{O}_V(Q_{
m B}\Lambda) &= 0 \ \mathcal{O}_V(\Psi*\Lambda) &= \mathcal{O}_V(\Lambda*\Psi) \ & igstarrow \delta_\Lambda \mathcal{O}_V(\Psi) &= 0 \end{aligned}$

In particular, it vanishes for pure gauge solutions: ${\cal O}_V(e^{-\Lambda}Q_{
m B}e^{\Lambda})=0$

Gauge invariants for Schnabl's solution

Schnabl's solution with one parameter: $(\Psi_{\lambda=1}\equiv\Psi_{
m Sch})$

$$\Psi_{\lambda} = rac{\lambda \partial_{r}}{\lambda e^{\partial_{r}} - 1} \psi_{r}|_{r=0}$$
 $\psi_{r} \equiv rac{2}{\pi} U_{r+2}^{\dagger} U_{r+2} \Big[-rac{1}{\pi} (\mathcal{B}_{0} + \mathcal{B}_{0}^{\dagger}) \tilde{c} (rac{\pi r}{4}) + rac{1}{2} (ilde{c} (-rac{\pi r}{4}) + ilde{c} (rac{\pi r}{4})) \Big] |0
angle$
 $U_{r} \equiv (2/r)^{\mathcal{L}_{0}}$

Analytic computation and numerical computation with conventional level truncation:

$$\begin{split} S[\Psi_{\lambda}] &= \left\{ \begin{array}{cc} 1/(2\pi^{2}g^{2}) & (\lambda = 1) \\ 0 & (|\lambda| < 1) \end{array} \right. \\ \mathcal{O}_{V}(\Psi_{\lambda}) &= \left\{ \begin{array}{cc} 1/(2\pi)\langle B|c_{0}^{-}|\Phi_{V}\rangle & (\lambda = 1) \\ 0 & (|\lambda| < 1) \end{array} \right. \\ \left. \begin{array}{c} \lambda = 1 \\ \lambda = 1 \end{array} \right. \\ \lambda = 1 \end{array} \quad \text{are consistent with} \\ \lambda = 1 \end{array} \quad \Psi_{\mathrm{Sch}} : \mathrm{nontrivial solution} \\ \left|\lambda\right| < 1 \end{array} \quad \Psi_{\lambda} : \mathrm{pure gauge solution} \end{split}$$

Takahashi-Tanimoto's solution

• "Identity based solution" [Takahashi-Tanimoto (2002)]

$$egin{aligned} \Psi_0 &= Q_L ig(e^h - 1 ig) \mathcal{I} - C_L ig(ig(\partial h ig)^2 e^h ig) \mathcal{I} \ Q_L (f) &\equiv \int_{C_{ ext{left}}} rac{dz}{2\pi i} f(z) j_{ ext{B}}(z) & C_L (f) &\equiv \int_{C_{ ext{left}}} rac{dz}{2\pi i} f(z) c(z) \end{aligned}$$

$$h(-1/z)=h(z), \hspace{1em} h(\pm i)=0$$

In the following, we take

$$\begin{split} h(z) &= \log\left(1 + \frac{a}{2}\left(z + \frac{1}{z}\right)^2\right) \\ &= -\log(1 - Z(a))^2 - \sum_{n=1}^{\infty} \frac{(-1)^n}{n} Z(a)^n (z^{2n} + z^{-2n}) \end{split}$$

$$Z(a) = (1 + a - \sqrt{1 + 2a})/a$$
 $a \ge -1/2$

On the TT solution (1)

• Formal pure gauge form:

 $\Psi_0 = \exp(q_L(h)\mathcal{I})Q_{\mathrm{B}}\exp(-q_L(h)\mathcal{I})$

Gauge parameter string field: $\exp(\pm q_L(h)\mathcal{I}) = \exp(\pm q_L(h))\mathcal{I}$ $\exp(\pm q_L(h)) \quad : \text{ill-defined for} \quad a = -1/2$ $q_L(f) \equiv \int_{C_{\text{left}}} \frac{dz}{2\pi i} f(z) : cb : (z)$ Non-trivial solution (?)

On the TT solution (2)

It is difficult to compute $S[\Psi_0]$, $\mathcal{O}_V(\Psi_0)$ directly, because $\langle \mathcal{I} | (\cdots) | \mathcal{I} \rangle$ is divergent.

Identity based solutions may be "singular."

Alternatively, we investigate string field theories around Ψ_0 .

SFT around the TT solution

• Expansion around the TT solution:

On the new BRST operator

• cohomology of $\,Q^\prime\,$ [I.K.-Takahashi (2002)]

a>-1/2 the same as the original $\,Q_{
m B}$

 \longrightarrow Ψ_0 : pure gauge

a = -1/2 no cohomology at ghost number 1 sector

no open string

 Ψ_0 : tachyon vacuum (!?)

Numerical solution in SFT
around the TT solution (1)• We solve the EOM: $Q'\Phi + \Phi * \Phi = 0$ in the Siegel gauge $b_0\Phi = 0$ by level truncation with the iterative algorithm:

[cf. Gaiotto-Rastelli(2002)]

$$c_0 b_0 (c_0 L(a) \Phi^{(n+1)} + \Phi^{(n)} * \Phi^{(n+1)} + \Phi^{(n+1)} * \Phi^{(n)} - \Phi^{(n)} * \Phi^{(n)}) = 0$$

$$L(a) = \{b_0, Q'\}$$

= $(1+a)L_0 + \frac{a}{2}(L_2 + L_{-2}) + a(q_2 - q_{-2}) + 4(1 + a - \sqrt{1+2a})$

Using the above we can define $\Phi^{(n)} \mapsto \Phi^{(n+1)}$

Numerical solution in SFT
around the TT solution (2)If the iteration converges, $c_0 b_0 (Q' \Phi^{(\infty)} + \Phi^{(\infty)} * \Phi^{(\infty)}) = 0$ Projected part of the equation of motion

We also check the "BRST invariance": [cf. Hata-Shinohara (2000)]

 $\|b_0 c_0 (Q' \Phi^{(\infty)} + \Phi^{(\infty)} * \Phi^{(\infty)})\| / \|\Phi^{(\infty)}\| \ll 1$

We evaluate the gauge invariants:

(1) potential height:
$$f_a(\Phi) = 2\pi^2 \left(\frac{1}{2} \langle \Phi, c_0 L(a) \Phi \rangle + \frac{1}{3} \langle \Phi, \Phi * \Phi \rangle \right)$$

(2) gauge invariant overlap: $\mathcal{O}_V(\Phi) = 2\pi \langle \hat{\gamma}(\mathbf{1_c}, 2) | \Phi_V \rangle_{\mathbf{1_c}} | \Phi \rangle_2$

Construction of stable vacuum solution

• The initial configuration for $a=0~(Q'=Q_{
m B})$

$$\Phi^{(0)} = rac{64}{81\sqrt{3}}\,c_1\ket{0}$$

iteration

conventional tachyon vacuum solution

 $|\Phi_1|_{a=0}$

the nontrivial solution for (0,0) truncation

- The initial configuration for $a = \epsilon \ (0 < |\epsilon| \ll 1)$ $\Phi^{(0)} = \Phi_1|_{a=0} \longrightarrow \Phi_1|_{a=\epsilon}$ iteration
- The initial configuration for $\ \ a=2\epsilon$

$$\Phi^{(0)} = \Phi_1|_{a=\epsilon}$$
 $\longrightarrow_{ ext{iteration}}$ $\Phi_1|_{a=2\epsilon}$

Potential height for Φ_1

Gauge invariant overlap for Φ_1

Stable vacuum solution

• For $L \to \infty$, numerical results suggest

$$oldsymbol{\Phi_1}$$
 :nontrivial tachyon vacuum

$$a = -1/2$$

$$\Phi_1 = 0$$

Construction of unstable vacuum solution

• The initial configuration for a = -1/2

$$\Phi^{(0)}=-rac{32}{9\sqrt{3}}\,c_1\left|0
ight
angle$$
 iteration $\Phi_2ig|_{a=-1/2}$

the nontrivial solution for (0,0) truncation

- The initial configuration for $a = -1/2 + \epsilon \ (0 < \epsilon \ll 1)$ $\Phi^{(0)} = \Phi_2|_{a=-1/2}$ $\Phi_2|_{a=-1/2+\epsilon}$ iteration
- The initial configuration for $a = -1/2 + 2\epsilon$ $\Phi^{(0)} = \Phi_2|_{a=-1/2+\epsilon}$ $\Phi_2|_{a=-1/2+2\epsilon}$ iteration

Potential height for Φ_2 (near -1/2)

 $f_a(\Phi_2)$

Gauge invariant overlap for Φ_2

Gauge invariant overlap for Φ_2 (near -1/2)

Gauge invariants for $\Phi_2|_{a=-1/2}$

(L,3L)	$f_a(\Phi_2)$	${\cal O}_V(\Phi_2)$
(0,0)	2.3105796	-1.0748441
(2,6)	2.5641847	-1.0156983
(4,12)	1.6550774	-0.9539832
(6,18)	1.6727496	-0.9207572
(8,24)	1.4193393	-0.9377548
(10,30)	1.4168893	-0.9110994
(12,36)	1.3035715	-0.9237917
(14,42)	1.2986472	-0.9056729
(16,48)	1.2357748	-0.9229035

(L,3L)	Extrapolation of $f_a(\Phi_2)$
(4∞,12∞)	0.98107
(4∞+2,12∞+6)	0.98146

Fitting function:

$$F_N(L)=\sum_{n=0}^Nrac{a_n}{(L+1)^n}$$

Unstable vacuum solution

• For $L
ightarrow \infty$, numerical results suggest

$$a > -1/2$$

$$\Phi_2=0$$

$$a = -1/2$$

 Φ_2 :nontrivial vacuum (perturbative vacuum!?)

Summary

- We constructed stable solution and unstable solution in the expanded theory around TT's identity based solution.
- We evaluated the gauge invariants for the obtained solutions.
- Numerical results suggest:

• This is consistent with the expectation that

$$a>-1/2$$
 \longrightarrow Ψ_{0} : pure gauge $a=-1/2$ \longrightarrow Ψ_{0} : tachyon vacuum

Discussion

- Our result on TT's solution suggests that the TT solution (*a*=-1/2) may be "gauge equivalent" to the Schnabl solution (λ=1) and give an alternative approach to investigating the nonperturbative vacuum.
- Regular solutions? Definition of the space of string fields?
- Extension to superstring field theory?

[Erler(2007), Aref'eva-Gorbachev-Medvedev(2008), Fuchs-Kroyter(2008),...]