ON IDENTITY BASED SOLUTIONS IN OPEN STRING FIELD THEORY

Isao Kishimoto (RIKEN)

based on collaboration with Tomohiko Takahashi (Nara Women's Univ.) Refs. I.K. and T.T. : PTP108(2002)591[hep-th/0205275], PTP122(2009)385[arXiv:0904.1095] (and recent numerical results)

CONTENTS

Introduction

- Takahashi-Tanimoto's identity based solution
- String field theory around TT solutions
- Construction of numerical solutions
- Comments on numerical solution in Siegel gauge
- Numerical stable solution around TT solution (l=1)
- Numerical unstable solution around TT solution (l=1)
- Numerical solutions around TT solution (l=2,3)
- Summary and discussion

NON-PERTURBATIVE VACUUM IN OPEN BOSONIC STRING FIELD THEORY (1)

\circ Schnabl's solution $\Psi_{ m Sch}$

Gauge invariants

(1) Action: D-brane tension $S[\Psi_{
m Sch}]/V_{
m 26} = rac{1}{2\pi^2 g^2}$

[Schnabl(2005),Okawa,Fuchs-Kroyter(2006)]

(2) Gauge invariant overlap:

$${\cal O}_V(\Psi_{
m Sch}) = {1\over 2\pi} \langle B | c_0^- | \Phi_V
angle$$

[Ellwood, Kawano-Kishimoto-Takahashi(2008)]

NON-PERTURBATIVE VACUUM IN OPEN BOSONIC STRING FIELD THEORY (2)

 $Q'\equiv Q_{
m B}+[\Psi_{
m Sch},~\cdot~\}_*$

no cohomology (in all ghost number sectors)

[Ellwood-Schnabl(2006)]

On the other hand,

in 2002, Takahashi and Tanimoto constructed a class of analytic solutions ("identity based solutions") and conjectured that it represents a non-perturbative vacuum for a particular value of the parameter. (a = -1/2)

Actually, around the solution $\Psi_{l,a=-1/2}$ there is no cohomology in the ghost number 1 sector. [Kishimoto-Takahashi (2002)]

We have obtained further quantitative evidences. [Kishimoto-Takahashi (2009)]

OPEN BOSONIC STRING FIELD THEORY

Action:
$$S[\Psi] = -rac{1}{g^2}\left(rac{1}{2}\langle\Psi,Q_{
m B}\Psi
angle + rac{1}{3}\langle\Psi,\Psi*\Psi
angle
ight)$$

Equation of motion: $Q_{
m B}\Psi+\Psi*\Psi=0$

Gauge transformation: $\delta_{\Lambda}\Psi = Q_{\mathrm{B}}\Lambda + \Psi*\Lambda - \Lambda*\Psi$

$$ightarrow ~~ \delta_\Lambda S[\Psi] = 0$$

6

WITTEN TYPE INTERACTION

$$\begin{split} |A \ast B\rangle &= \sum_{i} |\phi^{i}\rangle \langle f_{(1)}[\phi_{i}]f_{(2)}[A]f_{(3)}[B]\rangle_{\text{UHP}} \\ &= \sum_{i} |\phi^{i}\rangle \langle V_{3}(1,2,3)|\phi_{i}\rangle_{1}|A\rangle_{2}|B\rangle_{3} \\ f_{(r)}(z) &= h^{-1}(e^{(1-r)\frac{2\pi}{3}i}h(z)^{\frac{2}{3}}) \qquad \phi^{i} \text{ :basis of worldsheet fields} \\ h(z) &= \frac{1+iz}{1-iz} \qquad \langle \phi_{i},\phi^{j}\rangle = \delta_{i}^{j} \end{split}$$

GAUGE INVARIANT OVERLAP Gauge invariant for on-shell closed string state

$${\cal O}_V(\Psi) = \langle {\cal I} | V(i) | \Psi
angle = \langle \hat \gamma(1_{
m c},2) | \Phi_V
angle_{1_{
m c}} | \Psi
angle_2$$

$$|\Phi_V
angle=c_1ar{c}_1|V_{
m m}
angle$$

 $V_{
m m}$:matter primary with (1,1)-dim.

$$egin{aligned} \mathcal{O}_V(Q_{ ext{B}}\Lambda) &= 0 \ \mathcal{O}_V(\Psi*\Lambda) &= \mathcal{O}_V(\Lambda*\Psi) \end{aligned}$$

 $\Rightarrow \ \delta_{\Lambda} \mathcal{O}_{V}(\Psi) = 0$

In particular, it vanishes for pure gauge solutions:

$${\cal O}_V(e^{-\Lambda}Q_{
m B}e^{\Lambda})=0$$

8

 $\langle \mathcal{I} |$

V(i)

CONTENTS

Introduction

o Takahashi-Tanimoto's identity based solution

- String field theory around TT solutions
- Construction of numerical solutions
- Comments on numerical solution in Siegel gauge
- Numerical stable solution around TT solution (l=1)
- Numerical unstable solution around TT solution (l=1)
- Numerical solutions around TT solution (l=2,3)
- Summary and discussion

TAKAHASHI-TANIMOTO'S SOLUTION

• a type of "identity based solutions"

$$\Psi_h = Q_L(e^h - 1)\mathcal{I} - C_L((\partial h)^2 e^h)\mathcal{I}$$

 ${\mathcal I}$: identity state

$$Q_L(f) \equiv \int_{C_{
m left}} rac{dz}{2\pi i} f(z) j_{
m B}(z) \qquad C_L(f) \equiv \int_{C_{
m left}} rac{dz}{2\pi i} f(z) c(z)$$

 $h(-1/z)=h(z), \hspace{1em} h(\pm i)=0$

10

HALF-INTEGRATION AND IDENTITY STATE $(\sigma(z)A)*B=(-1)^{|\sigma||A|}*(z'^{2h}\sigma(z')B) \ \ (zz'=-1,\,|z|=1,\,{
m Re}\,z\leq 0)$ primary field (dim *h*) $(\Sigma_R(F)A) * B = -(-1)^{|\sigma||A|}A * (\Sigma_L(F)B)$ $\Sigma_{L(R)}(F) = \int_{C_1} \frac{dz}{2\pi i} F(z) \, \sigma(z)$ $\lfloor z$ |z| C_{left} C_{right} $F(-1/z) = (z^2)^{1-h}F(z)$ -1_1 1 1 -i $\Sigma_L(F)\mathcal{I} = -\Sigma_R(F)\mathcal{I}$ $\mathcal{I} * A = A * \mathcal{I} = A$ 11

: identity element with respect to the star product

ON THE EQUATION OF MOTION

• Ansatz: $\Psi = Q_L(F)\mathcal{I} + C_L(G)\mathcal{I}$ Note: $j_{\rm B} j_{\rm B} \sim cc$, $j_{\rm B} c \sim cc$ $Q_{\rm B}\Psi = \{Q_{\rm B}, C_L(G)\}\mathcal{I}$ $\Psi * \Psi = \{Q_{\rm B}, C_L((\partial F)^2 + FG)\}\mathcal{I}$ $j_{
m B}(z)=cT^{
m mat}(z)+bc\partial c(z)+rac{3}{2}\partial^2 c(z)=\sum_n Q_n z^{-n-1}$ $\{Q_m, Q_n\} = 2mn\{Q_{
m B}, c_{m+n}\}, \quad \{Q_m, c_n\} = \{Q_{
m B}, c_{m+n}\} \qquad Q_{
m B}|\mathcal{I}\rangle = 0$ assumptions: $F(-1/z) = F(z), G(-1/z) = z^4 G(z)$ $F(\pm i) = 0, \ G(\pm i) = 0$ $Q_{
m B}\Psi+\Psi*\Psi=0 \quad \Longleftrightarrow \quad G=-rac{(\partial F)^2}{1+F} \quad e^h=1+F$ 13

PURE GAUGE FORM OF TT SOLUTION

• Formal pure gauge form:

 $[Q_m,q_n]=-Q_{m+n}+2mnc_{m+n}$ gauge parameter string field: $\exp(\pm q_L(h)\mathcal{I})=e^{\pm q_L(h)}\mathcal{I}$

"well-defined" ?

14

ON GAUGE INVARIANTS FOR TT SOLUTION

Action

$$S[\Psi_h] = -rac{1}{6g^2} \langle \mathcal{I} | C_L((\partial h)^2 e^h) Q_{
m B} C_L((\partial h)^2 e^h) | \mathcal{I}
angle$$

Gauge invariant overlap

$$\mathcal{O}_V(\Psi_h) = \langle \mathcal{I} | V(i) (Q_L(e^h - 1) - C_L((\partial h)^2 e^h)) | \mathcal{I} \rangle$$

At least naively, $\langle \mathcal{I} | (\cdots) | \mathcal{I} \rangle$ causes divergence. Appropriate regularization is necessary to evaluate such quantities.

Identity based solutions may be "singular." Alternatively, we investigate SFT around Ψ_h .

CONTENTS

Introduction

- Takahashi-Tanimoto's identity based solution
- String field theory around TT solutions
 - Construction of numerical solutions
 - Comments on numerical solution in Siegel gauge
 - Numerical stable solution around TT solution (l=1)
 - Numerical unstable solution around TT solution (l=1)
 - Numerical solutions around TT solution (l=2,3)
 - Summary and discussion

AROUND TT SOLUTION

• expansion of the action around TT solution:

$$S[\Psi_h+\Phi]=S[\Psi_h]-rac{1}{g^2}\left(rac{1}{2}\langle\Phi,Q'\Phi
angle+rac{1}{3}\langle\Phi,\Phi*\Phi
angle
ight)$$

$$Q'\Phi = Q_{B}\Phi + \Psi_{h} * \Phi + \Phi * \Psi_{h}$$

$$= Q_{B}\Phi + (Q_{L}(e^{h} - 1) - C_{L}((\partial h)^{2}e^{h}))\mathcal{I} * \Phi$$

$$+\Phi * (Q_{L}(e^{h} - 1) - C_{L}((\partial h)^{2}e^{h}))\mathcal{I}$$

$$= Q_{B}\Phi + (Q_{L}(e^{h} - 1) - C_{L}((\partial h)^{2}e^{h}))\Phi$$

$$+ (Q_{R}(e^{h} - 1) - C_{R}((\partial h)^{2}e^{h}))\Phi$$

$$= (Q(e^{h}) - C((\partial h)^{2}e^{h}))\Phi$$

$$Q(f) \equiv \oint \frac{dz}{2\pi i}f(z)j_{B}(z), \quad C(f) \equiv \oint \frac{dz}{2\pi i}f(z)c(z)$$

$$q(h) \equiv \oint \frac{dz}{2\pi i}h(z)j_{gh}(z)$$

Formally, $Q' = e^{q(h)} Q_{\mathrm{B}} e^{-q(h)}$

A CLASS OF IDENTITY BASED SOLUTIONS

• a particular choice of function with 1-parameter

$$\begin{split} h_a^l(z) &= \log\left(1 - \frac{a}{2}(-1)^l \left(z^l - (-1)^l \frac{1}{z^l}\right)^2\right) \\ &= -\log((1 - Z(a))^2) - \sum_{n=1}^\infty \frac{(-1)^{ln}}{n} Z(a)^n (z^{2ln} + z^{-2ln}) \end{split}$$

$$egin{aligned} l &= 1, 2, 3, \cdots \ Z(a) &= rac{1 + a - \sqrt{1 + 2a}}{a} & a \geq -1/2 \ -1 &\leq Z(a) < 1 \end{aligned}$$

18

MODE EXPANSION OF THE SOLUTION

• Explicit form of the solution

$$\begin{split} \Psi_{l,a} &= Q_L(e^{h_a^l} - 1)\mathcal{I} - C_L((\partial h_a^l)^2 e^{h_a^l})\mathcal{I} \\ &= \frac{al^2}{\pi} \left(\sum_{k=1}^{\infty} \frac{(-1)^k 8}{(2k-1)((2k-1)^2 - 4l^2)} Q_{1-2k} + \sum_{k=0}^{\infty} g_k(a) c_{1-2k} \right) |\mathcal{I} \rangle \\ &\uparrow \qquad (Q_n + (-1)^n Q_{-n}) |\mathcal{I} \rangle = 0 \\ c(z) |\mathcal{I} \rangle &= \left(c_0 \frac{z^3 - z}{z^2 + 1} + c_1 \frac{1}{z^2 + 1} + c_{-1} \frac{z^4 + z^2 + 1}{z^2 + 1} + \sum_{n=2}^{\infty} c_{-n}(z^n - (-1)^n z^{-n}) z \right) |\mathcal{I} \rangle \\ g_0(a) &= \int_0^{\frac{\pi}{2}} d\theta \frac{-\cos 2\theta}{\sin \theta} \frac{\sin^2 2l\theta}{1 + a^{-1} - \cos 2l\theta} \\ g_1(a) &= \int_0^{\frac{\pi}{2}} d\theta \frac{1 - 2\cos 2\theta}{\sin \theta} \frac{\sin^2 2l\theta}{1 + a^{-1} - \cos 2l\theta} \\ g_k(a) &= \int_0^{\frac{\pi}{2}} d\theta (4\sin(2k-1)\theta) \frac{\sin^2 2l\theta}{1 + a^{-1} - \cos 2l\theta} \quad (k \ge 2) \end{split}$$

BRST OPERATOR AROUND THE SOLUTION

• Mode expansion

$$\begin{aligned} Q' &= Q(e^{h_a^l}) - C((\partial h_a^l)^2 e^{h_a^l}) \\ &= (1+a)Q_{\rm B} - (-1)^l \frac{a}{2} (Q_{2l} + Q_{-2l}) + 4al^2 c_0 + (-1)^l 2al^2 Z(a)^2 (c_{2l} + c_{-2l}) \\ &- 2al^2 (1 - Z(a)^2) \sum_{n=2}^{\infty} (-1)^{nl} Z(a)^{n-1} (c_{2ln} + c_{-2ln}) \end{aligned}$$

Formally, $Q' = e^{q(h_a^l)}Q_{\mathrm{B}}e^{-q(h_a^l)}$

Normal ordered form:

$$e^{\pm q(h_a^l)} = e^{\frac{1}{2}[q^{(+)}(h_a^l), q^{(-)}(h_a^l)]} e^{\pm q^{(-)}(h_a^l)} e^{\pm q^{(0)}(h_a^l)} e^{\pm q^{(+)}(h_a^l)}$$

$$q(h_a^l) = q^{(+)}(h_a^l) + q^{(0)}(h_a^l) + q^{(-)}(h_a^l)$$

$$[q_m, q_n] = m\delta_{m+n, 0}$$
(2)

ON THE EXPONENTIAL FACTOR

 $\Psi_{l,a>-1/2}$: pure gauge solution

21

Q' FOR A=-1/2

• Similarity transformation

$$\begin{aligned} Q'|_{a=-\frac{1}{2}} &= \frac{1}{2}Q_{\rm B} + \frac{(-1)^l}{4}(Q_{2l} + Q_{-2l}) + 2l^2 \left(c_0 - \frac{(-1)^l}{2}(c_{2l} + c_{-2l})\right) \\ &= \frac{(-1)^l}{4}e^{-q(\lambda^l)}Q_{\rm B}^{(2l)}e^{q(\lambda^l)} \end{aligned}$$

$$q(\lambda^l) = 2\sum_{n=1}^{\infty} rac{(-1)^{n(l+1)}}{n} q_{-2nl} \qquad \qquad \lambda^l(z) = -2\log(1+(-1)^l z^{2l})$$

$$Q_{\rm B}^{(2l)} = Q_{\rm B}|_{b_n \to b_{n-2l}, c_n \to c_{n+2l}} = Q_{2l} - 4l^2 c_{2l}$$

Replacement of *bc* ghosts in the Kato-Ogawa BRST operator

22

COHOMOLOGY OF Q' FOR A=-1/2

CONTENTS

Introduction

- Takahashi-Tanimoto's identity based solution
- String field theory around TT solutions
- Oconstruction of numerical solutions
 - Comments on numerical solution in Siegel gauge
 - Numerical stable solution around TT solution (l=1)
 - Numerical unstable solution around TT solution (l=1)
 - Numerical solutions around TT solution (l=2,3)
 - Summary and discussion

CLASSICAL SOLUTIONS FOR Q'

• Action of SFT around $\Psi_{l,a\geq -1/2}$

$$egin{array}{rll} S_{l,a}[\Phi] &\equiv & S[\Psi_{l,a}+\Phi]-S[\Psi_{l,a}] \ &=& -rac{1}{g^2}\left(rac{1}{2}\langle\Phi,Q'\Phi
angle+rac{1}{3}\langle\Phi,\Phi*\Phi
angle
ight) \end{array}$$

• Equation of motion: $Q'\Phi + \Phi * \Phi = 0$ • We solve the above in the Siegel gauge *numerically*: $b_0\Phi = 0$ $L_{l,a}\Phi + b_0(\Phi * \Phi) = 0$

$$L_{l,a} = \{b_0, Q'\}$$

= $(1+a)L_0 - (-1)^l \frac{a}{2}(L_{2l} + L_{-2l}) - (-1)^l al(q_{2l} - q_{-2l}) + 4l^2 aZ(a)$

25

CONSTRUCTING SOLUTION

• Iterative approach (Newton's method)

$$L_{l,a}\Phi^{(n)} + b_{0}(\Phi^{(n)} * \Phi^{(n)}) + L_{l,a}(\Phi^{(n+1)} - \Phi^{(n)}) + b_{0}(\Phi^{(n)} * (\Phi^{(n+1)} - \Phi^{(n)}) + (\Phi^{(n+1)} - \Phi^{(n)}) * \Phi^{(n)}) = 0$$

$$\downarrow$$

$$L_{l,a}\Phi^{(n+1)} + b_{0}(\Phi^{(n)} * \Phi^{(n+1)} + \Phi^{(n+1)} * \Phi^{(n)}) = b_{0}(\Phi^{(n)} * \Phi^{(n)})$$
Linear equation with respect to $\Phi^{(n+1)}$

$$n \to \infty$$

$$\downarrow$$

$$L_{l,a}\Phi^{(\infty)} + b_{0}(\Phi^{(\infty)} * \Phi^{(\infty)}) = 0$$
if iteration converges
We should choose an appropriate initial configuration $\Phi^{(0)}$

$$\downarrow$$

$$26$$

TRUNCATION OF STRING FIELD

• Level (L,3L) truncation $L = L_0 + 1$

 $ig \Phi$: up to level L $|A st B
angle = \sum_i |\phi^i
angle \langle V_3(1,2,3)|\phi_i
angle_1|A
angle_2|B
angle_3$ up to total level 3L

 $b_0 \Phi = 0$: Siegel gauge in the ghost number 1 sector $(-1)^{L_0+1} \Phi = \Phi$: twist even $\Phi \sim L_{-n_1}^{\text{mat}} L_{-n_2}^{\text{mat}} \cdots b_{-m_1} b_{-m_2} \cdots c_{-k_1} c_{-k_2} \cdots |0\rangle$: universal space

27

SU(1,1) SINGLET BASIS

[Zwiebach (2001)]

28

• Further truncation to SU(1,1) singlet sector

$$\Phi \sim L_{-n_1}^{\text{mat}} L_{-n_2}^{\text{mat}} \cdots L_{-n_1}^{\text{gh}\prime} L_{-n_2}^{\text{gh}\prime} \cdots c_1 |0$$
$$L_n^{\text{gh}\prime} \equiv L_n^{\text{gh}} + nq_n + \delta_{n,0}$$

 $\mathcal{G}\Phi = X\Phi = Y\Phi = 0$

$$\mathcal{G} = \sum_{n=1}^{\infty} (c_{-n}b_n - b_{-n}c_n) \quad X = -\sum_{n=1}^{\infty} nc_{-n}c_n \quad Y = \sum_{n=1}^{\infty} \frac{1}{n}b_{-n}b_n$$

$$egin{array}{rcl} L_{l,a}&=&(1+a)(L_0^{
m mat}+L_0^{
m gh\prime}-1)\ &&-(-1)^lrac{a}{2}(L_{2l}^{
m mat}+L_{2l}^{
m gh\prime}+L_{-2l}^{
m mat}+L_{-2l}^{
m gh\prime})+4l^2aZ(a) \end{array}$$

Note: $[L_m^{\text{gh}\prime}, L_n^{\text{gh}\prime}] = (m-n)L_{m+n}^{\text{gh}\prime} - \frac{1}{6}(m^3 - m)\delta_{m+n,0}$ $[b_0, L_n^{\text{gh}\prime}] = 0 \ [X, L_n^{\text{gh}\prime}] = 0 \ [Y, L_n^{\text{gh}\prime}] = 0 \ [\mathcal{G}, L_n^{\text{gh}\prime}] = 0$

DIMENSION OF TRUNCATED SPACE

L	dim H ⁺ _{univ}	dim H ⁺ _{singl}
0	1	1
2	3	3
4	9	8
6	26	21
8	69	51
10	171	117
12	402	259
14	898	549
16	1925	1124
18	3985	2236
20	7995	4328
22	15606	8176
24	29736	15121

twist even, universal space, Siegel gauge, ghost number 1

$\mathcal{H}^+_{ ext{singl}}$

twist even, universal space, Siegel gauge, ghost number 1, SU(1,1) singlet

LEVEL O ANALYSIS

• Ansatz: $\Phi_{L=0}=\phi\,c_1|0
angle$

CONSTRUCTION OF "STABLE SOLUTIONS"

• The initial configuration for a = 0 $(Q' = Q_B)$

 $\Phi^{(0)} = rac{64}{81\sqrt{3}} c_1 \ket{0} \longrightarrow \Phi_1 \ket{a=0}$

iteration

"conventional" tachyon vacuum solution

the nontrivial solution for (0,0) truncation

- The initial configuration for $a = \epsilon \ (0 < |\epsilon| \ll 1)$ $\Phi^{(0)} = \Phi_1|_{a=0} \longrightarrow \Phi_1|_{a=\epsilon}$ iteration
- The initial configuration for $a=2\epsilon$

$$\Phi^{(0)} = \Phi_1|_{a=\epsilon}$$
 $\longrightarrow_{\text{iteration}} \Phi_1|_{a=2\epsilon}$

31

CONSTRUCTION OF "UNSTABLE SOLUTIONS" (1)

• The initial configuration for a = -1/2 l = 1

$$\Phi^{(0)}=-rac{32}{27\sqrt{3}}c_1|0
angle$$
 iteration $\Phi_2|_{a=-1/2}$

the nontrivial solution for (0,0) truncation

• The initial configuration for $a = -1/2 + \epsilon \ (0 < \epsilon \ll 1)$

iteration

32

$$\Phi^{(0)} = \Phi_2|_{a=-1/2} \qquad \longrightarrow \qquad \Phi_2|_{a=-1/2+\epsilon}$$

The initial configuration for $a = -1/2 + 2\epsilon$

$$\Phi^{(0)} = \Phi_2|_{a=-1/2+\epsilon} \qquad \longrightarrow \qquad \Phi_2|_{a=-1/2+2\epsilon}$$

CONSTRUCTION OF "UNSTABLE SOLUTIONS" (2) a = -1/2 l = 2, 3

33

To get the converged solution uniquely, we take the following strategy:

• Level (2,6) truncation:

 $\Phi_2|_{a=-1/2}^{(2,6)}$ $\Phi^{(0)}=-rac{32(4l^2-1)}{81\sqrt{3}}c_1|0
angle$ iteration the nontrivial solution for (0,0) truncation • Level (4,12) truncation: $\Phi^{(0)}=\Phi_2ert_{a=-1/2}^{(2,6)}$ $\Phi_2|_{a=-1/2}^{(4,12)}$ iteration • Level (6,18) truncation: $\Phi^{(0)} = \Phi_2 |_{a=-1/2}^{(4,12)}$ $\Phi_2|_{a=-1/2}^{(6,18)}$ iteration

EVALUATION OF GAUGE INVARIANTS

• We evaluate potential height and gauge invariant overlap for obtained solutions:

$$egin{aligned} V_{l,a}(\Phi)&=-2\pi^2g^2S_{l,a}[\Phi]/V_{26}\ &\mathcal{O}_V(\Phi)&=2\pi\langle\hat{\gamma}(1_{
m c},2)|\phi_V
angle_{1_{
m c}}|\Phi
angle_2/V_{26} \end{aligned}$$
 invariants under the gauge transformation: $\delta_\Lambda\Phi&=Q'\Lambda+\Phi*\Lambda-\Lambda*\Phi$

$$\langle \hat{\gamma}(1_{c},2) |$$
 : Shapiro-Thorn's open-closed vertex
 $\langle \hat{\gamma}(1_{c},2) | \phi_{V} \rangle_{1_{c}} (c_{n}^{(2)} + (-1)^{n} c_{-n}^{(2)}) = 0 \qquad \langle \hat{\gamma}(1_{c},2) | \phi_{V} \rangle_{1_{c}} (Q_{n}^{(2)} + (-1)^{n} Q_{-n}^{(2)}) = 0$

Normalization:
$$V_{l,a=0}(\Psi_{\mathrm{Sch}}) = -1$$
 $\mathcal{O}_V(\Psi_{\mathrm{Sch}}) = 1$

for Schnabl's analytic solution for tachyon vacuum

CONTENTS

Introduction

- Takahashi-Tanimoto's identity based solution
- String field theory around TT solutions
- Construction of numerical solutions
- > o Comments on numerical solution in Siegel gauge
 - Numerical stable solution around TT solution (l=1)
 - Numerical unstable solution around TT solution (l=1)
 - Numerical solutions around TT solution (l=2,3)
 - Summary and discussion

NUMERICAL VALUES FOR A=0 (Q'=Q_B)

	(L,3L)	$V_{l,a=0}(\Phi_1 _{a=0})$	${\mathcal O}_V(\Phi_1 _{a=0})$	
	(0,0)	-0.6846162	0.7165627	
	(2,6)	-0.9593766	0.8898618	
	(4,12)	-0.9878218	0.9319524	
	(6,18)	-0.9951771	0.9510789	
	(8,24)	-0.9979301	0.9611748	
	(10,30)	-0.9991825	0.9681148	[Kawano-Kishimoto-Takahashi(2008)]
	(12,24)	-0.9998223	0.9725595	
	(14,42)	-1.0001737	0.9761715	
99),	(16,48)	-1.0003755	0.9786768	
)),)2)]	(18,54)	-1.0004937	0.9809045	
	(20,60)	-1.0005630	0.9825168	[Kishimoto-Takahashi,0910.3025]
	(22,66)	-1.0006023	0.9840334	36
	(24,72)	-1.0006227	0.9851603	

[Sen-Zwiebach(1999), Moeller-Taylor(2000), Gaitto-Rastelli(2002)]

COMMENTS ON RESULTS FOR A=0 (Q'=Q_B)

• Straightforward extrapolation of potential height

fitting function: $F_N(L) = \sum_{n=0}^N \frac{a_n}{(L+1)^n}$ [Gaiotto-Rastelli (2002)]

Using data for *L*=0,2,4,6,8,10,12,14,16 and *N*=9, we have

 $F_{N=9}(L=18) = -1.0004937$

 $F_{N=9}(L=20) = -1.0005630$

 $F_{N=9}(L=22) = -1.0006023$

Good coincidence with our direct computation!

 $F_{N=9}(L=24) = -1.0006229$

 $F_{N=9}(L=\infty) = -1.0000293$

EXTRAPOLATION OF POTENTIAL HEIGHT FOR A=0 (Q'=Q_B)

Using data for L=0,2,4,6,8,10,12,14,16,18,20,22,24 and N=13, we have

 $F_{N=13}(L=\infty) = -1.0000075$

The extrapolated value further approaches -1.

CONTENTS

Introduction

- Takahashi-Tanimoto's identity based solution
- String field theory around TT solutions
- Construction of numerical solutions
- Comments on numerical solution in Siegel gauge
- Numerical stable solution around TT solution (l=1)
 Numerical unstable solution around TT solution (l=1)
 Numerical solutions around TT solution (l=2,3)
 Summary and discussion

POTENTIAL HEIGHT FOR $\Phi_1~(l=1)$

POTENTIAL HEIGHT FOR $\Phi_1~(l=1)$

 $V_{l=1,a}(\Phi_1)$

GAUGE INVARIANT OVERLAP FOR $\Phi_1~(l=1)$ $\mathcal{O}_V(\Phi_1)$

GAUGE INVARIANT OVERLAP FOR $\Phi_1~(l=1)$ $\mathcal{O}_V(\Phi_1)$

STABLE VACUUM SOLUTION

 \circ For $\ L
ightarrow \infty$, numerical results suggest

CONTENTS

Introduction

- Takahashi-Tanimoto's identity based solution
- String field theory around TT solutions
- Construction of numerical solutions
- Comments on numerical solution in Siegel gauge
- Numerical stable solution around TT solution (l=1)
- \gg o Numerical unstable solution around TT solution (l=1)
 - Numerical solutions around TT solution (l=2,3)
 - Summary and discussion

GAUGE INVARIANT OVERLAP FOR $\Phi_2~(l=1)$ $\mathcal{O}_V(\Phi_2)$

GAUGE INVARIANT OVERLAP FOR $\Phi_2~(l=1)$ $\mathcal{O}_V(\Phi_2)$

NUMERICAL VALUES FOR a = -1/2 (l = 1)

	(L,3L)	$V_{l=1,a=-rac{1}{2}}(\Phi_2^{l=1} _{a=-rac{1}{2}})$	$\mathcal{O}_V(\Phi_2^{l=1} _{a=-rac{1}{2}})$	
	(0,0)	2.3105795	-1.0748441	
	(2,6)	2.5641847	-1.0156983	
	(4,12)	1.6550774	-0.9539832	
[cf. Zeze(2003), Drukker-Okawa(2005)]	(6,18)	1.6727496	-0.9207572	
	(8,24)	1.4193393	-0.9377548	
	(10,30)	1.4168893	-0.9110994	
	(12,24)	1.3035715	-0.9237917	
	(14,42)	1.2986472	-0.9056729	
	(16,48)	1.2357748	-0.9229035	
	(18,54)	1.2310583	-0.9086563	
	(20,60)	1.1915648	-0.9212376	[Kishimoto-Takahasl 0910.3026]
	(22,66)	1.1874828	-0.9103838	50
	(24,72)	1.1605884	-0.9231608	

EXTRAPOLATION OF POTENTIAL HEIGHT a = -1/2 (l = 1)

UNSTABLE VACUUM SOLUTION

 \circ For $L
ightarrow \infty$, numerical results suggest

CONTENTS

Introduction

- Takahashi-Tanimoto's identity based solution
- String field theory around TT solutions
- Construction of numerical solutions
- Comments on numerical solution in Siegel gauge
- Numerical stable solution around TT solution (l=1)
- Numerical unstable solution around TT solution (l=1)
- \gg o Numerical solutions around TT solution (l=2,3)
 - Summary and discussion

POTENTIAL HEIGHT FOR $\Phi_2~(l=2)$ $V_{l=2,a}(\Phi_2)$

NUMERICAL VALUES FOR $\ a=-1/2$ (l=2)

	(L,3L)	$V_{l=2,a=-rac{1}{2}}(\Phi_2^{l=2} _{a=-rac{1}{2}})$	$\mathcal{O}_V(\Phi_2^{l=2} _{a=-rac{1}{2}})$
	(0,0)	288.8224425	-5.3742203
	(2,6)	92.1238442	-3.1048971
	(4,12)	48.7033363	-2.6003723
	(6,18)	31.6992499	-2.2279366
	(8,24)	22.6595219	-2.0575256
((10,30)	17.2812044	-1.8761349
((12,24)	13.8061273	-1.7589056
((14,42)	11.4523287	-1.6466427
((16,48)	9.7610020	-1.5812240
((18,54)	8.5029788	-1.5129234
((20,60)	7.5338958	-1.4632552
((22,66)	6.7726232	-1.4139118
((24,72)	6.1591160	-1.3803795

POTENTIAL HEIGHT FOR $\Phi_1~(l=3)$ $V_{l=3,a}(\Phi_1)$

POTENTIAL HEIGHT FOR Φ_2 (l=3)

NUMERICAL VALUES FOR $\ a=-1/2$ (l=3)

(L,3L)	$V_{l=3,a=-rac{1}{2}}(\Phi_2^{l=3} _{a=-rac{1}{2}})$	$\mathcal{O}_V(\Phi_2^{l=3} _{a=-rac{1}{2}})$
(0,0)	3669.1147320	-12.5398475
(2,6)	1069.0267362	-6.9447829
(4,12)	469.8576394	-5.6412136
(6,18)	264.1631512	-4.4016913
(8,24)	169.6466508	-3.9168243
(10,30)	118.8569322	-3.4132963
(12,24)	88.1014995	-3.1705974
(14,42)	68.1558589	-2.8864809
(16,48)	54.5068784	-2.7221662
(18,54)	44.7485588	-2.5342661
(20,60)	37.5395492	-2.4137280
(22,66)	32.0687967	-2.2791648
(24,72)	27.8108828	-2.1939288

CONTENTS

Introduction

- Takahashi-Tanimoto's identity based solution
- String field theory around TT solutions
- Construction of numerical solutions
- Comments on numerical solution in Siegel gauge
- Numerical stable solution around TT solution (l=1)
- Numerical unstable solution around TT solution (l=1)
- Numerical solutions around TT solution (l=2,3)
- Summary and discussion

SUMMARY (1)

• We investigated cohomology of $Q' \equiv Q_B + [\Psi_{l,a}, \cdot]_*$ around a class of identity-based solutions:

$$egin{aligned} \Psi_{l,a} & (l=1,2,\cdots;a\geq -1/2) \ a > -1/2 & Q' = e^{q(h_a^l)}Q_{\mathrm{B}}e^{-q(h_a^l)} \ & \longrightarrow & ext{the same cohomology as } Q_{\mathrm{B}} \ a = -1/2 & Q' = e^{-q(\lambda^l)}(Q_{2l}-4l^2c_{2l})e^{q(\lambda^l)} \ & \longrightarrow & ext{no cohomology in the ghost number 1 sector} \end{aligned}$$

• The result suggests

$$\Psi_{l,a>-1/2}$$
 : pure gauge $\Psi_{l,a=-1/2}$: nontrivial solution, no open string

63

SUMMARY (2)

• We numerically constructed stable solution and unstable solution (up to level (24,72)) in the theory around

 $\Psi_{l,a}$ $(l = 1, 2, 3; a \ge -1/2)$ and evaluated gauge invariants.

• The results suggest the vacuum structure is like this:

64

• It is consistent with our previous interpretation.

DISCUSSION

 Our result on TT's solution suggests that the TT solution (a=-1/2) may be "gauge equivalent" to the Schnabl solution and give an alternative approach to investigating the nonperturbative vacuum.

[cf. Drukker(2003), Zeze(2004), Igarashi-Itoh-Katsumata-Takahashi-Zeze(2005)]

- Values of gauge invariant overlap slowly approach +1 (or -1(?)) for nontrivial solutions. Appropriate extrapolation with respect to the truncation level ?
- *Regular* solutions? *Definition* of the space of string fields?

• Extension to superstring field theory?